






MusicalApplications of
Microprocessors





MusicalApplications of
Microprocessors
SECOND EDITION

Hal Chamberlin

HAYDEN BOOKS
A Division ofHoward ~ Sams &Company

4300 West 62nd Street

Indianapolis, Indiana 46268 USA



© 19B5 by Hayden Books
A Division of Howard W. Sams & Co.

SECOND EDITION
SECOND PRINTING-19B7

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. While every precaution has been taken in
the preparation of this book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-8104-5768-7
Library of Congress Catalog Card Number: 85-24842

Acquisitions Editor: Therese A. Zak
Editors: Ronnie Groff and Lori Williams
Illustrator: John McAusland
Cover Design: Jim Bernard

Printed in the United States of America



Preface

The period encompassing the mid-1970s until now has seen an explosive
growth in the application of digital logic, especially programmed logic and
microcomputers. The key to this growth is the fantastic reduction in the cost
of logic and memory and the development of the microprocessor. In
particular, microprocessors and microcomputer systems built around them
make it possible, practical, and even advisable to perform many functions
using computer techniques that would have been done with conventional
logic or analog circuits a very few years ago.

Although many computer music techniques were developed over a
decade earlier, their widespread use in the broader area of electronic music
has not yet materialized. Now, however, the increasing power of mi
croprocessors and their fantastic low cost make such widespread use inevita
ble.

Many of' these existing techniques cannot or should not be used di
rectly, however. Although a microprocessor bears considerable resemblance
to the large-scale machines on which these techniques were developed, there
are important differences. Additionally, there are numerous new techniques
that lend themselves well to microprocessor implementation but that are
completely impractical using a large-scale mainframe or even minicomputer.

In the pages to follow, the application of all important electronic and
computer music performance techniques to microprocessors will be covered.
In addition, some new, not generally known, techniques that are only
practical with microprocessors will be discussed. Finally, some of the
extremely powerful big computer signal-processing techniques will be
presented in nonmathematical language and applied to the more powerful
16-bit microprocessors that are becoming commonplace.

The text is divided into four major sections. Chapters 1 to 5 cover
important background material, the understanding of which is necessary for
full appreciation of the sections to follow. Chapters on analog music synthesis
principles, digital music synthesis principles, and microprocessors should



serve to acquaint the general reader with these areas as well as fill in the
background of the specialized reader.

Chapters 6 to 11 cover the application of microprocessors to controlling
conventional analog sound-synthesizing equipment. The firse two chapters
cover typical analog modules and interfacing techniques to microprocessors.
The remaining four chapters are devoted to the control function itself, par
ticularly the manner in which the human user interacts with the
microprocessor-.synthesizer combination.

Chapters 12 to 18 concentrate on purely digital synthesis techniques.
These techniques have the greatest inherent general.ity and accuracy, but
widespread use has so far been inhibited by high cost and operation outside of
real time. Chapter 12 discusses the conversion of high-fidelity audio signals
to and from the digital domain. Chapters 13 to 15 discuss digital signal
generation and processing. The next three chapters describe the use and
implementation of these digital techniques into practical equipment and
systems.

Section IV covers actual applications of all of these techniques. Chapter
19 describes professional-quality usage of analog and digital technology in
research installations and in several representative products. Chapter 20
examines the design of consumer-oriented and very low-cost music-synthesiz
ing products. In so doing, it also provides a good summary of the strengths
and weaknesses of the myriad synthesis techniques described in earlier
chapters. Chapter 21 concludes by speculating on future developments in
musical applications of microprocessors at all levels from novelties to serious
musical research.

Throughout the discussions, the use of mathematics is minimized, and
where present, is limited to elementary algebra and trigonometry. Instead,
numerous charts, graphs, and sometimes computer programs in BASIC are
used to illustrate important concepts. This does not mean that the more
difficult concepts are skipped. For example, the fast Fourier transform and its
workings are described and supported with a tested program listing in
BASIC. Digital filters are also covered extensively.

The reader is not expected to merely study and marvel at the techniques
described. Rather, he is urged to go out and try them, apply them, and enjoy
the results. For this purpose, many actual programs and circuit diagrams are
included. While not every topic is reduced to practice, enough information is
supplied or pointed out in reference material to enable the industrious reader
to experiment with and refine the technique.

HAL CHAMBERLIN
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SECTION I

Background

Music is unique among the arts. Virtually everyone enjoys and appreciates it
to some extent. It is certainly the richest of the fine arts, with the typical
middle-class household spending hundreds of dollars annually on music
hardware such as radios, phonographs, and hi-fi sound systems and software
like records, tapes, and concert tickets. It is also unique in that it encom
passes a very broad range of disciplines ranging from mathematics to physics
to computer programming.

In the area of music synthesis by computer, it is necessary that the
practitioner be somewhat familiar with these and other fields in order to

master the medium. While detailed treatment of all necessary background
material is impossible in five short chapters, that which is covered should
serve to enlighten the reader in those areas outside of his or her primary
interest.





1

Music Synthesis Principles

Creating and listening to music is one of man's oldest and most popular
pastimes. Although natural sounds from both inanimate and animate sources
may have some of the essential characteristics of music, only man can creatt:
and control sounds that simultaneously possess all of the characteristics of
mUSIc.

Early peoples used many naturally occurring objects to create music.
Sticks beaten together, stones pounded together, and logs being struck were
certainly used for early rhythmic sounds. Later discovery of conch shell and
ram's horn trumpets added pitched sounds to the available repertoire.

However, as the quest for new and different sounds continued, na~ural

objects were modified specifically for the purpose of producing a wider range
of sounds. Logs were hollowed and slotted for differently pitched sounds.
Natural horns were modified in length or pierced with holes for the same
purpose. At this point and for all of history to follow, music became com
pletely artificial and was played on wholly artificial instruments.

Over the years, a great multitude of different instruments was invented
and refined. Stringed instruments culminating in the piano and violin
evolved from the earliest one-string harps. Wind instruments such as the
trumpet and pipe organ developed from simple horns or reed pipes. Percus
sion instruments such as the timpani or vibraphone evolved from log drums.

Historically, musical instrument makers have been quick to adopt
newly available technology. Perhaps since music is of such universal interest
and is usually regarded as a pastime, it would be natural that technologists
would want to utilize their expertise in an enjoyable manner. The experimen
tal approach to utilizing new technology in music is quite reasonable, since
the consequences of failure are nothing more than a heightened desire to

succeed the next time. In addition, failure is not that well defined. Although
the results may not have been expected, if they are different there are always
some who would praise them. This would not be true in many other applica
tions of technology such as bridge building or vehicle design.

It is not surprising, then, that musical instrument manufacturers have
rapidly adopted this century's electronic and more recent computer technol-
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4 MUSICAL ApPLICATIONS OF MICROPROCESSORS

ogy. Modern electronic technology allows the des"ign of compact instruments
with a wider range of sounds and more precise player control of the sounds
than had been previously available. Also of significance is the fact that these
new instruments are often much easier to play. Perhaps the ultimate- in
playing ease is a programmable instrument such as a digital computer. Since
time need no longer be a factor, very intricate, fast-moving music may be
played as easily as it can be written down.

Often traditionalists, who may have spent many years perfecting the
skills necessary to play traditional instruments, are loudly opposed to the
utilization of this new technology. because to them music so produced is
artificial and mechanical. Nevertheless, there is no essential difference be
tween the use of piston valve technology in trumpet design and computer
programming technology in organ design. It is still the responsibility of the
composer and performer to produce desirable musical results.

At this point it would be wise to develop a working definition of
music. Most physics texts define a musical sound as one that possesses a
degree of regularity, while noise as a sound does not possess such regularity.
Clearly, this alone is not sufficient, since a snare drum beat would be clas
sified as noise and fluorescent light buzz as music by this definition.

The arrangement, in time, of component sounds is as important as the
sounds themselves. Furthermore, this arrangement must be orderly to be
musical. However, excessive orderliness leads to boredom.

So far nothing has been said about the emotional aspect of music
composition and performance. True, some of the world's best music has a
strong emotional appeal but that alone is not sufficient. A mortal cry of
anguish appeals emotionally to all who hear it but is certainly not music. A
well-executed display of sound can be just as interesting to the ear as a
fireworks display is to the eye.

In summary, then, good music must be composed of sounds that have
regular vibrations but with enough variation to be continuously interesting.
Likewise, the arrangement of sounds must be orderly but with enough
variety to maintain interest. Music may either express an emotional point or
merely be a spectacular display of sound. Above all, good music must hold
the attention of the listener.

Goals of Music Synthesis

Certainly, all who study electronic music techniques in general and
particularly the readers of this book must have some goal in mind. The vast
majority of young music students today are still educated. solely on the
traditional musical instruments such as piano, organ, or any of a multitude of
band and orchestra instruments. Most often this involvement is not com
pletely spontaneous but rather is encouraged by parents and teachers, often as
the result of a musical aptitude test. Children who get into music on their
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own are more apt to choose the guitar, drums, or vocal music perhaps
because of the publicity that is continuously heaped upon players of those
instruments or because of the ready market for combo dance music.

Electronic and computer music has an attraction to both beginning and
thoroughly seasoned musicians. Its newness and unique capabilities are
strong attractive qualities. Young musicians are attracted because the poten
tial exists for creating sounds and music never before contemplated, let alone
heard. Experienced musicians see the opportunity to express themselves in
new ways unfettered by the constraints of conventional instruments or the
classical rules of composition for them.

Wider Variety of Sounds

Probably the most obvious and commonly sought goal of electronic
music practitioners is broadening the repertoire of sounds available for music
composition. Any given traditional instrument is definitely limited in the
pitch, loudness, and timbre range of sounds that it can produce. Orchestral
composers have often been quite clever in combining the sounds of ordinary
instruments to produce a composite sound that does not resemble the com
ponents at all. Indeed, it may be theoretically possible to produce any desired
sound in this manner. However, the proper combination is not at all obvious
and experimentation to discover it is not always practical due to the cost and
time constraints of an orchestra.

Undoubtedly the first purely electronic sound available was the simple
sine wave. Acoustically, a sine wave can be likened to pure refined sugar;
good in small amounts but sickeningly sweet if overdone. The oscillators that
produced the sine waves were usually continuously variable ovec a large
frequency range making wide interval glissando (a continuou6 change in
pitch from one note co the next) a reality.

Modern electronic music techniques are capable of an infinite variety of
musical timbres. Whereas in the past a differently shaped or proportioned
instrument was required to explore different timbres, the same can now be
accomplished by knob twiddling or keying numbers on a computer terminal
keyboard. Furthermore, timbre need not be unchanging. It is entirely possi
ble for a note to begin sounding like a saxophone and end sounding like a
flute with a smooth transition in between.

Because of the human hearing mechanism, a short, rapid sequence of
sounds may have an entirely different effect than the same sequence presented
more slowly. Electronic and computer techniques allow such sequences to be
accurately specified, played, and easily modified. Changing the component
sounds, the sequence, and the rate of presentation opens up a new infinity of
sounds available for the composition of music.

Sheer dynamic range is a significant new musical tool. A single tone
may start from the depths of inaudibility and creep upwards in pitch to the
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heights of inaudibility. Any sound may be made as loud or as soft as desired.
Thunderous, gut-shaking bass chords are available as is the most subtle solo
melody .

.Certainly a musician working with electronics is not limited by the
sounds available for composition.

Performance by the Composer

Another goal sought by many electronic muStclans is, to be blunt,
omnipotence. It is now possible for a single person to compose, perform, and
criticize a piece of music of any degree of complexity desired. No longer is it
necessary to write the music down part by part and find an orchestra to play
it, and then correctly only after considerable practice. Instead, the composer
can play the piece sequentially by part and have the parts combined' in a
recording studio. Or, with the aid of a computer, proper notation of the
music is itself sufficient to pr:ecisely direct the performance.

Interpretation of conventional scores has always been a problem. Many
important variables are left unspecified. Filling in these gaps is left to the
conductor (who may indeed be the composer himself) and the individual
players. In cases in which some aspect of the music is unconventional, the
fact that the performers are musicians too with their own ideas may make
execution according to the composer's wishes very difficult. With the use of
electronics, the composer himself can be in complete control of the perfor
mance. Passages can be repeated and experimented with in search of perfec
tion subject only to the patience of the composer. Nobody other than the
composer himself needs to hear or judge the work until it is in final form.

Because of the vast repertoire of new sounds. available, it is less likely
that the desired sounds and their combinations can be chosen using only
prior knowledge and imagination. Just as the classical composer worked with
a piano to experiment with melodies and rhythms, the contemporary com
poser needs to experiment. Electronics allows such experimentation with
immediate, or nearly so, feedback of results. Additionally, the costs are such
that expenmentation is usually practical as well as possible.

The majority of money spent on musical instruments in this country is
by individuals who are not in any sense professional musicians. To these
people, playing an instrument is a very enjoyable, creative pastime. The
increasing popularity of organs over pianos and other instruments in the
home is probably due to the greater versatility of the organ. Electronic organ
manufacturers have been very quick to adopt new technology that increases
the capabilities of their instruments and makes them easier to learn and use.
In the not too distant future, programmable electronic instruments will
allow anyone with clear ideas and time to try their hand at composing and
performing truly serious music strictly for fun.

Certainly, a musician working with electronics is not limited by anyone
else in what can be achieved.
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Increased Precision

Another often desired goal that can only be fulfilled through the use of
electronics is increased precision in the control of sounds. Additionally,
aspects of sound that in the past have been left to chance or were predefined
can now be precisely controlled. In fact, when a computer is involved, all of
the parameters of sound must be specified somehow, even if the actual desire
is to ignore some of them.

In many ways the human ear is very sensitive to and critical of imper
fections in musical sounds. Small amounts of certain types of distortion can
be very unpleasant. Relatively small shifts in pitch can break up an otherwise
beautiful chord into a not so beautiful one. Many hours are spent in practice
sessions getting the relative volume balance between instruments correct and
repeatable.

Timing is another variable that must be controlled, since the ear is
extremely sensitive to relative timing among musical events. Its capacity for
following and analyzing rapid sound sequences exceeds the capabilities of
conventionally played instruments. However, electronic instruments, par
ticularly those involving computers, have control over time to any degree of
accuracy desired.

In one technique of electronic tone production, for example, the user
has complete control over the fundamental building blocks of timbre, the
harmonic partials. Any timbre (within a broad class of timbres) may be
created by combining the harmonics in different proportions. Timbres may
be experimented with, saved for exact recall, and later utilized or refined
further. The ability to document and accurately recreate timbres and sounds
is as important as the ability to create them.

Extreme precision in all aspects of music performance is novel but not
necessarily good. Many will argue that such precision leads to mechanical
sounding music. Indeed, certain kinds of uncertainty or subtle variation are
necessary to maintain listener interest. However, if one starts with a precise
product, then the needed imperfections may be added in the precise quantity
desired.

Certainly, a musician working with electronics is not limited by inac
curacies in the control of sounds.

Increased Complexity

Complexity is one of the hallmarks of contemporary music. It is used to
increase the impact of the piece, display virtuosity both of the performer and
the composer, and to create a rich "sound landscape" upon which the primary
theme stands.

Complexity in this case means the quantity of musical events per unit
of time. Thus, it may actually be either greater speed or more parts playing
simultaneously or both. A modern recording studio can make a small ensem-
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ble sound like a vast collection of musicians through the use of overdubbing
and reverberation techniques. The same studio can facilitate the rapid play
ing of music either by actually speeding up the tape or by relieving concern
over the errors made during rapid playing.

The use of computers allows great but well-controlled complexity to be
built up because the music can be programmed. The programming process is
nothing more than notation of the music according to a rigid set of rules. In
many computer-based music systems using purely digital synthesis tech
niques, there is no practical limit to the speed of playing or to the number of
instruments or sounds that may be simultaneously present. The only penalty
for adding additional parts is a longer waiting period during one phase of the
music production.

Complexity in sound may also be quite subtle. Many natural sounds are
really quite complex when described in terms of the fundamental parameters
of sound. One interest area of many researchers is precise analysis of natural
sounds, some of which are not normally easily repeatable. With information
gleaned from the analysis, new sounds may be synthesized that resemble the
original in controlled ways or emphasize one or more of its characteristics.

Certainly, a musician working with electronics is not limited by the
degree of sound complexity possible.

Increased Spontaneity

Finally, a minority of people are looking for more randomness or spon
taneity in the performance of music through the use of electronics. The wider
range and greater ease of control of electronic instruments makes manual
improvisation easier and more interesting.

Computers may generate and use random sequences to control some or
all of the parameters of a sound. Certain mathematical processes, when used
to control sound, lead to interesting, unpredictable results. Natural
phenomena may also be captured electronically and used to control sound.
One example is the use of brain waves as a control source for one or more
oscillators. An entire record album has been created using fluctuations in the
earth's magnetic field as a control source.

Certainly, a musician working with electronics is limited only by his
own imagination.

The Fundamental Parameters of Sound
All music, whether it is conventional or electronic in origin, is an

ordered collection of sounds. Accordingly) a working knowledge of the
physics of sound is necessary to understand and intelligently experiment with
the degree of control of sound offered by the use of computers in electronic
music.
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Fig. 1-1. Mechanical soundAwaveform-tracing apparatus

Steady, unchanging sounds fall into two classes, pitched and un
pitched. The two classes are not completely disjointed, however, since there
are some sounds that possess characteristics of both groups. As will be shown
later, all steady sounds can be described by a number of parameters that are
also steady. In all cases, these parameters are scalar quantities, that is, a
simple number with corresponding physical units. Changing sounds (all
sounds change to some degree--otherwise they would have no beginning or
end) are similar to steady sounds except that the parameters that describe
them change with time.

One way to visualize a sound is to show its waveform or the manner in
which air pressure changes with time. Before the discovery of electronics,
mechanical instruments similar to the one shown schematically in Fig. 1-1
were used. Movement of the air caused by sound vibrations would be picked
up by a diaphragm and cause a tiny mirror to rotate in synchronism with the
vibration. A light beam reflected from the mirror onto moving photographic
film would make a visibile waveform trace. The distance from the mirror to
the film acted as a long but massless lever arm to effectively amplify the
vibrations.

Of course, sound waveforms may now be photographed on the display
screen of an oscilloscope. In order to do this, the sound is first directed into a
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Fig. 1-2. Some typical waveforms of steady sounds

microphorie that converts the air vibrations into equivalent electrical voltage
vibrations. Electronic sounds, of course, already exist in electrical form. In
either case, the electrical voltage variations control the vertical position of the
oscilloscope beam while it is also sweeping from left to right at a constant
rate. Thus, the plot on the screen shows equivalent air pressure on the
vertical or Y axis and the passage of time on the horizontal or X axis. In the
case of silence, a horiiontal baseline is all that would be seen. This does not
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represent zero air pressure but instead represents zero variation from current
atmospheric pressure. Since only relatively rapid variations in pressure can be
heard, the baseline is usually taken as a zero reference and the positive and
negative variation around zero is the quantity of interest.

Even using an oscilloscope presents some problems. One of these is that
the screen is not very wide so only very short segments of the waveform may
be conveniently displayed. The best way to visualize a waveform is to have a
computer record it and display it on a graphic display or plot it on paper.
From now on when the term "sound" or "vibration" is used, it is assumed to

exist as an electrical signal. Listening to the sound is simply a matter of
feeding the signal to a high-fidelity amplifier and quality speaker system.

Typical Sound Waveforms

Figure 1-2 shows some typical waveforms of steady sounds. The hori
zontal axis represents the passage of time and is marked off in milliseconds.
The vertical axis represents air pressure but is marked off in volts due to the
fact that the picture is actually of an electrical signal. The progression from
left to right is from the simplest possible pitched sound (sine wave) through
more complex pitched sounds to semipitched sounds a,od finally to the most
fundamental unpitched sound (white noise).

The waveforms in Figs. 1-2A and B are from unquestionably pitched
sounds. Their distinguishing feature is that the waveform repeats itself

+

I.LJ
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Fig. 1-2. Some typical waveforms of steady sounds (cant.)
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Fig. 1-2. Some typical waveforms of steady sounds (cont.)

exactly as time passes. Such waveforms when heard are clear, unwavenng
musical notes and are often called tones.

The waveform in Fig. 1-2C does not seem to repeat, at least during the
segment shown. It is composed, however, of a small number of individually
repeating waveforms. The sound is similar to that of a chime or bell. Such
sounds possess definite pitch when compared to similar sounds, but when
they are presented in isolation it is often impossible to say what the pitch
really is in musical terms.
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The waveforms in Figs. I-2D and E do not repeat either, but each is
composed of a very large (essentially infinite) number of repeating compo
nents. Waveform E, however, is composed of an equal mix of these compo
nents, whereas D contains a greater proportion of some components than
others. The sound of waveform E is that of rushing air, whereas D is similar
to whistling wind. Accordingly, E is purely unpitched and D is semipitched.

All of these waveforms can be described by means ofparameters . .Given
these parameters and a synthesizer or computer, one could reproduce the
essential characteristics of each of these waveforms and an infinity of others
between the extremes. This does not mean that the same exact shape would
be reproduced in all cases (although that too is possible if enough parameters
are defined), but it does mean that those characteristics that are audible
would be reproduced. Not all parameters are of equal importance in accu
rately describing the sound, as will be shown later.

The sine wave can be completely described with only two parameters.
One of these is related to the time required for a single repetition of the
waveshape and the other is related to the height of the waveform.

The Frequency Parameter

In Fig. I-2A, the sine waveform repeats every 4 msec (thousandths of a
second); thus, its period is 4 msec. Usually the reciprocal of the period is
used and is called the frequency, which is measured in cycles per second
according to the number of times the waveshape repeats in 1 sec. Recently,
the composite unit cycles per second has been replaced by hertz as the unit of
frequency. Thus, hertz or its abbreviation, Hz, will be used hereafter. Large
values of frequency, usually called high frequencies, are measured in kilohertz
(kHz) and megahertz (MHz), which are thousands and millions of hertz,
respectively.

For the pure sine wave shown, the human ear is generally regarded as
being capable of hearing frequencies between 20 Hz and 20 kHz. The
20-kHz upper frequency limit is usually a bit optimistic, however, with 15
kHz to 18 kHz being more common for young people. Advancing age pushes
the upper limit lower yet. The lower limit of 20 Hz is somewhat arbitrary,
since such low frequencies, if they are loud enough, make their presence
known by rustling clothing, shaking floors, and rattling windows.

The frequency parameter of the sine wave is strongly related to the
perceived pitch of the tone when heard. Whereas frequency is a physical
parameter of the sound waveform, pitch is a subjective parameter that exists
only in the mind of the listener. Without question, when frequency is
increased, the perceived pitch also increases provided that the frequencies
involved are in the audible range. The relationship between pitch and fre
quency is not linear, however. For example, an increase of 100 Hz from 100
Hz to 200 Hz results in a large pitch change upward, but a similar 100 Hz
increase from 5 kHz to 5. 1 kHz is a nearly imperceptible increase.
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Listening tests have shown that the relation between frequency and
pitch is an approximately exponential one. Thus, the increase from 100 Hz to
200 Hz represents a doubling in frequency so an equivalent pi tch increase
starting from 5 kHz would require doubling again to 10 kHz.

Musical Pitch

Musical pitch has its own system of measurement. Unlike frequency,
the units are relative rather than absolute. The most fundamental unit is the
octave. If tone B is one octave higher than tone A, then its frequency is exactly
twice as high and the sensation of pitch would be twice as high. (In tests with
musically inexperienced laymen, tone B would typically be judged to be less
than twice as high in pitch as tone A, but such a tendency is usually
eliminated by musical training.) Other units are the half-Jtep, which is 1/12
of an octave or a frequency ratio of 1.05946, and the cent} which is 1/100 ofa
half-step or a ratio of about 1.00059, which is roughly 0.06%. A half-step is
also the difference in pitch between two directly adjacent keys on a conven
tionally tuned piano. For moderately loud sounds around 1 kHz, the smallest
change in frequency that can be perceived is around 5 cents.

Since these pitch units are purely relative, a basis point is needed if an
absolute pitch scale is to be defined. One such basis point is the international
pitch standard, which defines the note, A above middle-C, as being 440.0
Hz. The corresponding frequencies of all other musical notes can be obtained
by applying the proper ratios to the 440-Hz standard.

Table 1-1 gives the frequencies of some musical notes. Note that two
systems of tuning are represented, although there are others. The most
popular tuning system is equal temperment, which is based solely on the
frequency ratio of the half-step being the twelfth root of 2.0 or approximately
1.05946. The term equal temperment means that all half-steps are exactly
the same size. The other system represented is the just system of tuning,
which is based on rational fraction ratios with small numbers for numerator
and denominator. The table shows these ratios in both fractional- form and
decimal form for comparison with the equally tempered scale frequencies.
Note that the octave ratio is exact in both scales, but there are small dif
ferences in all of the other ratios.

Of the two scales, the just-tuned one is more musically accurate and
pleasing to the ear particularly when chords are played. Musical accuracy
here means accuracy of the important musical intervals such as the fifth,
which is ideally a ratio of 3:2, and the third, which should be 5:4. Its
disadvantage is that not all half-steps are the same size; thus, transposition
froin one key to another is not easily achieved. For example, the just scale
shown is for the key of A major, meaning that the basis frequency chosen for
application of the rational fraction ratios was 440 Hz. If another just scale
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was constructed using a C as a basis, most of the note frequencies would be
slightly altered. As a result, the note 0, for example, would have slightly
different frequencies depending on the key of the music, which often changes
in the course of a composition. This is a clearly impractical situation for all
fixed-tuned instruments such as organs, pianos, guitars, etc. With equally
tempered tuning, there is no problem in going from one key to another. For
most musical applications, this advantage outweighs the sacrifice made in
musical accuracy.

The equal-temperment system is also used almost exclusively in elec
tronic music because it simplifies the electronic circuitry considerably. With
a computer or microprocessor involved, however) it becomes feasible, al
though not necessarily simple, to handle just tuning and thus gain an extra
measure of precision.

Table 1~1. Two Musical Tuning Systems

Equal temperment A Major just

Note Ratio Frequency Note Ratio Frequency

AD 0.0625 27.500 AO 1/16 0.0625 27.500
A1 0.1250 55.000 A1 1/8 0.1250 55.000
A2 0.2500 110.000 A2 1/4 0.2500 110.000
A3 0.5000 220.000 A3 1/2 0.5000 220.000
A#3 0.5297 233.068
83 0.5612 246.928 83 9/16 0.5625 247.500
C4 0.5946 261.624
C#4 0.6300 277.200 C#4 5/8 0.6250 275.000
D4 0.6674 293.656 D4 4/6 0.6667 293.333
D#4 0.7071 311.124
E4 0.7492 329.648 E4 3/4 0.7500 330.000
F4 0.7937 349.228
F#4 0.8410 370.040 F#4 5/6 0.8333 366.667
G4 0.8910 392.040
G#4 0.9439 415.316 G#4 15/16 0.9375 412.500
A4 1.0000 440.000 A4 1 1.0000 440.000
A#4 1.0594 466.136
84 1.1224 493.856 84 9/8 1.1250 495.000
C5 1.1892 523.248
C#5 1.2600 554.400 C#5 5/4 1.2500 550.000
05 1.3348 587.312 05 4/3 1.3333 586.667
0#5 1.4142 622.248
E5 1.4984 659.296 E5 3/2 1.5000 660.000
F5 1.5874 698.456
F#5 1.6820 740.080 F#S 5/3 1.6667 733.333
G5 1.7820 784.080
G#5 1.8878 830.632 G#5 15/8 1.8750 825.000
A5 2.0000 880.000 AS 2 2.0000 880.000
A6 4.0000 1760.00 A6 4 4.0000 1760.00
A7 8.0000 3520.00 A7 8 8.0000 3250.00
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The Amplitude Parameter

The other parameter that describes a sine wave is the amplitude. The
amplitude parameter is related to the height of the wave in a plot such as in
Fig. 1-2A. In the air, amplitude would actually relate to the degree of
change in air pressure, whereas in an electronic circuit it would relate to the
voltage or current in the circuit.

The most obvious way to specify the ampli tude of a sine wave is to find
the minimum voltage and the maximum voltage in the course of one cycle
and express the amplitude as the difference between the extremes. This is
termed the peak-to-peak amplitude. Another method is to specify the average
amplitude, which is the long time average difference between the instantane
ous waveform voltage and the baseline. A typical voltmeter would respond to
this average rather than the actual peaks of the waveform. A third method
relates the amount of heat produced in a resistor connected to the source of
the sine wave voltage to the amount of heat produced when the same resistor
is connected to a source of constant dc voltage. The dc voltage required to
produce the same amount of heat is called the effective voltage of the sine wave
or its root-mean-square value which is abbreviated rms. Of the amplitude
specification methods, the rms technique most accurately correlates with
what the ear hears, whereas the peak-to-peak: method most accurately pre
dicts the possibility of unwanted distortion in electronic recording and syn
thesis equipment.

The most common unit for amplitude specification when a waveform is
being examined is simply the volt. In rare cases, a current waveform may be
of interest so the amplitude would be specified in milliamperes or amperes.
When a signal is being delivered to a speaker, however, the amplitude is
usual!y expressed as power in watts. The power in a signal can be calculated
in several ways. The simplest is to multiply the instantaneous voltage by the
instantaneous current and average the product over one repetition of the
waveform. Another method is to square the rms voltage of the waveform and
divide the result by the speaker impedance, which is accurate only if the
speaker impedance is purely resistive.

The human ear is capable of responding to a very wide range of sound
amplitudes. The amount of sound power at 2,000 Hz that can be listened to
without undue discomfort is about a trillion (012) times greater than the
power in a barely audible sound. For convenience in working with such a
wide range of power, the bel scale (named after Alexander Graham Bell) of
sound intensity was developed. Like musical pitch units the bel scale is
relative. The bel unit refers to a ratio of 10 between the power of two sounds.
Thus, sound B contains 1.0 bel more power than sound A if it is 10 times as
powerful. Conversely, sound A would be 1 bel less powerful or -1. 0 bel
with respect to sound B. Expressed using the bel scale, the range of hearing
would be 12 bels.
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In actual audio work, the unit decibel, which is a tenth of a bel, is more
commonly used. It is abbreviated dB and represents a power ratio of about
1.259 to 1. Three decibels (which is 1.2593 ) represents almost exactly a ratio
of 2.0 and 6 dB is a ratio of 4: 1. Note that these are power ratios. Since power
increases as the square of voltage (assuming constant load resistance), a 10: 1
ratio of voltage is equivalent to 100: 1 ratio of power or 20 dB. Consequently,
6 dB represents only a doubling of voltage amplitude. Expressed as a voltage
ratio, the 120-dB range of human hearing represents a million-tO-one voltage
range.

Since the decibel scale is relative, a basis point is needed if an absolute
decibel scale is to be defined. For sound in air, the O-dB reference is taken as
10-16 Wlcm2 , a very small amount of power indeed. For electrical signals,
the reference point is 0.001 W into a 600-ohm impedance or about 0.775 V.
For the maximum amplitude of 120 dB, the figures would be 0.1 mW/cm2

in air and a million kilowatts of electrical power, more than most generating
plants put out. Clearly, the standardized electrical basis point has nothing to
do with sound amplitude.

It should be apparent by now that there is a strong relationship between
the amplitude of a sine wave and the loudness of the sound it represents.
Also, as expected from the trillion-to-one audible amplitude range, the
relationship is highly nonlinear. However, when amplitude is expressed in
decibels, the relation is reasonably linear. The amplitude of a sound must be
increased an average of 8. 3 dB to be perceived as a doubling of loudness. For
moderately loud sounds, 1 dB is about the smallest change in amplitude that
is noticeable. The basis point of 10- 16 W/cm2 for sound in air is about the
softest sine wave at 2 kHz that can be heard by a person with good hearing.
The basis for the electrical O-dB point is purely arbitrary.

Frequency and Amplitude Interaction

The frequency and amplitude parameters of a sine wave are completely
independent. Thus, one may be varied over a wide range without affecting
the value of the other whatsoever. This may not always be strictly true in a
practical circu.it for generating sine waves, but the amount of interaction in
good-quality equipment is very small.

When this sound is heard by the human ear, however, there is signifi
cant interaction between loudness and pitch. The most dramatic interaction
is the effect on the apparent loudness of a constant amplitude sine wave tone
caused by changing its frequency.

Figure 1-3 shows the extent of this interaction. The curves show the
amplitude change necessary to preserve constant loudness as frequency is
varied. Note that there is relatively little interaction at large amplitudes,
but, as the amplitude decreases, the lower-frequency sounds decrease in
loudness much faster than higher-frequency sounds. For example, at an
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Fig. 1-3. Loudness as a function of amplitude and frequency

amplitude level of 60 dB (relative to 10-16 W/cm2 in air) frequencies below
35 Hz would be too soft to be noticed. As frequency increases, loudness
Increases also up to about 800 Hz where it levels off to the comfortably loud
level of normal conversation. As frequency approaches the upper limit of
hearing, the apparent loudness again decreases.

The effect on pitch caused by an amplitude change IS much smaller.
Again the effect is greatest at the extremes of the frequency range. In particu
lar, the pitch of a low-frequency (l00 Hz) sine wave tone decreases as the
amplitude increases. The pitch shift effect is small enough to be ignored,
however, with more complex waveshapes.

The Mathematical Sine Shape

Before moving on to more complex waveshapes and other parameters,
we need to look more closely at the sine shape itself. Why is it the simplest
possible waveform and why is it so important? The name sine wave comes
from the sine trigonometric function. For right triangles, the sine of one of
the other angles is the ratio of the length of the side opposite the angle to the
length of the hypotenuse.

Figure 1-4A shows how this trigonometric ratio can be converted into
a sine wave shape. Assume that the crank, which represents the hypotenuse,
is one unit in length and that it is being turned counterclockwise at a
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SIN (A)

(A)

cos (A)
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Fig. 1-4. Mathematical sine wave generator
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constant speed. The angle, A, between the crank arm and the centerline of
the crank axis is the angle of interest. As the crank turns and time passes, the
angle gets progressively larger. The distance from the center of the handle to
the horizontal centerline of the crank axis, which represents the side opposite
the angle, is the sine of this progressively increasing angle.

Also shown is a graph of the sine as a function of the angle. If the crank
is being turned one revolution per second, then the frequency of the sine
wave on the graph is 1.0 Hz, and the horizontal axis units may be changed
from degrees to time. If the -speed of turning is increased, then the frequency
of the sine wave would also be increased. Sometimes the term "instantaneous
angular velocity" is used when the frequency varies. If rapid variations are
encountered, simply counting the number of complete sine wave cycles in
1 second may not be precise enough. In such cases, angular velocity refers,
conceptually, to the speed of crank turning, which can be measured very
quickly.
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One other factor is of importance on the graph, al though j t does not
directly affect the sound of a single sine wave. This factor is called the phase of
the wave and is related to the position of the crank when turning was started.
In Fig. 1--4A, the initial crank position was straight out right. At time 0,
the turning was started and the wave started rising initially. If instead the
initial position was at the top of the are, then the wave of Fig. 1--4B would
result. The only difference is that the 0 time point has been shifted ahead
with respect to the waveform by 0.25 sec, which is equivalent to 90° if the
degree scale is used. Thus, waveform B is said to have a 90° degree leading
phase with respect to waveform A and waveform A has a 900 lagging phase
with respect to waveform B.

Since phase is also a relative quantity, a reference point is needed for an
absolute scale. By mathematical convention, waveform B has a 0 phase angle.
As a result, waveform A has a -900 phase angle. Waveform B is also called a
cosine wave. In trigonometry, the cosine is the ratio of the length of the side
adjacent the angle to the lengthof the hypotenuse. On the crank diagram, the
adjacent side is represented by the distance from the center of the handle to
the vertical centerline of the crank axis. The plot of a cosine wave will be
exactly the same shape and amplitude as the sine wave done earlier; the only
difference is in the phase angle. In the future, when the term sine wave is
used, the reference will be to the actual sine shape and not to any particular
phase angle.

The Mechanical Sine Shape

Although the foregoing describes a mathematical method of plotting a
sine wave as accurately as desired, it does not explain why it is such an
important waveshape. For the answer to that question consider the mechanical
setup shown in Fig. 1-5. Here we have a weight hanging from a spring
firmly attached to the ceiling. If the weight is pulled down somewhat and
released, it will bounce up and down with a smooth motion that gradually
diminishes. If the spring is of highly tempered steel and the experiment is
performed in a vacuum, the vibration amplitude of the weight will decrease
so slowly that for short observation times the amplitude will appear constant.
The point is that the motion of the weight, if plotted as a function of time, is
an essentially perfect sine wave. Any imperfections in the sine shape are due
to defects in the spring and the fact that gravity is less at the top of the
weight motion than at the bottom. The mathematical reason that two such
different devices should have identical motion characteristics is beyond the
scope of this discussion, however.

The frequency of vibration of the spring-mass system may be altered by
either changing the amount of weight or the stiffness of the spring or both.
With a stiff spring and light weight (or even the weight of the spring itself),
the frequency can become high enough to be heard. Note that, as the
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Fig. 1-5. Mechanical sine wave generator

amplitude of the vibrations gradually diminishes, the frequency remains the
same. The rate of amplitude decay is dependent mainly on the amount of
friction present. If the spring is held by a person rather than the ceiling, the
vibrational energy lost to friction may be replenished by careful, syn
chronized movement of the spring.

The importance of the sine wave is obvious if one realizes that all
natural sounds come from mechanical vibration. The vibrating members in
all cases are actually tiny spring-mass systems. Pieces of metal, logs, and
even the air itself have a degree of springiness and mass. Striking these
objects or exciting them by other means creates the characteristic sine wave
vibration of either the entire object or portions of it. In most cases, more than
one spring-mass equivalent is vibrating simultaneously, so the resulting
sound is actually a combination of sine waves of different frequencies and
rates of decay.

Complex Wavefarms

At this point, we are now prepared to discuss the most interesting
parameter of all in repeating waveforms, namely the shape of the wave itself.
The shape of a waveform influences its timbre or tone quality. Obviously,
there is an infinite number of possible waveshapes (and only a few less
timbres). The only restriction is that a waveshape must be a single-valued
function, which essentially means that the horizontal progression from left to
righ t can never reverse.
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As mentioned earlier, any natural sound waveform is really a combina
tion of sine waves originating from vibrating spring-mass systems. However,
in the 17th century, a French mathematician by the name of Joseph Fourier
proved mathematically that any waveform, regardless of origin) is actually a
mixture of sine waves of different frequencies, amplitudes, and phases. Fur
thermore, he showed that if the waveform repeats steadily, then the frequen
cies of the component sine waves are restricted to being integer multiples of the
repetition frequency of the waveform. Thus, if the frequency of repetition is
100 Hz, then the component sine waves must have frequencies of 100 Hz,
200 Hz, 300 Hz, etc., up to infinity, although any components above 20
kHz will not contribute to the sound, since they are inaudible. Of course,
some of them may have zero amplitude, but in general it can be assumed that
all of them exist in the audible frequency range.

These component sine waves are called overtones or harmonics, with the
latter term preferred. The component having the same frequency as the
overall waveshape is termed the fundamental frequency, which is also the first
harmonic. The component having a frequency twice the fundamental is
termed the first overtone or second harmonic. The third harmonic has a
frequency three times the fundamental and so forth. Since the frequencies of
the component waves are fixed, each one can be characterized by giving its
amplitude and its phase angle either as an absolute quantity or w.ith respect
to the fundamental.

Figure 1-6 shows how harmonic sine waves can be combined together
to produce a waveshape that is about as far as one can get from a curvy wave.
Combining two waveforms really means adding them point by point as
shown to get the combined result. A squared-off waveform such as this
actually has an infinite number of harmonics with nonzero amplitudes. A
practical synthesis of the waveform from harmonic components has to stop
somewhere, of course, and leave aU of the higher-frequency harmonics with a
zero amplitude.

As can be seen, each additional harmonic gives a closer approximation
to the desired rectangular-shaped wave. With the first 32 harmonics repre
sented, the apprOXimation is getting quite close with steeply rising sides and
reasonably flat top; however, there is still a significant amount of overshoot
and ringing. These imperfections ate mainly due to using the set of harmonic
amplitudes designed for an infinite series and stopping the series abruptly at
the 32nd harmonic. A modification of the amplitudes taking into account
the fact that no harmonics above 32 are allowed produces a visibly superior
rendition of the desired shape.

The significance of Fourier's theorem can be realized by noting that all
of the acoustically important aspects of the shape of a waveform can be
specified with a comparatively small number of parameters. For example, a
1,OOO~Hz waveshape, no matter how complicated, can be specified by 20
amplitudes and 20 phase angles corresponding to the 20 audible harmonics.
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Fig. 1-6. Synthesis of a rectangle wave from sine waves. (A) Desired rectan
gular wave. (B) Fundamental and second harmonics separately.



24 MUSICAL ApPLICATIONS OF MICROPROCESSORS

FROM 1-6 B

+

FUNDAMENTAL
AND SECOND
COMBINED

/

Of-------+-------+-------+-------t-----

+

(D)

Fig. 1-6. Synthesis of a rectangle wave from sine waves (cont.). (C) Funda
mental and second harmonics combined and separate third har
monic. (0) Fundamental, second, and third harmonics combined.
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Fig. 1-6. Synthesis of a rectangle wave from sine waves (cont.). (G) Funda
mental through 32nd harmonics combined. (H) Fundamental through
32nd harmonics combined with adjustment for a finite number of
harmonics.
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Human Ear Interpretation of Waveshape

Up to this point, the emphasis has been on the actual shape of a wave.
However, the human ear does not work by tracing the waveform and report
ing the various twists, turns, and undulations to the brain. Instead, the
sound vibrations are crudely analyzed into sine wave components and the
amplitudes of the components are sent to the brain [or recognition. The
phases of the harmonics with respect to the fundamental are o[ little impor
tance in tOnes of moderate frequency and amplitude. As a result, phase can
usually be ignored when synthesizing sound waveforms. For example, the
tones of Fig. 1-7 would all sound alike provided the frequency was above a
couple of hundred hertz and the amplitude was not excessively large. The
amplitudes of the harmonics in Fig. 1-7A, B, and C are all the same, but in
B the fundamental has been shifted 1800 with respect to the other harmonics,
and in C the phases of all of the components have been randomly redistrib
uted.

Obviously, the waveshape is not really a very good indicatOr of the
timbre of the resulting sound. Since the harmonic amplitudes are a good
indicator of timbre, a different kind of graph called a spectrum plot is useful.
Such a graph is shown in Fig. 1-8, which is the spectrum of the rectangular
wave used earlier. The horizontal axis is now frequency and the vertical axis is
amplitude, usually either the peak (half of peak-to-peak) value or the rms
value. Each harmonic is represented by a vertical line whose height depends
on its amplitude.

When evaluating timbre, particularly lower-frequency tOnes with a lot
of harmonics, the human ear is not usually supersensitive about the exact
amplitude of a particular harmonic. In most cases, the trend in amplitudes of
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Fig. 1-7. (A) Normal square wave.
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Fig. 1-7. (Cont.). (B) Square wave with fundamental shifted 180°. (C) Square
wave with random shift of all harmonics.

groups of harmonics is more important. A single harmonic, even the funda
mental, can often be eliminated without great effect on the timbre. Accord
ingly, it is often useful to note the spectral envelope of the harmonics, which is
indicated by a dotted line.

It is interesting to note that even if the fundamental component
amplitude is forced to zero the ear is still able to determine the pitch of the
tone. There ace a number of theories that attempt to explain how this is
accomplished. One maintains that the ear is somehow capable of picking out
the repetition rate of the waveform, which is not destroyed by removing the
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fundamental. Another suggests that all of the remaining component frequen
cies are ascertained, and the missing fundamental frequency is "computed"
from them. .

Nonrepeating Wavefonns

With the basics of definitely pitched sounds with repeating waveforms
in hand, lee's examine more closely the last three waveforms in Fig. 1-2. As
mentioned earlier) waveform C does not repeat but does have a pitch sense in
relation to other similar sounds. Its spectrum is shown in Fig. 1-8B. Note
that the sine wave component frequencies are not integral multiples of some
fundamental frequency. This is the main reason that the waveform does not
repeat and that it does not have an absolute pitch. However, since a small
number of component frequencies relatively far from each other are involved,
the sound is pleasing to hear, and the waveform trace is not unduly com
plex.

Actually, the statement about the waveform never repeating needs to
be qualified a bit. If all of the frequencies are rational numbers it will repeat
eventually. If one of the frequencies is irrational, such as 7T kHz, however,
the waveshape will indeed never repeat. At the moment, the presence or
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Fig. 1-8. Spectrum plot. (A) Rectangle wave of Fig. 1-7. (B) Waveform of Fig.
1-2C.
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absence of a repeating wave pattern is rather academic, but it will be impor
tant later.

Unpitched sounds and most semipitched sounds are like the waveforms
of Fig. i-2D and E-real messes that look more like an infant's scribbling.
Time waveforms of such sounds give almost no clues about how they will
sound. A spectrum plOt, however, will reveal quite a bit. The first obvious
feature is that there is a very large number of lines representing component
sine waves. With such a large number, the spectral envelope takes on added
significance. In fact, most sounds of this type literally have an infinite
number of component frequencies so the envelope is all that can be really
plotted.

The spectrum in Fig. i-3D is special. It is nothing more than a
straight line! Such a sound is called white noise because it has an even mixture
of all audible frequencies. This is analogous to white light, which is an even
mixture of all visible light frequencies. Any departure from a straight spec
tral plot can be called coloring the sound, analogous to coloring light by
making one group of frequencies stronger than others.

Pure white noise sounds like rushing air or distant surf. If the lower
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Fig. 1-8. Spectrum plot (cant.). (C) Waveform of Fig. 1-20. (D) Waveform of
Fig. 1-2E.
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frequencies are emphasized (or the higher ones eliminated) the sound be
comes a roar, or in an extreme case, a rumble. If the high frequencies
predominate, a hiss is produced.

The middle frequencies can also be emphasized as in Fig. I-8e. If a
wide range of middle frequencies is emphasized, the sound is only altered
slightly. However, if a sufficiently narrow range is strengthened, a vague
sense of pitch is produced. The apparent frequency of such a sound is nor
mally near the center of the group of emphasized frequencies. The narrower
the range of frequencies that are emphasized, the more definite the pitch
sensation. If the range is very narrow, such as a few hertz, a clearly pitched
but wavering tone is heard. If the waveform of such a tone is examined over
only a few cycles, it may even appear to be a pure, repeating, sine wave!
Multiple groups of emphasized frequencies are also possible with a clearly
different audible effect. In fact, any spectrum envelope shape is possible.

Parameter Variation

In review, then, all steady sounds can be described by three fundamen
tal parameters: frequency if the waveform repeats, overall amplitude, and
relative harmonic amplitudes or spectrum shape. The audible equivalents of
these parameters are pitch, loudness, and timbre, respectively, with perhaps
a limited degree of interaction among them.

What about unsteady sounds? All real sounds are unsteady to some
extent with many useful musical sounds being particularly so. Basically a
changing sound is a steady sound whose parameters change with time. Such
action is frequently referred to as dynamic variation of sound parameters.
Thus, changing sounds can be described by noting how the parameters vary
with time.

Some terms that are often used in discussing parameter variation be
havior are steady state and transition. If a parameter is changing only part of
the time, then those times when it is not changing are called steady states.
Usually a steady state is not an absolute cessation of change but instead a
period of relatively little change. The transitions are those periods when
movement from one steady state to another takes place. An infinite variety of
transition shapes are possible from a direct, linear change from one steady
state to another to a variety of different curves. Often it is the speed and form
of the transitions that have the greatest influence on the overall audible
impact of a sound.

Frequency Variation

Dynamic variation of frequency is perhaps the most fundamental. A
simple one-voice melody is really a series of relatively long steady states with
essentially instantaneous transitions between them. If the frequency transi
tions become fairly long, the audible effect is that of a glide from note to
note.
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Often with conventional instruments, a small but deliberate wavering
of frequency is added to the extended steady states. This wavering is called
vibrato. If the frequency parameter is plotted as a function of time on a graph,
then the vibrato shows up as a small amplitude waveform with the baseline
being the current steady state. This situation is termed frequency modulation
because one waveform, the vibrato, is modulating the frequency of another
waveform, the sound. We now have a whole new infinity of possible vibrato
frequencies, amplitudes, and shapes. Vibrato waveforms for conventional
instruments are usually around 6 Hz with an amplitude of 1% or so and a
roughly sine waveshape.

Gross alterations in the typical vibrato waveform can also have a gross
effece on the resulting sound. If the modulating wave amplitude is greatly
increased to several percent or even tens of percent, the result can be a very
boingy or spacey sound. If the modulating frequency is increased to tens or
hundreds of hertz, the sound being modulated can be completely altered.
Clangorous sounds resembling long steel pipes being struck or breaking glass
are easily synthesized simply by having one waveform frequency modulate
another. This phenomenon will be studied in greater depth later.

Amplitude Variation

Changes in amplitude are also fundamental. Again taking a one-voice
melody as an example, it is the amplitude changes that separate one note
from another, particularly when two consecutive notes are of the same fre
quency. Such an amplitude change delineating a note or other sound is
frequently called an amplitude envelope or just envelope. The shape and
duration of the amplitude envelope of a note has a profound effect on the
overall perceived timbre of the note, often as important as the spectrum
itself.

Figure 1-9 shows a generalized amplitude envelope. Since they are so
important, the various transitions and steady states have been given names.
The initial steady state is, of course, zero or silence. The intermediate steady
state is called the sustain, which forms the body of many notes. The transition
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Fig. 1-9. Typical amplitude envelope shape.
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from zeto to the sustain is called the attack. The duration of the attack is of
primary importance, although its shape may also be important, particularly
if the attack is long. The transition from the sustain back to zero is the decay.
Again, time is the major variable. Some notes, such as a piano note, have no
real sustain and start to decay immediately after the attack. They may,
however, have two different rates of decay, a slow initial one, which could be
considered the sustain, even though it is decaying, and a faster final one.
Other envelope shapes are, of course, possible and quite useful in electronic
music.

As with frequency variation, an amplitude envelope may have a small
wavering superimposed on the otherwise steady-state portions. Such
amplitude wavering is called tremolo and, if small in amplitude, sounds much
like vibrato to the untrained ear. Actually, the physical manipulation re
quired to waver the tone of conventional instruments seldom results in pure
vibrato or tremolo; usually both are present to some degree. Large-amplitude
tremolo gives rise to an unmistakable throbbing sound. Generalized
amplitude modulation of one waveform by another is also possible, and in
many cases the effects are similar to frequency modulation. This will also be
examined more closely later.

Spectrum Variation

Finally, dynamic changes in the spectrum of a tone are the most in
teresting and the most difficult to synthesize in general. The primary dif
ference between spectrum variation and frequency or amplitude variation is
that a spectrum shape is multidimensional and the other two parameters are
single-dimensional. Because of this multidimensional nature, standard elec
tronic synthesis techniques for dynamic spectrum changes generally utilize
schemes that attempt to cover a wide range of timbres by varying only one or
two parameters of a simplified spectrum shape.

One obvious way to control and vary the spectrum is to individually
control the amplitudes of the individual harmonics making up the tone. This
is a completely general technique applicable to any definitely pitched tone.
The problem with actually accomplishing this is twofold. The first is the
myriad of parameters to control----dozens· of harmonic amplitudes for moder
ately pitched tones. Involving a computer or microprocessor is the only
reasonable approach to such a control task. The other problem is deciding
how the harmonic amplitudes should vary to obtain the desired effect, if
indeed even that is known. There are methods such as analyzing natural
sounds, evaluating mathematical formulas, or choosing amplitude contours
at random and subjectively evaluating the results that work well in many
instances. In any case, a computer would probably be involved in generating
the data also.

As mentioned previously, common synthesis techniques aim at reduc
ing the dimensionality of the spectral variation problem. Consider for a
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moment a spectral envelope like the one that was shown in Fig. I-8e.
Disregarding the exact shape of the bell-shaped curve, it should be obvious
that three parameters can adequately describe the spectrum. First, there is
the width and height of the peak on the curve, and finally the frequency at
which the peak is highest. In a typical application, the width and height of
the curve are related. Also, since only the relative height of one portion of the
curve with respect to another is important, the absolute height parameter is
usually eliminated. This leaves just the width and center frequency as vari
ables. Note that for definitely pitched, periodic sound waveforms the spec
trum curve being considered is really the envelope of the individual harmonic
amplitudes.

It turns out that manipulation of these two variables is sufficient to

create very interesting dynamic spectrum changes. In fact, if the width
variable is set to a reasonable constant value such as Y3 octave at the 6-dB
down (with respect to the peak) points, then varying just the center
frequency is almost as interesting. This in fact is the principle behind the
"wah-wah" sound effect for guitars that became popular years ago.

Other methods for changing or distorting the spectrum under the
influence of a small number of parameters exist and will be covered in more
detail later.

Simultaneous Sounds

The preceding should serve as a brief introduction to the fundamental
parameters of a single, isolated sound. Most interesting music, however,
contains numerous simultaneous sounds. One common use for simultaneous
sounds is chords and harmony. Another application is rhythm accompani
ment. Sometimes quantities of sound are used simply as a kind of acoustical
background for a simpler hut more prominent foreground. The physics and
fundamental parameters of each component sound remain unaltered, how
ever. The real frontier in synthesis, after adequate control of the basic.
parameters of sound is accomplished, is applying this degree of cOfitrol to
numerous sounds, all simultaneously, and all under the direction of a single
composer/performer. Extensive use of microprocessors in synthesis will be the
final stride toward reaching this goal.

History of Electronic Sound Synthesis

Sound and music synthesis by electronic means has a long and interest
ing history. Although only the most significant milestones can he briefly
described here, the effort is certainly worthwhile, since the ongoing evolu
tion of synthesis techniques and equipment is far from complete. Without
exception, significant developments in sound synthesis closely followed sig
nificant developments in electronic and computer technology. Often, how-
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ever, there have been gaps of many years, even decades, between when it
became possible to apply a technique and when it became practical to do so.

The Telehannonium

One of the earliest serious musical instruments that produced sound by
purely electrical means was conceived and built by Thaddius Cahill in 1903.
The device was called the Teleharmonium, and the name fairly accurately
described the principles involved. As with many synthesis developments, the
profit motive was the major driving force. Cahill's basic concept was to
generate music signals electrically and transmit them to subscriber's homes
over telephone lines for a fee. The signals would be reproduced by loudspeak
ers for "the continuous entertainment of all present." The "harmonium" part
of the name derives from the use of harmonically related sine' waves for the
synthesis of various timbres.

At the performer's end, the device resembled a conventional pipe organ
console with two piano-like keyboards and numerous stops for controlling
the timbre. Tone signals, however, were generated at kilowatt levels by
specially constructed multipole, multiarmature electric generators located in
the basement. Each generator had eight outputs representing a particular
note pitch at octave intervals for the 8-octave range. Such generators were
reasonably straightforward to build but were large, heavy, and expensive.
Although 12 were planned to cover all of the notes in an octave, only 8 were
actually built. The high power levels produced were needed to serve the large
number of subscribers expected and overcome transmission losses.

In addition to the generators, special multiwinding "mixing transfor
mers" were used to combine several tones together. A limited amount of
harmonic mixing was utilized to vary the timbre. This was possible without
additional windings on the generators, since the first six harmonics of. any
note on the equally tempered musical scale are also on the scale with very
little error. The amplitude levels of the tones were controlled by means of
inductors with movable cores to vary the inductance. In addition to the
tonnage of iron, miles of wire were used to connect keyboard contacts to the
other equipment. Overall, the machinery that was built weighed over 200
tons and required 30 railroad flatcars to move.

Generally, the device worked well and was adequately accurate and
stable. One problem that was eventually overcome was key click. Since the
tones were being continuously generated and merely switched on and off
with contacts, the attack of a note was instantaneous. If a key contact closed
at a time when the signal being switched was near a peak, a sharp rising
transient would be generated in the output line. The solution to the problem
was additional filter transformers to suppress the transients.

The other problems were mostly economic. Since the planned 12
generators were not available, some of the notes were missing, resulting in a
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restricted set of key signatures that could be played. Another difficulty was
that the pressure of delivering continuous music to the subscribers already
signed up severely limited the amount of machine time available for practice
and further refinement.

Listeners' reactions to Teleharmonium music were interesting. The
initial reaction was quite favorable and understandably so. No one had ever
heard pure, perfectly tuned sine waves before and the sparkling clear unwav
ering quality of the sound was quite a novelty. Over long periods of time,
however, the novelty was replaced by subtle irritation as the overly sweet
nature of pure sine waves became apparent. The limited harmonic mixing
technique that was later developed did little to remedy the situation, since
six harmonics are too few for the lower-pitched tones and even fewer were
provided for the higher-pitched ones due to generator limitations. A related
problem was the extremely poor loudspeakers available at the time. Bass
response was totally absent and the many sharp resonances of the metal horns
would frequently emphasize particular notes or harmonics many times over
their nominal amplitude.

For Cahill, the project was a financial disaster, its fate eventually sealed
by radio broadcasting. The basic concepts live on, however, in the Ham
mond electronic organs. The "tone wheels" used in these instruments are
electric generators that perform exactly as Cahill's except that the power
output is only a few microwatts rather than many kilowatts. The needed
amplification is supplied by electronic amplifiers. Mixing, click suppression,
and harmonic amplitude control are performed by resistive networks requir
ing only additional amplifier gain to overcome their losses. The eighth
harmonic, which is also on the equal-tempered scale, was added, skipping
the seventh altogether. Still, the Hammond organ has a distinctive sound not
found in any other type of electronic organ. Even if the reader has never heard
one live, he has probably heard a record of one--over a background music
system~

Soundtrack Art

Somewhat later, around 1930 after sound was added to motion pic
tures, some work was done with drawing sound waveforms directly onto
film. Theoretically, this technique is infinitely powerful, since any conceiva
ble sound within the frequency range of the film equipment could be drawn.
The difficulty was in figuring out exactly what to draw and how to draw it
accurately enough to get the desired result.

The magnitude of the problem can be appreciated by considering how a
single, clear tone might be drawn. The clearness of a tone depends to a great
degree on how accurately the waveform cycles repeat. Gradual variations
from cycle to cycle are desirable, but imperfections in a single cycle add
roughness to the tone. For even the simplest of tones, the waveform would
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have to be carefully drafted. More complex or simultaneous tones would be
even more difficult. In spite of these problems, at least one interesting but
short and simple piece was created· in this way.

Like the Teleharmonium, the concept of drawing waveforms directly is
now fairly common. Computers and sophisticated programs, however, do the
tedious waveform calculation and combination tasks.

The Tape Recorder

Without question, the most significant development in electronics for
music synthesis as well as music recording was the tape recorder. The
Germans first developed the wire recorder during World War II, and it was
subsequently refined to utilize iron-oxide-coated paper tape. Plastic film
bases were later developed, and now magnetic tape is the highest fidelity
analog sound recording technique in common use.

When on tape, sound becomes a physical object that can be cut,
stretched, rearranged, molded, and easily re-recorded. A new breed of
abstract composers did just that and the result, called "musique concrete,"
sounded like nothing that had ever been heard before. In fact, before the
popularization of synthesizer music, the public's conception of electronic
ml:lsic was of this form, which they usually characterized as a seemingly
random collection of outrageous sounds.

The name musique concrete stems from the fact that most, if not all, of
the sounds used were natural in origin, i.e., concrete. Popular source mate
rial included water drips, sneezes, and squeaky door hinges. Typical manipu
lations included gross speeding or slowing of the recorded sound, dicing the
tape and rearranging parts of the sound often with segments in reverse,
overdubbing to create simultaneous copies of the sound, and other tricks.
Occasionally, a small amount of electronic equipment was used to filter and
modify the sound in various ways. Regardless of the actual source material,
the distortions were so severe that the final result was completely unrecogniz
able.

Although usage of this sound material need not result in abstract
compositions, it usually did. The primary difficulty was in achieving accu
rate enough control of the distortion processes to produce more conventional
pitch and rhythmic sequences. Unfortunately, musique concrete did very
little to popularize electronic music techniques, although it undoubtedly
gratified a small circle of composers and listeners.

RCA Mark II Synthesizer

Over the years, many special-purpose electronic musical instruments
were developed and used. One example is the theremin (1920), which was an
electronic tone source whose frequency and amplitude could be indepen
dently conrrolled by hand-waving near two metal plates. Others include a
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host of keyboard instruments such as the Novachord (1938) and the
Melochord (949). In the early 1950s, however, work began on a general
purpose instrument, the first electronic sound synthesizer.

The RCA Mark II Electronic Music Synthesizer could produce two
tones at once in which all of the important parameters could be controlled.
The control mechanism was a roll of punched paper tape, much like a
player-piano roll. Thus, it was a programmed machine and as such allowed
composers ample opportunity to carefully consider variations of sound
parameters. The program tape itself consisted of 36 channels, which were
divided into groups. Each group used a binary code to control the associated
parameter. A typewriter-like keyboard was used to punch and edit the tapes.

Complex music could be built up from the basic two tonr;s by use of a
disk cutting lathe and disk player, which were mechanically synchronized to

the program tape drive. Previously recorded material could be played from
one disk, combined with new material from the synthesizer, and re-recorded
onto another disk.

The RCA synthesizer filled a room, primarily because all of the elec
tronic circuitry used vacuum tubes. Financing of the project was justified
because of the potential for low-cost musical accompaniment of radio and
television programming and the possibility of producing hit records. Exten
sive use of the machine emphasized the concept that programmed control was
going to be necessary to adequately manipulate all of the variables that
electronic technology had given the means to control.

Direct Computer Synthesis

The ultimate in programmed control was first developed in the middle
1960s and has undergone constant refinement ever since. Large digital com
puters not only controlled the generation and arrangement of sounds, they
generated the sounds themselves! This was called direct computer synthesis of
sound because there is essentially no intermediate device necessary to synthe
size the sound. The only specialized electronic equipment beyond standard
computer gear was a digital-to-analog converter (DAC) , a comparatively
simple device. Simply put, a DAC can accept a string of numbers from a
computer and plot waveforms from them as an audio signal suitable for
driving loudspeakers or recording.

Such a system is ultimately flexible. Absolutely any sound within a
restricted frequency range (and that range can easily be greater than the range
of hearing) can be synthesized and controlled to the Nth degree. Any source
of sound, be it natural, electronic, or imaginary, can be described by a
mathematical model and a suitable computer program can be used to exercise
the model and produce strings of numbers representing the resulting
waveform. Sounds may be as simple or as complex as desired, and natural
sounds may be imitated with accuracy limited only by the completeness of
the corresponding mathematical model.
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No limit exists as to the number of simultaneous sounds that may be
generated either. Often in such a system, a discrete sound source may be just
a set of numbers describing the parame.ters of the sound. Usually this would
take only a few words of computer -storage out of the tens or hundreds of
thousands typically available.

Obviously, such an all-powerful technique must have some limitation
or else it would have completely superseded all other techniques. That lim
itation is time. Although large computers perform calculations at tremen
dous rates of speed, so many must be performed that several minutes of
computer time are necessary to compute only a few seconds of music
waveforms. The more complex the sound, the longer the calculations. The
net result was that considerable time elapsed between the specification of
sound and its actual production. Considerable usually meant at least half a
day due to typical management practices in large computer centers.

Obviously, then, composing for the direct computer synthesis medium
demanded considerable knowledge of the relation between mathematical
models, sound parameters, and the ultimate sensation of the listener. It also
required that the composer have a clear idea of what was to be accomplished.
Without such foreknowledge and careful planning, the delays incurred by
excessive experimentation would be unacceptable and the cost of computer
time prohibitive. Nevertheless, many of the greatest electronic musical
works were realized using this technique.

Voltage-ControUed Synthesizers

Perhaps the complete antithesis of direct computer synthesis started to

emerge in the middle 19605 largely as the result of development of silicon
transistors and other semiconductor devices. The concept was modular music
synthesizing systems utilizing voltage-control concepts as a common organi
zational thread throughout the system. Each module in the system had a
distinct function and usu~lly these functions corresponded one for one with
the fundamental parameters of sound. The modules could be easily connected
together in an infinite variety of configurations that could be changed in
seconds by rerouting patch cords or pins on patch boards. The whole as
semblage could be played by a keyboard or a number of other manual-input
devices.

In general, a voltage-controlled synthesizer module consists of a black
box with inputs and outputs that are electrical signals. Signals are conceptu
ally divided into audio signals that represent sound and control voltages that
represent parameters. An amplifier module, for example, would have an
audio signal input, a control input, and an audio signal output. Varying the
de voltage at the control input would change the gain of the amplifier. Thus,
it could be considered that the amplifier module altered the amplitude
parameter of the sound passing through in accordance to the voltage at the
control input. A filter module likewise altered the timbre of a sound passing
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through according to a combination of one or two control inputs. Although
oscillator modules had no signal inputs, control inputs altered the frequency
of the output waveform and sometimes the waveform itself.

The real power of the voltage-control concept lies in the realization that
the only difference between a signal voltage and a control voltage is in the
typical rates of change. Properly designed modules could process control
voltages as easily as signals and could also be cascaded for multiple operations
on the same or different parameters.

Unlike direct computer synthesis, experimentation was encouraged due
to the personal interaction and ease of use of the synthesizer. In addition,
familiarity with the audible effect of different modules could be obtained in
only a few hours of experimentation. Improvisation was also practical and
widely practiced.

One limitation of voltage-controlled synthesizers until recently, how
ever, was that they were essentially monophonic, i. e., one note at a time.
The problem lies not in the voltage control technique but in the human
interface devices such as keyboards and ultimately in the ability of the
performer to handle all of the variables. This limitation has classically been
overcome by the use of overdubbing to combine one musical line at a time
with a multitrack tape recorder. -

Perhaps the most significant event in the popular history of electronic
music occurred when a recording created with voltage-controlled equipment
by Walter Carlos called "Switched On Bach" was released in 1969. For the
first time, the general public was exposed to electronic music that was "real
music" with melody, rhythm, and harmony. This shattered the old myth
that electronic music was always abstract and disorienting and created quite a
bit of interest among performers, listeners, and advertising agencies.

Microprocessors

Today the microprocessor is the hottest technical development of the
decade. The basic power of a computer that once cost thousands of dollars is
now available for only tens of dollars. Electronic music technology has and
certainly will continue to benefit from microprocessors. Ultimately, tech
niques with the generality of direct computer synthesis and the ease of
interaction of voltage-controlled synthesis will become commonplace.

Microprocessors are ideally suited to automating and rendering pro
grammable the standard voltage-controiled music synthesizer. The ~ynthe

sizer's strong points such as ease of use and experimentation can be retained
in the development stages of a composition, but the advantages of pro
grammed operation can be realized when the final result is generated. A
microprocessor can easily remember, catalog, and reproduce the numerous
interconnection patterns and control sequences typically used. It can also
generate its own control sequences based on mathematical models, inp';ts
from other sources, or random chance, This entire application area of mi-
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croprocessors is of great interest currently and is, of course, the subject of
Section II of this book.

The faster and more sophisticated microprocessors are becoming
powerful enough for direct synthesis techniques to be applied with perform
ance approaching that of large machines of only a few years ago and price tags
in the reach of the serious experimenter. Furthermore, costs of the faster but
simpler microprocessors are such that a multiprocessor system, with a
microprocessor for each sound to be synthesized simultaneously, is in the
realm of practicality. What was once an oscillator circuit with separate
waveforming circuits may become instead a microprocessor with suitably
simplified direct synthesis programming. These are the application areas that
are the subject of Section III.
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tORad Modification Methods

All the different methods for generating the sound material necessary for
electronic music can be roughly categorized into two groups: those that
generate entirely new sounds via some kind of synthesis process and those
that merely modify existing sounds. This dichocomy is not very rigid, how
ever, since many synthesis methods depend heavily on modification of
ot"herwise simple synthetic sounds for their results, and many modification
methods so severely distort the original sound that the result could easily be
considered to be synthetic. Nevertheless, the fundamental component tech
niques making up a methodology can be easily segregated into synthesis and
modification processes.

Modification techniques are usually considered to be the older of the
two. Before the appearance of musique concrete, pure synthesis was more
common, but the fundamental goal of most of these early efforts was to build
a solo instrument that would fit inco an orchestra. The goal of musique
concrete, on the other hand, was to replace the orchestra and produce works
of the magnitude of a symphony entirely by electronic means.

Modification methods attack sound from every conceivable direction.
Any of the simple sound parameters such as frequency, amplitude, or spec
trum may be directly altered. Time sequencing of the envelopes of these
parameters may be altered in numerous ways. Parameter envelopes charac
.teristic of one sound may be extracted and applied to another. Even simple
judicious selection of short portions of sounds can give a completely different
effect.

Sound on Tape
As mentioned previously, sound on magnetic tape is a physical object

that may be freely manipulated. The only tools required are a reel-to-reel tape
recorder (two recorders are desirable), a good pair of nonmagnetic scissors, a
splicing block with splicing tape, and imagination. A grease pencil is also
necessary for marking the exact location of sound events on the tape.

43
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A so-called "full-track" tape recorder is very helpful when extensively
editing tape. Such machines record on the full width of the tape; thus, it may
not be turned over for additional recording time. Although such machines
are hard to come by in the consumer new equipment market, they are fairly
common as professional equipment. Stereophonic effects are typically added
as a separate step later after the basic composition has been completed. Also
the higher tape speeds available are typically used. Besides better recording
fidelity, the many pieces of tape to be manipulated will be larger and easier
to handle.

Rearrangement

The most fundamental splicing modification is rearrangement of a
previously recorded sequence of sounds. Since a fair amount of experimenta
tion is usually required, the sequence is typically copied several times before
cutting commences. One interesting introductory experiment is ro record a
scale from a musical instrument and rearrange it to form a melody. Timing is
fairly easy to control since time = distance along the tape. Even 50 msec is
3/4 of an inch at 15 inches/sec.

More interesting results are obtained if parts of the envelopes of notes
are removed or attacks and decays are interchanged. In particular, using just
the attack portion of many musical instrument notes can create some very
interesting results that usually will not resemble the source instrument at all.

A related procedure that works well with full-track recorders is to make
an extended diagonal splice rather than the typical short diagonal or straight
splice. The result will be that one sound will seem to dissolve into another. If
a piece of tape is spliced in slightly crooked, the high frequencies will be lost
on playback and the result is as if a curtain had been pulled over the sound
source. The angle of the crooked piece determines the extent of high
frequency loss with greater angles producing greater losses.

With full-track equipment, a piece of tape may also be spliced in
backward. At first that might not seem like a very powerful technique, but it
is. For example, ordinary English speech becomes a very strange, gutteral
sounding foreign language nearly impossible to repeat accurately. A very
interesting experiment is to record a sentence and learn to repeat its back
ward sound. Then the sentence is spoken backward, recorded, and played
backward again. The resulting accent is unbelievable!

A piano recording played backward sounds like an organ with the ends
of notes "snuffed out" by a breath of air, This is one demonstration of the
importance of the amplitude envelope in determining the overall timbre of a
sound. A simple piano piece performed backward and then played backward
so the music is forward is another interesting experiment.

Even ignoring envelopes, which is the case with relatively steady
sounds) the character of many sounds is completely changed by playing them
backward. If a recording of a contralto or bass singer is played backward) the
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cutting quality of the voice disappears and the result sounds more like a
well-tuned belch. Although the exact explanation for this will be detailed
later, it is one case in which the phase relationship among harmonics in a
tone makes a big difference in timbre.

All kinds of percussive sounds are completely altered by backward
playing. In most cases, if the percussive sound is pitched at all, the sense of
pitch is heightened by being played backward. This is probably due to the
fact that for a short period following a sharp attack transient the ear is
recovering and is less able to perceive pitch.

Another possibility is splicing the same sound back to back to elimi
nate the sudden cutoff that occurs when percussive sounds are played back
ward. Using the attack portion for both the attack and decay, using the decay
portion for both, or even using the attack from one sound and dissolving into
the decay portion of another are all possibilities.

Speed Transposition

Another trick that nearly everyone who owns a reel-to-reel tape recorder
has tried at least once is playing the tape at a different speed than it was
recorded. A speed doubling changes speech into familiar monkey chatter,
while a speed halving produces drawn out groans. More useful effects are
created if, when producing the source material, the undesirable speedup or
slowdown effects of the processing are compensated for. Such an example is
the production of the once popular "chipmunk" records in which the original
vocals were sung much more slowly than usual in order to have a reasonable
tempo after the speed doubling.

More severe speed changes usually distort a sound beyond recognition.
Male speech when slowed by a factor of 16 or more comes out sounding like
rhythmic beating on a constantly changing drum. Other common, complex
sounds take on a new dimension when slowed substantially. The fine struc
ture that usually emerges is reminiscent of examining a pond water droplet
through a microscope.

Although standard tape speeds are usually powers of two times the base
speed of 15 inches/sec, many professional recorders can be easily run at inter
mediate speeds. These machines usually have synchronous motors whose
speed is precisely determined by the power linefrequency rather than voltage.
If the motor circuit is separated from the rest of the electronics and connected
to a power amplifier driven by a variable-frequency oscillator, the tape speed
may be continuously varied over a fairly broad range. The newest professional
recorders use a dc servo motor system whose speed is proportional to a
reference voltage, which is normally tightly regulated. Disconnecting the
reference and connecting a variable voltage source can give a very wide speed
range.

With precisely variable speed, it is possible to record a single sound or
note and convert it into all of the notes of the scale. A Christmas song "sung"
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with a -single dog bark .is one recent application of this technique. Great
thunderous concluding chords from a symphony may be captured and
likewise processed or even smoothly slid from one pitch to another. If the
rotating mass in the recorder is relatively small,.it may even be able to follow
relatively complex frequency envelopes and play different pitches on com
mand.

Many musical instruments have different registers or pitch ranges and
produce substantially different timbres in the various registers. A particu
larly prominent example is the clarinet, which possesses a characteristic
hollow woody sound in the lower register and a somewhat squawky sound in
the upper register. With tape speed transposition, the connection between
pitch register and actual pitch may be broken, resulting in a wider range of
timbres than those produced by ordinary instruments.

Special equipment has been constructed that allows speech ro be played
faster or slower than it was recorded without any pitch change. The initial
units used rotating tape heads that would essentially break the sound into
short segments approximately 30 msec long. When in the speedup mode, a
porrion of each segment would be thrown away and the remainder stretched
out to fill the space. The amount thrown away and the resulting degree of
stretch was just enough to cancel the upward pitch tendency. Slowdown was
accomplished in a similar manner except that a fraction of the segment would
be repeated after the entire segment was played. Although useful for altering
speech rates for talking books or stenographers, undesirable beating effects
with music waveforms limited the use of such equipment. Improved designs
using digital logic and memories instead of rotating tape heads allow variable
segment size and much better results with musical tones.

Tape Reverberation

Reverberation may also be added to sound entirely through the use of
tape equipment. Actually, echo would be a better term because the effect is
really a series of distinct echos. Most of the better quality recorders have
separate record and playback heads mounted side-by-side from 0.75 ro 2
inches apart. Typically, the tape first passes the recording head and then
passes the playback head, resulting in a delay between the original sound and
the signal developed by the playback head. The magnitude of the delay
depends on the exact tape speed and head spacing but is typically between
100 and 500 msec, well within the range of distinct echo perception.

A single echo is produced if the delayed playback signal is mixed with
the original signal and recorded on another machine. Multiple echos, how
ever, can be produced using feedback techniques and only one recorder. The
trick is to mix the original signal and the delayed signal but feed the result
back to the record head of the same machine. In operation, there is initially no
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playback signal so the original source merely passes through the mixer and is
recorded. A split second later, this signal is picked up by the playback head,
mixed with the continuation of the original, and recorded again. Two split
seconds later, it is passed around the loop again and so on. If each re
recording of the echo is weaker than the previous one, the echos eventually
die out like normal echos. However, if the re-recording is at the same or
greater amplitude, the echos continue unabated or build up until distortion
is produced.

Of course, the signal is degraded a little every time it is played and re
recorded. If the feedback factor is just a little beyond unity (re-recorded just a
trifle louder than the original), the middle frequencies will continue to build
up while the low and high extremes will slowly die out. If the original signal
is an isolated sound shorrer than the delay time, the result is an interesting
change in timbre each time the sound repeats. If the prQcess is allowed to
continue long enough, the sound will eventually degrade into a howl with a
periodic amplitude envelope. The user may also change the echo re-record
volume in response to what he hears and improvise. Many sounds in the
category of "the saucer lands" have been produced in exactly this way.

Tape echo in conjunction with other tape-editing tricks can also lead to

interesting results. For example, if a recorded sound is played backward, is
re-recorded with echo added, and the new recording is again played back
ward, the echos wind up preceding the sounds, a very strange effect. "Preverb"
would be an apt name for such a process. Different effective echo times with
fixed head spacing may be accomplished by a speed transposition prior to the
addition of reverberation followed by an inverse transposition.

Tape-echo techniques are so powerful that specialized machines have
been built exclusively for that purpose. Multiple playback heads with irregu
lar spacing was one attempt to provide enough multiple, random echos so
that the result resembled concert hall reverberation rather than Grand Can
yon reverberation. Another refinement was easily movable playback heads to
vary the echo rate. A particularly interesting effect is produced if the head is
moved while the recording is made. The echos would then be of a different
pitch than the original sound!

Multitrack Recorders

Finally, tape equipment can be, and usually is, used to combine sounds
together for the final result. Unfortunately, direct recording of one sound on
top of another on the same tape track cannot be done very well. The high
frequency bias signal necessary for high-fidelity tape recording tends to erase
previously recorded sounds. Two recorders or a single multitrack recorder,
however, can be used to combine sounds onto one track.

In a typical multitrack setup, the separate sounds to be combined are
each recorded on a separate track of the same tape. When played, the signal
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from each track has its own separate gain control so that the relative
contr,ibution of each track to the resulting whole can be controlled. A final
mixdown run is done in which the multiple sounds are combined and recorded
onto the rwo- or four-track (for stereo or quad) master tape, which represents
the final result. Commercial multitrack machines typically have 8, 16, or
even 24 separate tracks. Most modern recording studios depend heavily on
multitrack tape for most of their serious work.

Obviously, such a setup would allow a single performer to play all the
parts of a piece one at a time and then combine them. Synchronization with
previously recorded material is accomplished by temporarily using the sec
tion of the recording head that is scanning a previously recorded track for
playback (at reduced fidelity) to the performer. Most complex music per
formed on voltage-controlled synthesizers is played in separate parts and
combined with a multitrack tape machine.

By now it should be apparent that tape manipulation methods are very
powerful sound modification techniques. One drawback, however, is that
often a considerable amount of work is necessary, such as careful re-recording,
accurate cutting, and keeping track of scores of little pieces of tape. Thus,
experimentation is hampered somewhat by the possibility of wasted effort.
Application of computer technology, even microcomputers, is now tremen
dously streamlining the process and even adding some new tricks.

Electronic Sound Modification

Over the years, quite a few "black boxes" and techniques have been
developed for directly modifying sound. Generally, these devices consist
entirely of electronic circuits. Rarely, however, a mechanical system does the
bulk of the work and transducers are used for getting audio signals in and
out. Such cases are frequently the subject of intensive research to find cost
effective electronic substitutes for the me-ehanical elements.

The uses for sound modifiers are varied but can be divided into two
rough groups. Obviously, such devices are of great utility in the electronic
music studio for adding complexity to basic electronic sounds that by them
selves may be lifeless. The other application is as instrumental sound mod
ifiers for rock bands and small combos. The devices for use by this group are
usually named by the apparent effect produced. Thus, we have "fuzz boxes,"
"wah-wah pedals," and "infinity sustains," Fortunately, the physical effects
of most of these can be easily explained in terms of the fundamental paramet
ers of sound.

Nonlinear Amplifiers

Modification of the spectrum of a sound is perhaps the most dramatic.
Spectrum modification devices range from simple distortion boxes to sophis-
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ticated variable filter banks. In all cases, the basic aim of a spectrum modifi
cation device is to change the relative amplitudes of the component har
monics of the sound. Although the overall amplitude of the waveform might
also be altered by the process, it can easily be corrected later if undesirable.

The simplest spectrum modification device is a nonlinear amplifier
circuit of some sort. Nonlinear in this sense simply means that the instan
taneous output voltage is not a constant times the input voltage. Such
nonlinearity is best described by means of a transfer function graph such as in
Fig. 2-1. Voltage values corresponding to the input signal waveshape are
plotted along the Y axis and the resulting output signal waveshape is plotted
along the X axis. Assuming that the overall gain of the amplifier is unity, a
perfectly linear response would be represented by a straight line to infinity as
shown.

Any real amplifier, however, has an overload point beyond which the
output voltage cannot deviate even though the input voltage does. Figure
2-2A shows the transfer function of a real amplifier. Assuming for the
moment that a sine wave somewhat greater than the overload point is the
input signal, it is apparent that the peaks of the waveform have been clipped
off. In fact, circuits designed specifically for such waveform distortions are

y

-----+-il---i-----L.------+------,f-----..........--.x

INPUT
WAVEFORM

Fig. 2-1. Linear transfer function
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called clippers. The accompanying spectral plot shows that the distorted
waveform now has some harmonics added that were not originally present
although their amplitude is low. Increasing the input amplitude further
results in more severe clipping and a greater proportion of high-frequency
harmonics as shown in Fig. 2-2B. Thus, by varying the amplitude of the
input, one may vary the spectrum of the output by using a clipper. In practice,
however, clipping circuits usually allow adjustment of the clipping point of
the transfer function, which produces the same effect. Thus, the clipping
point becomes a parameter of the clipper that, when varied, changes the
spectrum parameters of the output signal.

The preceding is called a symmetrical clipper because the positive and
negative portions of the waveform are affected similarly. Thus, the harmonics
added are of odd order only. A nonsymmetrical clipper of one type is shown
in Fig. 2-2C. There is no output for negative input voltages, and for positive
inputs, the output follows the input. The output spectrum now has both
even and odd order harmonics that were not originally present. Changing the
dipping point of this circuit, which is shown in Fig. 2-2D, increases the
proportion of high-frequency harmonics, although the overall output
amplitude has decreased.

The action of the circuit in Fig. 2-2E is somewhat interesting. None of
the original input frequency component appears at the output and only even
order harmonics are generated. The ear hears this result as a pitch doubling,
since the resulting harmonic series is really an even and odd series for a
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fundamental at twice the frequency. Figure 2-2F shows the result of varying
two possible parameters of the transfer curve; a center clipping threshold and
the slope (gain) for positive input signals.

Actually, pure sine waves are seldom used as the source signal such as
when a musical instrument's sound is being modified. Depending on the
exact waveform, a given nonlinearity may increase some harmonics, reduce
others, and leave some generally unchanged. Instrumental waveforms are not
constant either. Frequently, slight changes in input waveform (from sliglit
harmonic phase changes, for example) may result in large changes in output
spectrum. One interesting waveform that is not affected by any kind of
nonlinear device is the square wave. Although the amplitude may be
changed, the square waveshape is never altered.

Of course, there are literally thousands of possible nonlinear curves,
each with a set of parameters that may be changed to vary the output signal
spectrwn. There are important drawbacks to their use, however. One draw
back is that the relationship between a parameter or parameters describing a
certain class of transfer curves and the actual spectrum in terms of harmonics
is not always simple. For example, increasing a dipper parameter may at
first give increased high harmonic content, but further increases of the same
parameter might actually reduce the high harmonics or shift the em
phasis to middle harmonics. The situation gets much more complicated if a
complex waveform is used for the input.

Another important drawback is that nonlinear devices generally give
desirable results only with single tone inputs. If two simultaneous tones of
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different frequency are fed in, the output spectfum contains not only har
monic frequencies of each tone, but every possible combination of sum and
difference frequencies between the tones and their harmonics. For musical
instrument use, the resulting sound is close to garbage unless the input
frequencies are simply related such as a 3:2 ratio. For more abstract goals,
however I anything is potentially llseful even if it is not predictable.

Filters

While nonlinear circuits are relatively simple spectrum modifiers, theif
action is indirect. A different class of device called filters acts directly on the
spectrum changing the amplitude and phase of each sine wave component of
the input signal by a predictable amount. Furthermore, theif action on the
spectrum is unaffected by the actual spectrum of the input signal.

Filters can be completely specified by giving a plot of their amplitude
response and phase response as a function of frequency. Nearly always, the
amplitude response is termed, incorrecdy, the frequency response but the
former term will be used exclusively in this book. The test setup shown in
Fig. 2-3 can be used to make such plots. Here we have a variable-frequency
sine wave signal generaror, a calibrated oscilloscope with dual-trace capabil
ity, and the filter under test. The gain of the fil ter at a parricular frequency
may be determined by measuring the amplitude of the signal at the filter

VARIABLE-FREQUENCY
SINE WAVE
GENERATOR

FILTER
UNDER
TEST

INPUT

A

B
DUAL- TRACE
OSCILLOSCOPE

OSCILLOSCOPE PRESENTATION

Fig. 2-3. Experimental setup for characterizing a filter
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output and dividing it by the input amplitude, which usually remains con
st~nt. The phase shift at a particular frequency may be determined by compar
ing the two waveforms on the oscilloscope face. Note that phase shifts greater
than 1800 leading or lagging cannot be uniquely determined at an arbitrary
frequency with this setup. However, a point of zero phase shift can usually be
found and the trend away from zero followed.

The amplitude response then is plotted simply by varying the input
frequency over the audible range and plotting the gain facror. Customarily,
the frequency axis is logarithmic in order to accurately represent a wide range
of frequencies, and the amplitude axis is scaled in decibels, which effectively
makes it a log scale also. The phase response may be plotted similarly,
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although the phase axis is usually linear. Actually, for simple filter circuitry,
the shape of the phase response is rigidly tied to the shape of the amplitude
response. For use as a sound modifier, the phase response of a filter is usually
ignored.

Theoretically, the shape of an amplitude response curve may be any
thing desired. However, like the principle that any waveshape may be built
from sine shapes, amplitude response curves may be built from a small class
of basic shapes. Figure 2-4 shows some of these ..

Shape A is called a low-pass response because the lower frequencies are
passed without attenuation (reduction in amplitude), while the higher fre
quencies are reduced considerably. Although several parameters may be
necessary to fully specify such a shape, twO are of primary importance in
sound modification applications. One is the cutoff frequency or the frequency
above which the attenuation really begins to increase. By convention, the
cutoff frequency is the frequency at which the amplitude response is 3 dB less
(one-half the power output or 0.7071 times as much voltage) than it is at
very low frequencies. The other parameter is the cutoff slope. In a practical
filter of minimal or moderate complexity, the slope of amplitude decrease
beyond the cutoff frequency approaches an asymptote, which is a straight
line. Cutoff slope is usually stated in decibels per octave, particularly for
musical purposes. Actually, most simple filter circuits have cutoff slopes that
are multiples of 6 dB/octave. Thus, a simple low-pass filter might have a
slope of 6, 12, 18, etc., dB/octave.

Shape B is called a high-pass response for the same reason A was termed
low-pass. The parameters of the high-pass response are also similar.

Shape C is called a bandpass response. This is because in the general case
a small band of frequencies are passed and the others, both higher and lower,
are rejected. Two parameters are generally used to characterize bandpass
responses, although four are required for completeness. The frequency corre
sponding to the top of the peak is variously termed the center frequency,
natural frequency, resonant frequency, or pole frequency. The natural and
resonant frequencies are actually very slightly different from the true center
frequency, but for musical purposes they are all identical.

The width of the curve can also be specified in different ways. One
common method calls for measuring the frequencies of the two 3-dB down
points, subtracting them, and calling the result the bandwidth in hertz. In
music, it is more useful to specify bandwidth in octaves, thus the term" 1/3
octave bandpass filter" is frequently encountered. A formula for the octave
bandwidth in terms of the lower cutoff, FL, upper cutoff, FUJ and center
frequency, PC is BW = 10g2 [1 + (FU -PL)/FC]. A final method, which only
applies to a certain but very common class of bandpass filters, is the quality
factor or Q. Q is defined by the relation: Q = FC/(FV - FL). The signifi
cance of Q will be studied in greater detail later.
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Fig. 2-5. Effect of filtering on the spectrum

The other two parameters are the two ultimate slopes of the sides of the
bell-shaped curve. As before, they are usually multiples of 6 dB per octave.
The slope just beyond the 3-dB points is usually steeper than the ultimate
slope far from the center frequency and becomes more so for higher Qs
(narrower bandwidths).

The final basic filter shape is called a band-reject (or notch) response and
is shown in Fig. 2--4D, The center frequency is, of course, the frequency of
greatest attenuation. Specification of the width parameter is not really stan
dardized because the exact shape of the notch varies considerably with the
filter circuit. However, one common specification is, again, the difference
between the 3-dB down points. Often, a rough attempt at specifying the
shape is made by specifying both the 3-dB and the 60-dB notch widths.

The effect of a filter on the spectrum of a sound can be easily deter
mined graphically as in Fig. 2-5. As a simple case, consider a sound with all
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Fig. 2-6. Effect of filters on a square wave. (A) Original square wave.
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harmonics of equal strength passed through a bandpass filter. The envelope
of the output spectrum will be the same shape as the filter's amplitude
response. For more common signals with a nonflat harmonic spectrum, the
amplitude of each individual harmonic is modified directly according to the
filter's gain or attenuation at that frequency. Thus> if a particular harmonic
had an amplitude of -8 dB and the filter had a gain of -12 dB at that
harmonic's frequency, then the same harmonic would have an amplitude of
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-20 dB at the filter's output. For nonrepeating waveforms, the amplitude of
each frequency component is similarly altered.

Although nonlinear circuits cannot alter the shape of a square wave, a
filter can. Figure 2-6 shows both the waveshape and spectral effect of filter
circuits on a 200-Hz square wave. Note that in the case of the bandpass
filter, a rapidly decaying sine wave is generated on each edge of the square
wave. The frequency of this sine wave is the actual natural frequency l which
for practical purposes is the same as the filter's center frequency. The rate of
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decay is related to the filter's bandwidth or Q with narrower bandwidths
(higher Q) resulting in a slower decay.

As mentioned previously, more complex filter amplitude response
shapes may be obtained by combining basic shapes. The most predictable
method for combining two shapes is to cascade two filter sections by feeding
the filtered output from one filter into the input of another. The resulting
response shape is just the point-by-point sum of the individual response
shapes, provided that they were plotted in decibels. Values from a linear gain
scale would have to be multiplied together for the result.

This technique is frequently used to get sharper cutoff filter shapes than
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simple circuits provide. Figure 2-7, for example, shows how two rather
sloppy low-pass shapes that can be obtained from simple circuits combine
together to give a much improved low-pass shape.

Fixed filters (those with constant parameter values) are commonly used
as equalizers in music systems. An equalizer is a filter that is intended to

compensate for nonuniform amplirude response elsewhere in a high-fidelity
sound system. For sound modification use, however, a fixed filter can be used
to change the overall tonal quality of the sound. A low-pass filter, for
example, gives a muffled effect, while a high-pass filter tends to give a thin
or tinny effect. Bandpass filters, depending on the center frequency, may have
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a "conch shell" effect on the sound. Often the essential character of the tone
of certain musical instruments may be simulated with a simple fixed filter
and simple electronically generated waveforms. A double-humped bandpass
response with humps at 1,200 Hz and 2,700 Hz, for example, resembles
the resonance characteristics of an English horn. Sawtooth waveforms played
through such a filter setup resemble the sound of an English horn. Such
resonant peaks are called formants.

Vanable Filters

Inexpensive filters with easily variable parameters that cover a wide
range are actually a relatively recent development. The parameter most easily
varied is the cutoff frequency or center frequency. For bandpass filters, the
bandwidth is also easily varied. The cutoff slope, on the other hand, is a
function of filter circuit topology rather than component values so as a result
is difficult to control. Variable-slope filter circuits, however, are under inves
tigation.

Dynamic variation of the cutoff frequency of low- or high-pass filters
provides a definite audible effect. The upper harmonics of many percussion
instruments, for example, decay faster than the lower harmonics do. The
same effect may be simulated with a constant sound spectrum and a low-pass
filter whose cutoff frequency is lowered during the course of the note. The
opposite effect may be created by using a high-pass filter to increase high
harmonic content as a note progresses.
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The most dramatic variable filter effect, however, is produced by
sweeping the center frequency of a bandpass filter. For moderate bandwidths
(around 1/4 to 1/2 octave), the effect is similar to that of an opening and
closing hat mute used with a trumpet or trombone. Such variable bandpass
filters, are popularly called "wah-wah" boxes due to their distinctive sound.

If the bandwidth is made smaller yet, only one harmonic will be
emphasized by the narrow peak, and the others will be greatly attenuated.
Varying the center frequency in this case gives the effect of a distinct scale of
sine wave notes as each harmonic is approached and passed by. White noise
passed through a variable narrow-band filter is given a definite although airy
pitch that is easily controlled.

Several tunable bandpass filters may also be used to provide a number of
independently movable formants. In fact, the voiced portions of human
speech (vowels and dipthongs) may be simulated with a harmonically rich
tone and two to (our variable bandpass filters depending on the degree of
naturalness desired. Each possible steady vowel corresponds to a particular
steady-state combination of formant frequencies, while each dipthong corre
sponds to a particular pattern of formant frequency transitions. Of course, a
good speech synthesizer requires more than this, although the formant
generator and control means for producing accurate formant frequency varia
tion constitute the majority of the circuitry.

Variable notch filters produce a somewhat more subtle effect. Using
white noise as an input, a frequency sweeping notch filter will create a sound
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similar to a passing jet plane. A device for reproducing such an effect exactly
is called a comb filter because its amplitude response curve, shown in Fig.
2-8, resembles a comb. Note that the comb filter response is like a bunch of
notch filters with the notch frequencies regularly spaced a given number of
hertz apart. Tuning of a notch filter amounts to increasing or decreasing the
spacing between the notches, thus forcing the higher-frequency notches to
move out faster than the lower-frequency ones.

As might be expected, an actual implementation of a comb filter is
considerably simpler than a multitude of gang-tunable notch filters. The
physical effect observed at an airport may be explained by noting that a
passing jet is essentially a pl)int source of white noise and that airports have
smooth concrete runway surfaces. Thus, one ray of sound travels directly to

the ear and another ray (there can only be one) bounces from the pavement
before reaching the ear. These two paths differ slightly in length and the
difference changes as the angle of the plane changes. Due to this difference in
path lengths, some sound frequencies are reinforced when the two rays meet
at the ear and others are cancelled. The same effect may be created by
splitting an audio signal into two paths, inserting a short variable delay into
one of the paths, and then recombining the two signals.

The initial implementation of this effect for processing arbitrary sound
signals involved two identical tape recorders playing identical recordings of
the sound to be processed. If the tapes were far out of synchronization, a
distinct echo was heard. Closer synchronization produced the comb filter
effe.ct. Adjustments in the effective delay between the two signals were
accomplished with light finger pressure ,on the tape reel flanges to slightly
slow one of the recorders; the effect that was produced became known as
"flanging" a sound.

Until recently, it was very difficult and expensive to construct a high
fidelity variable delay. However, now it is a fairly simple and inexpensive
procedure with digital logic or analog delay line ICs.

Spectrum Shifters

While filters directly affect the amplitudes of the various frequency
components of sounds, the actual frequency of these components remains
unaltered. A different class of device changes the frequency of the compo
nents but, ideally, leaves the relative amplitudes alone. Of course, one
technique already mentioned has the capability of shifting frequencies pro
portionally, that is, multiplying every frequency by the same value, and that
technique is tape speed transposition.

A true spectrum shifter, however, maintains the same relative difference
between component frequencies. For example, if a tone is composed of a
fundamental of 200 Hz with harmonics at 400 Hz, 600 Hz, etc., then a
spectrum shift of 31.4 Hz would result in frequency components of 231.4
Hz, 431.4 Hz, 631.4' Hz, and so forth. Note that these frequencies are no
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longer harmonically related. Sounds that normally have harmonic spectra
undergo a complete change in some aspects of their timbre when shifted a
few tens of hertz, while other aspects are relatively unaffected. In particular,
they tend to take on a sort of "watery" texture. Quality spectrum shifters that
have good low-frequency response and work properly even with small
amounts of shift are still relatively complex and expensive.

A related but much simpler device is the balanced modulator, which is
also known as a ring modulator. The· device has two signal inputs that are
identical and an output. In operation, an instantaneous output voltage equal
to the product of the two input voltages with all algebraic sign conventions
observed is generated. Figure 2-9 shows the output waveform with two
different frequency sine waves as inputs. Note that the output spectrum
contains neither of the input frequencies but does contain a sum frequency of
1,200 Hz and a difference frequency of 800 Hz.

In order to more fully understand the physical effect, consider an
experiment in which one of the inputs is connected to a complex waveform
with a lot of frequency components and the other input is connected to a
variable-frequency sine wave oscillator. With the oscillator set to zero fre
quency, the output is the same as the other input. As the oscillator frequency
increases, a spectral plot of the output, as in Fig. 2-10, would show each
frequency component splitting into twO components, which then move away
from each other. Thus, one copy of the input spectrum shifts down in
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Fig. 2-9. Action of the balanced modulator. (A) Input to A.
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frequency, while the other copy shifts up. The envelope of the copies indi
vidually remains unaltered. Actually, a tfue spectrum shifter manages to

suppress one of the copies.
If the oscillator frequency is made high enough, frequency components

in,the downward moving copy will eventually cross zero. As they do, they are
reflected back upward with reversed phase, since a physically negative fre
quency is impossible. With a continuing increase in oscillator frequency) a
point will eventually be reached in which the ent.ire downward moving copy
has been reflected and the upward moving copy ceases to overlap it. If a
low-pass filter is now inserted in the output, only the reflected copy remains.
The interesting point about the spectrum now is that it has been inverted with
originally low-frequency components becoming high and vice versa.

Generally, balanced modulators and spectrum inverters severely distort
sounds into an unrecognizable and usually unpleasant grating. In fact, spec
trum inverters were once popular as speech scramblers, since a reinversion
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would restore the original signal unaltered. Under certain conditions, how
ever, the effects of these devices are interesting and useful.

Envelope Modifiers

Although spectrum modification of sounds can have a profound effect
on their timbre, altering the overall amplitude envelope can also have a
significant effect. Perhaps the simplest envelope modification is flattening of
the decay in order to give a steady sound amplitude that eventually cuts off
suddenly. Thus, a plucked string instrument such as a guitar comes out
sounding more like an organ.

The oldest and simplest method of doing th.is is to use a clipping circuit
with a low clipping threshold. As long as the input amplitude was signifi
cantly above the clipping point, the output amplitude remained relatively
constant. Of course, such a device aiso severely distorts the spectrum.

Later, envelope follower circuits that generated a voltage proportional
to the amplitude of an input signal were developed. This voltage could then
be used to control the gain of a separate amplifier in any desired manner.
Thus, the guitar sustain device would process the evelope follower signal
such that the amplifier gain would increase enough to cancel the decrease in
input signal amplitude and give a constant output. By suitable processing of
the envelope signal, the attack, sustain, and decay times of the output can be
adjusted relatively independently of the envelope characteristics of the input.

Electronic Reverberation

Even util.izing all of the modification techniques mentioned so far,
many purely electronic sounds have a "lifeless" quality that is often undesir
able. Live sounds from an orchestra, on the other hand, have a depth and
richness that cannot be easily explained in terms of frequency, amplitude,
and spectrum.

The concert hall itself adds considerably to the texture of orchestra
music. In fact, an otherwise "dry" recording of electronic sounds is consid
erably enhanced by playing through loudspeakers scattered around the stage of
a good concert hall. The difference, of course, is the presence of reverberation
in the hall in which a combination of direct and reflected sound reaches the
listener. The reflected sound can come from any direction and with different
time delays with respect to the direct sound. Reflection can also occur several
times, each with diminishing amplitude.

Because of the multitude of delay times, concert hall reverberation and
tape reverberation are considerably different. The latter consists of distinct
echoes, while the former has no perceivable echo at all. A multitude of
techniques and devices has been developed to electronically simulate concert
hall reverberation in tape recording.
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The earliest attempt was an extension of the tape reverberation method.
Rather than having just one playback head, several were used, all spaced at
irregular intervals from the single recording head. This was fairly effective in
suppressing distinct echoes, since so many echoes were produced. However,
sharp transients such as a hand clap still resulted in an initial chain of echoes.

Most other reverberation schemes are really electromechanical in na
ture. Objects such as special springs, metal plates, stretched gold foils, and
even empty chambers with hard walls were fitted with transducers for signal
input and output. The reverberation effect is created when sound waves from
the input transducer reflect from the ends or other boundaries of the object.
The "reverberation chamber" approach yields good results but must be quite
large in order to achieve natural results. The other devices are considerably
smaller due to slower propagation of sound in them as compared to air.
Spring units typically utilize two or three different springs and are most
popular for lower-quality work. The metal plate and gold foil units produce a
more spacious effect with less evidence of echo due to two-dimensional
propagation of the sound waves.

One problem with such electromechanical devices is coloration of the
reverberated sound, meaning a fairly gross modification of the spectrum of
the reverberated sound. Typically, frequencies below 500 Hz and above 5
kHz are attenuated, and response to middle frequencies is irregular. Springs
are worst in this respect and gold foils are best.

Recently, the plummeting costs of digital logic and memory have made
all-electronic reverberation devices practical. Digital techniques make possi
ble a very high-quality audio delay line that when combined with feedback
and mixing networks gives excellent reverberation results. Analog delay lines
capable of handling audio signals directly may also be used in reverberation
networks, although background noise can be a problem in exacting applica
tions. Although echo density and coloration can still be problems, they are a
function of the quantity and arrangement of the component parts and not the
physical characteristics of some specialized material. Design details of digital
reverberation simulators will be covered more thoroughly in Section III.

Chorus Synthesizers

The other "life-giving" element typically missing in electronic sounds
is multiplicity of sound sources. A single trumpet playing a nice little solo
has one effect, while a hundred trumpets playing the same passage in four
part harmony has quite a profoundly different effecL Who has not thrilled to
the sound of thousands of voices singing the National Anthem prior to a
football game?

The effect of a number of players performing the same passage is called
a chorus effect. What has been desired for a long time is a device or process
that would accept a sound signal as an input and generate an output that
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resembles a large number of copies of the input signal. An obvious control
parameter for such a device is the multiplicity factor.

Looking more" closely at the physical chorus effect, it is seen that the
difference between two separate players and one player playing twice as loud
is that the two sounds being combined are not exactly alike. For example, the
fundamental sound frequencies will be slightly different, resulting in a slight
beating effect. Unlike beating sine waves, the resultant amplitude of two
beating complex waves remains relatively constant, but individual harmonics
may momentarily cancel. Also vibrato, which is not synchronized between
the players, may cause even greater momentary frequency differences. The
end result is a slight, random, spectrum modulation of the resulting sound.
As more players are added, changes in the amplitude and phase of the
component harmonics become more pronounced and random. A spectral plot
of 100 trumpets playing the same note would show broad peaks at each of the
harmonic frequencies rather than narrow lines. Note that the overall spectral
envelope is unchanged, which allows one 'to distinguish 100 trumpets from
100 violins.

Research into construction of the chorus box mentioned earlier has been
in two different directions. One attempts to directly simulate multiple sound
sources with a number of audio delay lines, whose delay is constantly chang
ing over a narrow range. The theory is that a second sound is exact!y like the
first except that the vibrations are occurring at different points in time. The
variation in delay times prevents a constant echo effect. Multiplicity can be
controlled fairly well with such a setup by changing the number of delay
lines. Digital signal processing techniques are well suited for implementa
tion of this scheme.

The other approach works on the basic parameters of the input sound
attempting to simulate the effect rather than the actual chorus itself. Accord
ingly, it uses filters to separate the input spectrum into bands and amplitude
and phase modulators plus spectrum shifters to randomly manipulate the
individual bands. Finally, the sound is put back- together and sent out. Al
though not particularly good for simulating a small group of players, the
technique is apparently very effective for simulating a large number. A taped
demonstration witnessed at the Spring 1977 Audio Engineering Society
convention made a cheap portable synthesizer sound like a whole auditorium
full of synthesizers.

Analysis-Synthesis Methods

It should now be well established that the synthesis of sound can be
controlled to the tiniest of details by appropriate manipulation of the fun
damental parameters. The basic problem, then, is in determining exactly
how these parameters should be varied to get the desired effect. One possibil
ity, of course, is experimentation so that the relation between parameter
change and audible effect becomes familiar. If this is adequately accom-
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plished, then the composer can readily specify what is required for the
desired effect. There are many practical difficulties, however. One is that
such extensive experimentation is quite time consuming even with entirely
real-time equipment. A related problem is documenting the results of such
experimentation. Cataloging of desirable or unusual effects discovered during
such experimentation for later recall is possible with a computer-based sys
tem, however.

One approach to the problem begins with realizing the frequency of
requests such as, "I want something that sounds like (some natural sound)
except for . . ." Thus, if one could determine the exact parameter variation
of the prototype sound, then the desired parameter manipulation for the
desired result might be more easily determined. Such a procedure is called
analysis-synthesis because a prototype sound is analyzed into its component
parameters, which may then control a synthesizer to reproduce a similar
sound.

Envelope Tracking

The first step in the process is an accurate determination of the
parameters of interest in the prototype sound. Overall amplitude is perhaps
the easiest to extract. A device for doing this is usually called an envelope
follower. Although rms amplitude is probably the most desirable measure; it
is much easier to determine average amplitude. Another tradeoff that must
be considered in the design of an envelope follower is speed of response versus
the ability to accurately determine the amplitude of low-frequency signals.
The reason is that the device will start to follow rhe slow waveform of a
low-frequency sound itself rather than the overall average amplitude.

Pitch Tracking

Determining the fundamental frequency or pitch tracking is consid
erably more difficult. Relatively constant-frequency simple (not a lot of
harmonics) sounds isolated from all other sounds and background noise can
be readily processed. However, rapidly vcnying, complex, or insufficiently
isolated sounds are much more difficult to follow. Semipitched sounds such
as the chime mentioned in Chapter 1 are better handled with formant track
ing, which will be discussed. The most common error made by pitch track
ing equipment is a momentary false output that is a multiple or submultiple
of the correct value. Multiples of the correct value are the result of mistaking
one of the harmonics for the fundamental that might actually be very weak or
absent. Submultiples can result when the waveform undergoes substantial
change of parameters other than fundamental frequency. Thus, any successful
pitch tracker for a variety sounds generally looks at periodicity of waveform
peaks, or in the case of sophisticated computer processing, looks at every
frequency component and determines the highest common divisor.
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Spectrum Tracking

Generalized speerrum tracking can be done in several ways. For defi
nitely pitched sounds, the amplitude envelope of each individual harmonic
can be determined with computer-processing techniques. A somewhat sim
pler technique involves a bank of 10 to 30 bandpass filters and an amplitude
envelope follower connected to the output of each filter. Any sound can be
passed through such afilterbank analyzer, and its rough spectrum shape as a
function of time can be determined.

Another method that also involves a computer is formant tracking. The
spectrum of many interesting sounds such as speech can be fairly well de
scribed by the frequency, height ,and width of peaks in their spectrum
shape. Frequently, even the height and width parameters are ignored. The
resulting small number of parameters describing the time varying spectrum
shape is quite attractive for analysis-synthesis purposes. For example, track
ing of just the frequency of the two lowest formants of voiced speech sounds
is adequate for intelligible speech reconstruction.

Unfortunately, accurate formant following is as difficult as accurate
pitch tracking. For example, there need not necessarily be a constant number
of formants in the sound being analyzed. As a result, the analyzer must
recognize when two formants merge into one or when one just decreases in
amplitude and disappears. If the overall spectrum shape contains a long
downward slope, the ear will often recognize a local flattening in that trend
as a subdued formant, even though no real peak occurs.

Use ofAnalysis Results

It should be obvious from the foregoing that really accurate analysis of
sound into the simple parameters that have been discussed is not always
possible. However, the accuracy that is attainable is gen~rally quite accept
able for analysis-synthesis experiments. Occasionally, some hand editing of
the data obtained is necessary to correct gross errors or fill in missing data
caused by nearly inaudible "defects" in the prototype sound.

Generally, the data obtained from the analysis can be represented as a
number of curves showing how the parameters vary with time. Such a set is
shown in Fig. 2-11. On a computer-based system, these curves would
actually be available to the user to study and modify as desired. In a real-time
system, these parameters would really be just varying voltages generated by
the analysis equipment. In either case, some, if not all, of the parameters
would be processed and then they would pass to synthesis equipment, which
generates the modified sound.

The analysis-synthesis technique can be applied in a number of ways.
One intriguing possibility is transferral of certain characteristics from one
type of sound to another. For example, let's assume that a short trumpet solo



SOUND MODIFICATION METHODS

,"PWUDEi~~~! Q C
(A)

\

73

PITCH ~:~~h~~ 200
8 100
tl:O
L.L. 50 ..

(8)

g "
6001FIRST ~ 800 IFORMANT lJ.J ----_.... ______

FREQUENCY ~ ~: ----L ':_-_-_-_-_-:::~ ........

(C)

i 3'2001SECOND ~ 1,600 I ~....._-- ~
FORMANT lJ.J ~

FREQUENCY ~ :: --L... .......,

(D)i3,200!,
THIRD t 1,600 "FORMANT ~ '-... , _

FREOUENCY ~ :~~ --''-- '--- ..

(E)

Fig. 2-11. Parameter variation of a typical natural sound. (A) Amplitude. (8)
Pitch. (C) First formant frequency. (0) Second formant frequency.
(E) Third formant frequency.

passage has been analyzed into amplitude, frequency) and rough spectrum
shape parameters. Let's further assume that the passage is a lively one indica
tive of the performer's playing style. With resynthesis, these particular
parameters could control a tone that more resembled that of a clarinet. Since
the spectral analysis was very rough, the exact timbre of the trumpet would
not have been captured, but the general trend that reflects changes in the
overall tone would have been. The result would be that many of the charac
teristics of the trumper playing style would have been transferred to the
clarinet sound. Nore that in a real situation it may not even be possible to
actually playa. clarinet in such a manner.

Besides, simple transferral of parameters, modification of the curves is
also possible. Since a parameter when converted to a varying voltage is just
another signal, many of the processing techniques that applied to sound
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pressure waveforms could also be applied to the parameter waveform or
envelope. One type of processing that would have an interesting effect is
jiltering of the parameter envelopes. A high-pass filter, for example, empha
sizes high frequencies relative to lower frequencies. The direct effect on the
waveform is to emphasize rapid variations and ignore slower variations and
trends. High-pass filtering of the trumpet solo data, for example> might
produce a caricature of the original playing style. Low-pass filtering of a
parameter has an opposite effect in which short and rapid variations are
smoothed out and slow variations or trends are emphasized. The result might
very well sound as if the performer had become drunk!

Hand manipulation of the parameters, of course, is also possible. One
way to determine how a particular parameter contributes to an overall effect
is to resynthesize the sound with that parameter held constant or set equal to

some other parameter. Statistical analysis of the curves might make it possi
ble to completely separate two parameters that normally influence each
other. For example, overall loudness and spectrum distribution are related in
trumpet sounds. Loud but mellow notes are not generally possible as are soft
but blaring notes. Conversely, two parameters that normally vary indepen
dently may be made interdependent.

Of course, with a computer-based system, the results of sound analysis
may be stored for later recall or for combining with other analysis data.
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Voltage Control Methods

As briefly mentioned in Chapter 1, the development and use of voltage
controlled sound synthesizers was an important milestone in the history of
electronic music synthesis. More than any other single development, it
served to popularize synthesis methods not only with the listening public but
also with composers and performers.

Voltage control is really a fundamental concept. For the first time there
has been established a one-to-one correspondence between an easily manipu
lated physical variable, a voltage level, and each of the important parameters
of sound. Thus, manipulation of a voltage would actually be manipulation of
a frequency, amplitude, formant position, waveform distortion parameter,
etc. Frequently, voltage-controlled techniques are characterized as continuous
or analog techniques because one physical variable (the signal or control
voltage) represents another physical variable (amplitude, frequency, etc.).

Also of importance is the modularity of voltage-controlled synthesizers.
The synthesizer itself is nothing more than a package for holding a number of
independent modules that may be interconnected in literally an infinite variety
of ways. The number of simultaneous sounds and their complexity is depen
dent mainly on the type and number of modules available and the means
available for controlling them. Only a very few modules are required co
produce single simple electronic sounds. More are required for implementa
tion "Of subtle variations and multipart harmony. If a given complement of
modules is insufficient for a particular application, more are easily added at
moderate cost.

Compatibility is another key characteristic of voltage-controlled synthe
sizers. All inputs are compatible with all outputs, meaning thac any physi
cally possible permutation of interconnections is also electrically safe and
potentially useful. Furthermore, in some instances outputs are compatible
with each other. In such cases, two outputs plugged into the same input
(with a "Y" connector, for example) actually results in mixing of the two
signals involved in equal proportions. Compatibility often extends to the
point that different manufacturers' modules may be easily interconnected.

75
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Finally, the modules of a modern voltage-controlled synthesizer offer
good accuracy in the relationship between a control voltage and the value of
the sound r )rametee being controlled. Thus, two modules with the same
control input can be expected to produce nearly identical results. Although it
is relatively simple to design and produce devices that respond to control
voltages, designing one that accurately and consistently responds to them is
considerably more difficult. Even so, accuracy is one characteristic that could
benefit from improvement.
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Fig. 3-1. General voltage-controlled module

Typical Module Characteristics

In examining these points more closely, let's look first at the general
characteristics of a typical module such as diagrammed in Fig. 3-1. This
module has three classes of inputs and three classes of outputs. It is rare that a
single module would actually have all six classes of input!output (I/O), but it
is possible.

A mechanical input is a parameter that is physically supplied by the user.
Examples are the positions of knobs, levers, the amount of pressure on a
plate, the state of switches, or other nonelectronic inputs to the system.
There may be none, one, or several such inputs on a single module. In the
case of knobs or levers, two are often used to precisely control one variable: a
coarse adjustment and a fine adjustment. Switches usually set particular
operating modes and may have several positions each. With the exception of
transducer modules such as keyboards) the mechanical inputs are usually set
up ahead of time and then changed only infrequently during the actual
production of sound. Thus, except for transducers, mechanical controls
influence operating parameters that stay relatively constant.

Mechanical outputs are less common and consist of lights, meters,
speaker cones, and similar indications to the user. Except for speakers,
mechanical outputs are just user aids and do not directly participate in the
synthesis process.
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A signal input normally expects to see an ordinary audio signal in the
20-Hz to 20-kHz frequency range. However, the signal inputs of any prop
erly designed module are perfectly capable of responding to dc voltage levels
and ultrasonic frequencies up to 50 kHz and higher. This broad range allows
signal inputs co also handle slowly varying control voltages, which is a very
important capability.

A signal output normally supplies an ordinary audio signal to other
modules. Like the signal input, it is usually capable of supplying dc and
very-low-frequency signals as well for control purposes.

The function of a control input is to accept a control voltage whose
instantaneous value controls some parameter of the signal output. The pres
ence of control inputs is the factor that distinguishes voltage-controlled
modules from ordinary laboratory equipment, which usually has only
mechanical inputs. Control inputs are used for those parameters that change
rapidly, usually within the course of a single sound or note.

A control output is similar to a signal output except that it normally
supplies control voltages to other modules. However, if the voltage at a
control output varies rapidly enough, it may also be used directly as an audio
signal.

From the foregoing it should be apparent that the distinction between
audio signal voltages and control voltages is in their use and not necessarily
in theif physical properties. Although control voltages typically vary slowly
compared to audio signals, there are applications for rapidly varying control
voltages and slowly varying audio signals. It is this lack of physical distinc
tion between parameters and signals that is responsible for much of the power
of voltage-control methods.

There is, however, one more class of signals used in the voltage
controlled synthesizer. These are digital on-off control signals and timing
pulses. Only a few specialized modules, which will be discussed later, use
them. Although it is safe to mix these digital signals with the others, the
effects are seldom useful. Any useful effect can also be obtained through more
"correct" interconnection procedures.

General Module Types

Modules can be grouped according to their primary functions. There is,
of course, some overlap among groups, but for the most part the distinctions
are clear.

Transducers function primarily as sources of control voltages but are
directly dependent on some form of input for determining what the control
voltage output should be. Perhaps the best example is an organ-type
keyboard specially designed to produce a control voltage that is a function of
the particular key being pressed. Besides the control voltage output, the
keyboard also produces two digital timing signals whenever a key is pressed.
The first is called a trigger} which is a pulse that is generated on the initial
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depression of a key. Its primary function is ro mark the beginning of a note.
The other signal is called a gate and is used to mark the duration of the note.
The gate signal is present as long as a key is pressed. Thus) these two timing
signals qualify the control voltage output from the keyboard.

Generators are similar to transducers but generally produce a predefined
type of output signal that can be influenced with mechanical and control
inputs but not completely determined in detail as with a transducer. A good
example of an audio signal generaror is a voltage-controlled oscillator. Typi
cally, several ou tputs are provided, each one supplying a different but fixed
waveform at a fixed amplitude. The voltage level at the control input directly
affects thefrequency of the multiple waveform outputs, but the waveshape and
amplitude, which are fixed by design, remain constant. A good example of a
control voltage generator is the envelope generator. This device supplies a
predetermined voltage contour in response to the trigger and gate signals
mentioned earlier. Mechanical controls generally specify details about the
conrour generated, although rarely a control voltage might be able to specify
some of these.

Modifiers typically accept signal inputs and control inputs and produce
a signal output. Modification of one or more parameters of the input signal is
performed in accordance with the voltage levels at the control inputs. A
voltage-controlled amplifier is a good example of a modifier. Typically, the
signal input is of constant amplitude, but the amplitude of the output is
determined by the control input.

Interconnections

In order to perform a useful funerion, the synthesizer modules must be
interconnected. A true general-purpose synthesizer provides only mechanical
mounting and operating power to the modules; otherwise they are com
pletely independent. Probably the most popular connection method involves
the use of patch cords similar to those found in old telephone switchboards
but with both ends free. The cords and standard 1/4-inch phone plugs are
quite flexible and rugged and allow fully shielded connections that minimize
noise pickup. A particular arrangement of patch cords is called a patch. A
complex patch may involve so many cords that a ratts-nest appearance results
that may even obscure the front panel of the synthesizer. In such a situation,
it may become difficult to follow a particular cord through the maze without
pulling on one end of it. Even so, most users love the patch cord concept and
on occasion can be seen to point proudly at the "jungle" that represents the
creation of a new sound.

Another popular interconnection technique uses a pinboard matrix.
The matrix is divided into rows representing module outputs and columns
representing module inputs. Each row and column is clearly labeled with
module number, type, and signal name. A connection from an output to an
input is made by inserting a pin at their point of intersection. An output may
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drive multiple inputs by having pins at multiple column positions along the
row corresponding to the output. Multiple outputs may also be connected
together for equal mixing without the use of Y adaptors simply by inserting
pins at multiple row positions along a single column. A complex pinboard
matrix patch is, of course, much neater than the equivalent using patch
cords. Furthermore, documentation of the patch is much easier. However,
pinboard synthesizers tend to be less easily expanded due to the subpanel
wiring between the modules and the pinboard. Also, if the row or column
capacity of the pinboard should be exceeded, either another matrix will have
co be added (and provisions for patching from one matrix to the other) or the
entire matrix will have to be replaced with a larger one. Thus, pinboards are
usually only found in "standard" models of prepackaged synthesizers.
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Fig. 3-2. A simple voltage-controlled module patch

A Simple Patch

Regardless of the method of patching, the important point is that the
user thinks in terms of the basic parameters of sound when a patch is being
designed. Figure 3-2 shows a very simple patch for producing individual
notes under the control of an organ-type keyboard. One of the keyboard
outputs is a voltage level proportional to the key last struck. This voltage
determines the frequency of the voltage-controlled oscillator. The trigger and
gate outputs from the keyboard then enter the first envelope generator,
which produces a voltage contour in response to these timing signals. This
voltage enters the control input of the voltage-controlled amplifier) where it
impresses the contour shape onto the amplitude of the output signal from the
oscillator, thus giving it an envelope. Finally, the second envelope generator
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Fig. 3--3. Added modules for vibrato

impresses a different contour onto the spectrum of the sound through the
voltage-controlled filter.

As a result, these three fundamental parameters are directly, and most
important, visibly controlled by the three control voltages. More complex
patches generally add modules in the control voltage paths, although a few
more might also be added to the signal path. As an example, let us take this
basic patch and add vibrato. Since vibrato is a small wavering of frequency
during extended steady states, the control voltage connection between the
keyboard and the oscillator will be broken and additional modules inserted as
in Fig. 3-3. First, another oscillator is added, which is the source of the
low-frequency vibrato waveform. For this example, no control voltage is
supplied to the oscillator; its mechanical controls are used to set the vibrato
frequency. The vibrato voltage is combined with the keyboard output with
the mixer module shown. Mechanical controls on the mixer determine the
proportion of each input signal that appears at the output. For natural
sounding vibrato, the controls are set for only a small contribution from the
vibrato oscillator. The resulting control voltage is then sent to the original
oscillator and the remainder of the system as before.

It is easy to imagine further growth of the patch, since the vibrato
produced by the example patch is rather crude. Typically, one might want
shorr notes and the beginnings of long ones to be free of vibrato. After a delay
period on long notes, vibrato should commence gradually. Addition of
another voltage-controlled amplifier and envelope generator in the frequency
control voltage path will allow this effect to be produced. Similar additions
may also be made in the amplitude and spectrum control paths. Once a good
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understanding of the parameters of sound has been developed, most patches
are obvious. Note that more modules may actually be tied up in processing
control voltages than audio signals!

Signal Levels in the Synthesizer

So far the value of voltage conrrol has been established and the de
sirability of an accurate relationship between control voltage magnitude and
sound parameter magnitude has been mentioned. However, now the exact
form of this relationship needs to be established. Although there is consider
able agreement in the industry on the control relations to be discussed, there
are a few manufacturers of smaller systems that do things differently.

Frequency-Control Relation

Of all the parameters of sound, frequency is probably the most impor
tant. The ear is considerably more sensitive to small changes in frequency
than any other parameter. Also, music theory is significantly more concerned
with intervals, chords, and other pitch-related topics than it is with ocher
areas. Thus, the choice of a relationship between a frequency-control voltage
and the resulting output frequency should be chosen carefully.

The range of human hearing can be considered to be 10 octaves, which
is a 210 or 1,024: 1 or 20 Hz to 20 kHz range. Within this range, a relative
error of 1% is a minimum goal with considerably less being desirable in the
middle four octaves. A relative error of 1% means that an intended frequency
of 20 Hz cannot actually be less than 20 - 20/100 = 19.8 Hz or greater
than 20.2 Hz. Likewise, any frequency between 19.8 kHz and 20.2 kHz
would be acceptable for an intended value of 20 kHz. Note that the absolute
magnitude of error at the high end is a whopping 200 Hz, while at the low
end it is only 0.2 Hz. Expressed as a full-scale accuracy, a specification
method almost universally used by the measuring-instrument industry, the
requirement would be 0.2 Hz/20 kHz = 0.001%. Laboratory voltage
measuring instruments with this kind of accuracy are almost nonexistent,
exceedingly expensive, and fragile, yet this and more is being asked of a
voltage-controlled oscillator module for a synthesizer!

The most obvious relationship between control voltage and frequency is
a linear one, that is, a direct relationship between voltage and frequency. For
the sake of argument, let us assume the relationship F= 1,000V, where F is
the output frequency in hertz and V is the control voltage in volts. With this
relation, the audio range would be covered with a control voltage range of
20 mV to 20 V. The 1% error alluded to earlier would amount to 200 J.LV at
the low end of the range and 0.2 V at the upper end.

Actually, 20 V is a little high for convenient use of modern linear ICs.
A maximum of 10 V would be more reasonable. The 100-p.V error now
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allowed would be quite difficult to deal with. Typical sources of error in this
range are thermoelectric voltages, voltages induced from stray magnetic
fields, and thermal noise in resistors. What is worse, we expect these voltage
levels to travel freely through patch cords without degradation. Thus, it is
apparent that directly proportional voltage control is impractical for a wide
control range and great relative accuracy.

Exponential Relation

Another relationship that makes more sense from a lot of viewpoints is
an exponential one. Stated first in musical terms, such a relationship could be
something like a 1 V/octave. In mathematical terms, this would be F = 2VPo,
where F is the output frequency, V is the control voltage in volts, and F 0 is
the basis frequency for this relative scale. For a basis frequency of 20 Hz, a
voltage range of 0 to 10 V would cover the audible range. An interesting
property of such a scale is that the 1% relative accuracy desired corresponds
to about 14.5 mV independent of the frequency range. Thus, rather than a
liberal error allowance at high frequencies and astingy one at low frequen
cies, the margin for error is a constant, manageable value.

This property alone would be sufficient persuasion for adopting the
exponential relationship, but there are many more desirable characteristics.
In Chapter 1, ie was noted that the sensation of pitch was an approximately
exponential function of frequency. Using an exponential voltage-controlled
oscillator, a linear increase in control voltage of, say, 1 V/sec would result in
a reasonably steady rise of pitch. A linear VCO, on the other hand, would
very rapidly sweep through all of the low frequencies and then seem to
require a considerable amount of time to complete the upper end of the
sweep.

Even if the ear's response did not resemble an exponential curve, the
equally tempered musical scale is precisely exponential. One octave, of
course, corresponds to 1 V and a half-step corresponds to 1/12 V or about
83.3 mY. Likewise, a fifth corresponds to 7/12 V and a major third is 1/3 V.
Thus, if some arbitrary voltage level produces a particular pitch, a voltage
1/12 V higher produces a pitch one half-step higher.

One application of this property is in transposition from one key to
another. Consider a melody played in the key of C on a keyboard that outputs
control voltages. If a constant voltage of 1/6 V is added to the keyboard
output, the melody would actually sound in the key of D. The constant
voltage may be injected with a mixer between the keyboard and the oscil
lator, although most VCO modules have a basis frequency knob that does the
same thing.

Injection of vibrato is also considerably simplified with an exponential
VCO. A 1% vibrato, for example, would require a 15 mV peak-to-peak
vibrato voltage independent of what note was played. With a linear veo,
the vibrato would be excessive on the low notes and nearly inaudible on the
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high ones. Thus, the vibrato amplitude would have to be made proportional
to frequency through the use of a voltage-controlled amplifier.

Although exponential control of frequency at the rate of 1 V/octave is
an industry-wide standard, the best veo modules do have a linear control
voltage input available. Its primary use is in using rapid and deep frequency
modulation as a method of altering the spectrum of the oscillator's output
waveform without incurring an undesirable average frequency shift due to the
modulation.

Amplitide Relation

Amplitude is the other parameter of primary importance that needs a
control voltage relationship established. Whereas the audible frequency
range is a 1,000: 1 ratio, the audible amplitude range is 1,000 times greater
yet or 106 : 1. This 120-dB range might be a nice goal for live listening in a
soundproof room but certainly could not be utilized in a normal environ
ment. Furthermore, recording equipment is limited to a 60-dB to 70-dB
range at best. Thus, a 10,000: 1 or SO-dB range on voltage-controlled
amplifiers would be a reasonable requirement.

The accuracy requirement for amplitude control is not nearly as strin
gent as frequency control accuracy. A 10% error, which corresponds to about
0.8 dB, would be barely audible. However, if the voltage-controlled
amplifier were being used in a control voltage path processing frequency
related control voltages, considerably better accuracy would be desirable.
Without going through the linear versus exponential argument again, it is
clear that the control voltage relationship should be exponential.

A common setup would be such that 8 V would specify unity (0 dB)
gain and lesser voltages would decrease gain at the rate of 10 dB/volt.
Typically, as the control voltage approaches zero and the gain is decreasing
toward - 80dB, a squelch circuit comes into play, which actually cuts the
signal completely off Control voltages greater than +8 V can provide some
positive gain in the circuit. With such a setup, the gain expression would be
AV = 10(V-8)/2, where AV is the voltage gain and V is the control voltage in
volts. Like the oscillator, an added linear mode control input is helpful for
special applications using amplitude modulation for timbre modification.

Most parameters used in other modules are related to either frequency
or amplitude and thus usually have an exponential relationship. However,
any time that a variable is required to cover a wide range, the exponential
relationship is useful.

Standard Voltage Levels

Signal levels in a voltage-controlled synthesizer, both audio and con
trol, are generally kept at a constant amplitude except when amplitude
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conrrol is actually being performed. The standardization of signal levels from
transducer and generator modules enhances the compatibility of signals
throughout the 'system.

It has already been alluded to that control voltages range from 0 V to
10 V in magnitude. The polarity of control voltages is usually positive,
although some module designs will perform as expected with negative con
trol voltages as well. An oscillator, for example, can be coaxed into produc
ing subaudible frequencies for vibrato use by giving it negative control
voltages. Although the accuracy usually deteriorates, it is still quite useful.
Audio signals are usually 20 V peak to peak in amplitude and swing equally
negative and positive.

Actually, these voltage levels and amplitudes are fixed by what is
convenient to use with IC operational amplifiers. These circuits are usually
operated from positive and negative 15-V power supplies and start to distort
severely if signal levels exceed 13 V in magnitude. These levels are consid
erably higher than the 1-V rms (2.8 V peak to peak) typically encountered in
high-fidelity audio systems. One reason is to minimize the effect of noise and
voltage offsets that may be encountered when a signal travels through a dozen
or more IC amplifiers before it even leaves the synthesizer. Occasionally, it is
desirable to cut all signal levels in half to ± 5 V to allow the use of inexpen
sive CMOS switching elements, which are limited to ±7-V power supplies.
Sometimes the control voltage sensitivity is doubled to compensate, so a
little more care in minimizing noise and error voltages is required. In other
cases) negative control voltages are used instead to get a reasonable control
range.

Some Typical Modules

Let us now take a closer look at the most often used modules in a
voltage-controlled system. The descriptions to be given are not those of any
particular manufacturer's line but are representative of the input, output)
and control complement on many commercial units. Home-brew synthesizer
modules can easily have all of the features to be discussed, since the incre
mental cost of adding most of them is insignificant compared to the "heart"
circuitry of the module. Detailed design and circuit descriptions will be
given in Chapter 6, in which module designs will be optimized for computer
control of many of the operating parameters.

Voltage-Controlled Oscillator

The voltage-controlled oscillator, usually abbreviated VCO, is the most
fundamental module of the system. Usually more veos are present than any
other module type. An actual veo module has a number of control inputs,
signal outputs, and mechanical inputs.
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Typically one might expect to find three frequency conrrol inputs even
though only one oscillator is to be controlled. In operation, the voltages at
the control inputs are summed together algebraically into an effective control
voltage. Thus, if input A is at 5 V, B is at 3 V, and C is at -4 V, then the
effective control voltage is 5+3-4=4 V. An unused input can be con
sidered as a zero voltage contribution. Having multiple inputs often elimi
nates the need for a separate mixer module. The use of separate inputs is also
preferable to output mixing by tying two outputs together because the
inputs are isolated from each other, thus allowing the mixed outputs to be
used elsewhere as well. Occasionally, a fourth input with either a 10-V/
octave or variable sensitivity is provided. When calculating the effective
control voltage, the level at this input must be divided by its sensitivity
before summing with the other conrrol inputs.

Usually, two mechanical inputs, each of which might have coarse and
fine adjustment knobs, are associated with the control inputs. One of these in
effect changes the basis frequency by adding an additional control voltage,
which may range from -10 V to + 10 V. Sometimes a range switch is
provided in order to extend the low-frequency range down to fractions of a
hertz. The other control is a volts per octave adjustment with the standard
value of 1 V/octave being the middle of the range. Besides fine tuning the
oscillator, this control can make an ordinary keyboard microtonal wi th
perhaps 31 notes to the octave. Finally, there may be a sensitivity control for
the fourth control input mentioned earlier.

A VCO typically has several different output waveforms. Usually they
are available simultaneously, all at the same frequency and with a fixed phase
relationship. Sometimes, however, a tapped panel control is used to adjust a
single output waveform as a variable mixture of two or three internal
waveforms. Figure 3-4 shows the four fundamental synthesizer waveforms
and their associated harmonic spectra.

A sawtooth wave is so named because of its appearance. It has both odd
and even order harmonics that fall off in amplitude as the reciprocal of the
harmonic number, which is 6 dB/octave. Its timbre is full-bodied and some
what bright. At low frequencies, it does indeed sound "sawey."

The triangle wave resembles the sawtooth in appearance but has a quite
different spectrum. Only odd order harmonics are present and their
amplitude falls off as the square of the harmonic number or 12 dB/octave.
The timbre of the triangle wave is subdued and mellow and somewhat
hollow. The mellowness is due to weak upper harmonics, and the hollowness
is due to the exclusively odd harmonic spectrum.

The exact spectral characteristics of the rectangular wave depends on its
duty cycle. The duty cycle is the ratio of the time spent in the high state
divded by the overall period. Spectra are shown for a 50% duty cycle and a
10% duty cycle. Note that in the 50% case, which is called a square wave,
only odd order harmonics are present and they decrease at 6 dB/octave. The
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timbre is bright, very hollow, and sounds much like a kazoo in the middle
frequencies. The 10% wave has a spectrum with considerable energy in the
high-frequency harmonics. The spectral envelope resembles that of a comb
filter somewhat, but after the first couple of peaks, decreases at an average
rate of 6 dB/octave. The timbre is quite buzzy at low frequencies and pierc
ingly bright at middle and high frequencies. Duty cycles around 25 to 30%
have a timbre that greatly resembles a sawtooth wave, although the indi
vidual harmonics are quite different. Many veo modules have a control
voltage input that determines the duty cycle of the rectangular wave. Others
may just have a mechanical control to vary the duty cycle or sometimes a
fixed 50% wave is all that is available.
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The last waveform is a sine wave whose characteristics need not be
reiterated. Generally, the actual oscillator portion of a VCO generates one of
these waveforms and the others are derived from it by use of simple nonlinear
circuits. The most popular type of oscil1ator inherently produces a very
precise sawtooth wave with the ramp portion linear to within a fraction of a
percent and a very shorr "flyback" period on the order of a microsecond or
less. A triangle wave is obtained by taking the absolute value of the sawtooth
voltage with a full-wave rectifier circuit. Actually, the resulting triangle has
a little notch during the sawtooth flyback period, but it is usually inaudible.
The rectangle wave may be derived either from the sawtooth or the triangle
by use of an infinite clipper circuit. Variations in the duty cycle are accom
plished by shifting the clipping threshold away from the zero voltage point.
The sine wave is, oddly enough, created by passing the triangle wave
through a "soft clipping" drcuit. The- circuit rounds the peaks of the triangle
and produces a sine wave with 0.2 to 2% total harmonic content, quite low
enough to get the sugary sweet timbre characteristic of sine waves. The
waveforms are usually sent out at fixed amplitudes such as 10 V positive and
negative, although it is conceivable that output level controls might be
provided.

Voltage-Controlled Amplifier

A voltage-controlled amplifier, abbreviated VCA, in many respects
resembles the VCO in the way that control inputs are handled. However,
since it is a modifier module, it has signal inputs. Usually, several signal
inputs are provided. Depending on the sophistication (and expense) of the
module, the signals may either be added together in equal proportions, have
a mechanical gain control to determine the contribution of each input, or
really be equivalent to several yeAs and have a control voltage determine the
gain of each signal input. The second-mentioned case with front panel gain
controls is probably the most common. Occasionally, one of the signal inputs
may be equipped with a phase inversion switch, which allows harmonic
cancelling when synchronized, but differently shaped waves are fed in or
special effects when processing control voltages. [n any case, the VCA also
functions as a mixer, since several signals may be combined into one. Mixing
is the same as algebraic summation so if control voltages are processed with
the VCA, they will add up just like the control voltage input circuitry of the
VCO.

The control input arrangement is similar to that of the VCO. Often
fewer control inputs are summed together, since elaborate multisource mod
ulation of amplitude is less common. A decibels per volt panel control can be
expected as well as an overall gain control. The latter is often inserted in the
signal path after the signal inputs have been mixed together but before the
actual VCA circuit. This is done to minimize distortion in the VCA circuit if
the input levels are unusually high. The VCA signal output is quite
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(1.5). (8) High Q factor (10).

straightforward with one or two provided. If two are present, they are
independent and the second is often the inverse of the first.

Voltage-Controlled Filter

The voltage-controlled filter (VeF) is the most complex and costly
"common" module in the synthesizer. One is indispensable but more than
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two is rare in the smaller systems. Voltage-controlled filters of adequate
performance are a recent development, and there is still considerable room for
improvement .

The signal inputs and controls are similar to those of the VeA, al
though there may be only one or two provided. There are usually several
signal outputs, however, each corresponding to a different filter mode. The
most popular filtering circuit simultaneously generates a low-pass, high
pass) and bandpass output from a single input. A band-reject output may
also be provided at very little additional cost. Sometimes the multiple out
puts are applied to a tapped potentiometer, and the user seleCts a mixture of
these filtering functions to be sent to a single output.

Although there are multiple outputs, there is only one frequency
parameter. Under the proper operating conditions (low Q factor) the low-pass
and high-pass - 3-dB frequencies and the center frequencies of the bandpass
and band-reject outputs are all the same. At higher Qs, the low-pass and
high-pass filtering functions undergo a phenomenon called corner peaking,
which is illustrated in Fig. 3-5. At very high Qs, the corner peaking be
comes excessive, and the audible filtering effect of low-pass, bandpass, and
high-pass outputs becomes similar. The notch output under these conditions
becomes so narrow that its effect on the sound is hardly noticeable.

Since the Q factor has such an important effect, it must be variable. The
most common configuration is a single panel control for Q. It is desirable,
however, to have a voltage-controlled Q probably with an exponential rela
tionship, since the useful range for Q is from 0.5 to several hundred at least.
One common imperfection in existing filters is that high Q factors lead to
instability and may even cause the filter to break into intermittent oscilla
tion. If this was not such a problem, Qs up in the thousands would be useful
for generating slowly decaying ringing sounds in response to a short input
pulse.

Normally, the frequency control inputs are straightforward and essen
tially identical to the frequency control inputs on the VCO. However, there
is an interaction between frequency and Q that must be conSIdered. Taking
the bandpass output as an example, there are two things that may happen
when the center frequency is varied. In a constant Q filter, the Q factor
remains constant as center frequency is changed. This is desirable if one is
filtering white noise to give it a sense of pitch, since the same degree of
"pitchedness" will be retained regardless of the center frequency. However, if
the filter is used to create ringing sounds, the ringing time will be much
longer at lower frequencies than it will be at high frequencies. This is because
Q is really related to the rate of ringing decay in terms of number of cycles
rather than seconds. A constant bandwidth filter actually has a Q that is
proportional to center frequency. Thus, if the bandwidth is set to 100 Hz
and the center frequency to 300 Hz, the effective Q is low, but if the center
frequency is 5 kHz, the laO-Hz bandwidth represents a relatively high Q.
Although there are applications for both types of frequency control, most
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veF modules are constant Q. The ideal case would have two sets of frequency
control inputs, one set with constant Q response, and the other set with
constant bandwidth response.

From the response curves in Fig. 3-5 it is apparent that the cutoff
slopes of the filter responses are essentially constant regardless of Q once the
attenuation reaches 6 dB or so. Steeper slopes are possible by cascading filters
and driving each member of the cascade with the same control voltage.
However, there is a growing interest in variable-slope filters, preferably
voltage-controlled variable slope: The reason is that detailed analysis of
mechanical instruments, particularly the trumpet) reveals that the changes in
spectrum caused by changes in emphasis closely approximate the effect of a
filter with fixed cutoff frequency but variable slope. Actually, implementing
such a filter turns out to be a nontrivial task. In particular, variable mixing of
the intermediate outputs of a cascade of ordinary filters does not work very
well because of phase shifts through the individual filters. Reasonable ap
proximations are possible, however, if suitable phase correctors are used.

Clippers

Although the VeF is the primary spectrum modification device in the
synthesizer, occasionally clipping and other nonlinear waveshaping functions
are integrated into a module. About the simplest useful setup would be a
sharp clipper with upper and lower thresholds variable by means of panel
controls or control voltages. A somewhat more flexible circuit would allow
independent gain for positive and negative portions of the waveform and
optional inversion of the negative portion. A very general nonlinear
waveshaping module might have a dozen or more panel controls that to
gether specify an arbitrary transfer function as a multisegment approximation
using straight line segments. The effects available with nonlinear shaping
devices generally cannot be duplicated with filters, but they are not as
dramatic either. Thus, nonlinear shapers are usually found only on larger
synthesizers.

Envelope Generators

The modules discussed so far can generate just about any steady or
repetitively changing sound that can be desired. However, in order to even
synthesize ordinary musical notes, a source of control voltages shaped like a
common amplitude envelope is needed. The envelope generator module is
specifically designed to perform this function.

A simple envelope generator produces the general shape shown in Fig.
3-6 in response to trigger and gate digital control inputs. Note that the
envelope voltage output is zero under quiescent conditions. When the gate
rises, the envelope rises toward a steady-state value during the attack period.
The slope and thus the duration of the attack is usually determined by a
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mechanical control. As long as the gate is held high, the envelope remains in
its steady state. When the gate turns off, the envelope makes a decay transi
tion back toward zero. Again, the decay period is adjustable with a panel
control. Note that the trigger signal is not really needed, since it has no
influence on the envelope output. Such a simplified envelope generator is
called an attack-release (AR) generator.

A more sophisticated envelope generator is the attack--decay-sustain
release (ADSR) type. Four parameters define its shape. The slope of the
initial attack and the final decay are adjustable as with the AR type. How
ever, the initial attack overshoots above the steady-state sustain level. Thus,
the additional parameters are the amount of overshoot and the duration of the
initial decay from the overshoot level to the sustain level. Note that the
trigger pulse can reinitiate the overshoot cycle even if the gate remains h.igh.
The ADSR shape is preferred, since the initial overshoot resembles the action
of many musical instrument types. Also, because of its retriggering capability,
rapidly repeated notes at the same frequency are readily distinguished. If
desired, the controls can be set to simulate the simpler AR shape. Although
the transitions are shown as linear ramps, typical circuit implementations of
envelope generators usually result in a decaying exponential shape.

Music Keyboard

The most common manual input to a synthesizer is through a standard
organ-like keyboard with a three- to five-octave range. Outputs from the
keyboard are a control voltage and trigger and gate digital signals. The
control voltage output always corresponds to the key last pressed. Depending
on the design, the output voltage with two keys pressed is equal to the lowest
key, the highest key, or some intermediate value. The trigger pulse is
generated on the initial depression of a key, and the gate is on as long as a key
is pressed.

Most keyboards have three mechanical controls. One is for adjusting
volts per octave and another is for adjusting the voltage level of the lowest
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key (basis voltage). Although these are redundant with VCO controls, it is
very convenient to have them right at the keyboard itself particularly if it
feeds several VCOs. The third control is for portamento. When rotated away
from its zero position, the change in control voltage output from one level to
another when a new key is pressed slows down, resulting in a pitch glide
from the first note to the second.

Recently, a somewhat more sophisticated keyboard was developed that
allows two keys to be pressed simultaneously. Two sets of outputs are pro
vided, one for the lowest key pressed and the other for the highest key. When
properly scored and played with care, two independent voices with different
characteristics may be played on one keyboard. Another simple and often
employed scheme is to simply use several keyboards such as with theater
organs. Digital scanning techniques have also been applied to synthesizer
keyboard design such that truly polyphonic playing is possible. One decision
that has to be made in the design of such a keyboard is the assignment of keys
to control voltage-trigger-gate output groups. If the voices controlled by the
keyboard are not all the same, the assignment of voices to keys may vary
greatly according to playing technique or even random chance. Digital
keyboards will be studied in greater detail in Chapter 9.

Other Modules

The modules that have been described so far are those that can be
expected to be present in any synthesizer, often in multiples. There are also a
number of specialized module types for special effects, to perform functions
normally requiring a number of interconnected modules, and "utility" ver
sions of the standard modules already discussed. Utility modules, parriculary
VCOs and VCAs, are less flexible, less accurate, and therefore quite a bit less
expensive than their standard counterparts. They are used freely in complex
patches where their characteristics are adequate for the task.

Sequencer

One specialized module that adds a measure of automation to the
synthesis process is called a sequencer. Interesting repeti tive effects can be
created with one or more VCOs set to their very-low-frequency range and
used as sources of control voltages. However, if a specific sequence such as a
short melody is desired, it is not normally obvious how a group of oscillatOrs
might be set up to generate it. A sequencer allows the user to directly
determine and easily modify specific, arbitrary sequences of control voltages.

The sequencer is usually designed to simulate a keyboard; thus, it has
trigger and gate outputs as well as the control voltage output. The simplest
sequencers might have 16 potentiometer knobs and a "speed" conrrol that
determines the frequency of a clock oscillator. Each cycle of the clock causes a
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scanning circuit to look at the next potentiometer in sequence and generate a
control voltage according to its setting. Also trigger and gate pulses would
be generated. The final result, if the sequencer is connected to a VCO, is that
a sequence of 16 notes of uniform duration would be generated and repeated.
Usually there is some way to short cycle the unit in order to produce shorrer
sequences. Frequently, the speed control has sufficient range such that the
voltage sequence output repeats fast enough to become an audio signal.
Thus, the sequencer becomes an arbitrary waveform generator for simple
waveforms.

The next step up consists of adding a duration control under each pitch
control so that irregular rhythms can be easily handled. From this point
sequencers can get increasingly sophisticated all the way up to computer
systems and music languages. Digital sequencers can easily have up to 256
and more steps in the sequence. Sequences may be entered and edited with a
small digital keyboard much like those found on calculators. Sometimes a
sequencer may act as a memory unit on a music keyboard allowing the user to
"play" in the sequence and then edit it in memory. Microprocessor applica
tion as a "supersequencer" is discussed in Chapter 11.

Sample-and-Hold Module

One fairly simple device that in many ways sounds like a sequencer is a
sample-and-hold module. Like the sequencer, it has an internal clock oscil
lator and possibly provisions for an external oscillator. It also has a signal
input and an output. Every cycle of the clock causes the circuit to "look" at
the input voltage at that instant and remember it. The remembered voltage
appears at the output as a constant value until the next clock cycle. If the
input waveform were a slow sawtooth, for example, the output would resem
ble a staircase with the number of steps dependent on the ratio of clock
frequency to input frequency. If the output voltage were connected to a
VCO, the result would be a scale of individual pitches. More complex
waveforms would produce sequences of notes that would either repeat,
evolve, or be seemingly random depending on the exact ratio of sampling
(clock) frequency to input signal frequency.

White Noise Generator

The white noise generator module is perhaps the simplest in the sys
tem, at least on the front panel. Usually there is a single output jack for the
white noise signal. Occasionally, there might be a "pink" noise jack also.
The difference between the two is that white noise has a constant spectral
power per hertz of bandwidth, while pink noise has constant power per octave.
Thus, pink noise actually sounds whiter (berter balance between low- and
high-frequency components) because of the exponential pitch response of the
ear.
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Specialized Modifiers

Other specialized modules are based on the sound modification tech
niques described in Chapter 2. Reverberation simulators, usually of the
spring type, are quite popular for enlarging the synthesized sound. Generally,
the only control present determines the mixture of straight and reverberated
sound. Ring modulators are also popular because of their low cost and
distinctive effect. Typically, there are just two signal inputs with level
control knobs and a single output. Frequency shifters are found rarely due to
their very high cost and specialized application.

One "module" (it is usually a free-standing unit) that has recently
become available is a digital implementation of the speed-changing tape
machine described earlier. In one of its modes, it has the ability to change the
frequency of sounds passing through it without altering the harmonic struc
ture or overall speed of the sound. When connected in a feedback mode, a
single note comes out as an ascending or descending series of notes.

A Typical Patch
Although the evolution of a relatively simple patch was described

earlier, let us look at how a more complex patch might be designed, given a
particular set of requirements. Throughout the discussion, the propor
tionality and symmetry properties of exponential voltage-controlled synthesis
will be emphasized. This will also be used as an opportunity to introduce the
technique of FM timbre synthesis, a simple yet powerful method of produc
ing quite a wide variety of timbres under the control of only two parameters.

The first step in designing a complex patch, as opposed to fiddling
around and discovering one, is to develop a physical understanding of the
desired effect. In this case, we are trying to develop a timbre (spectrum)
modification technique that can produce as wide a variety of effects as possi
ble under the control of a minimum number of parameters. In Chapter 1,
while describing frequency modulation for the production of vibrato, it
was mentioned that if the vibrato frequency became high enough and the
vibrato depth (percent modulation) became great enough, the unmodulated
sound would be completely altered into metallic clangs and breaking glass.
However, there are numerous intermediate conditions that produce useful
musical tones. Since there are only two parameters involved, the modulation
frequency and amplitude, and since the range of effects is so great, the
situation bears further investigation.

Frequency Modulation Terminology

Before continuing, some terms must be defined to avoid confusion.
Two signals are involved, the modulating signal; which was die vibrato
waveform, and the modulated signal, which is the tone being modified. The
following terms are really defined only if the modulating signal waveform
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and the modulated signal waveform are both sine waves and a linear veo (or
linear input to an exponential VeO) is used for the modulation. The modulat
ing frequency is the frequency of the modulating signal. The deviation is the
magnitude of the difference between the modulated signal's unmodulated
frequency (center frequency) and the highest or lowest instantaneous fre
quency it attains when frequency modulation is performed. Thus, the devia
tion is proportional to the amplitude of the modulating signal. Finally, the
modulation index is the ratio of the deviation to the modulating frequency.
Thus, the modulation index is also proportional to the modulating signal's
amplitude when the modulating signal's frequency is constant.
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Fig, 3-7. Action of wide-deviation frequency modulation. (A) Unmodulated
1-kHz carrier. (8) 100-Hz modulation, 200-Hz deviation.
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Perhaps a concrete example will help to clarify these terms. Figure
3-7A shows an unmodulated signal at 1,000 Hz and its spectrum, which, of
course, consists of a single line, at 1 kHz. In Fig. 3-7B, a modulating signal
of 100 Hz has been imposed, and its amplitude is such that the original
unmodulated signal now swings between 800 Hz and 1,200 Hz for a devia
tion of 200 Hz. Now, one would probably expect the spectrum to spread out
and fill the area between 800 Hz and 1,200 Hz, but as the spectral plot
shows, such is not the case. Instead, individual sine wave component lines
have been added, some of which are even outside of the 800-Hz to 1,200-Hz
range. These added frequencies are often called sideband frequencies, a term
borrowed from radio transmission jargon. Actually, a close look at the mod
ulated signal's waveform reveals that its shape repeats exactly 100 times/sec.
So according to Fourier's theorem, component frequencies of this waveform
can only exist at multiples of 100 Hz as the spectral plot indeed shows. To
the ear, the result is a 100-Hz tone with a rather thin, horn-like timbre.

In the situation just described, the modulating frequency is 100 Hz,
the deviation is 200 Hz, and the modulation index, therefore, is 200 Hz/lOa
Hz = 2. Figure 3-7C shows the result of increasing the amplitude of the
modulating signal such that the modulation index increases to 4. Additional
spectrum lines are visible, and those that were present with the lower index
have changed somewhat in amplitude. The audible pitch is still 100 Hz due
to the continued harmonic spacing of 100 Hz, but the timbre is thicker, due
to more low-frequency content, and less horn-like due to greater spreading of
the spectrum.

A continued increase in the modulation index causes the formation of
an even wider spectrum to the point that the lower sideband frequencies try
to go negative. What actually happens, though, is that they are reflected
back into the positive frequency domain where they mix with other sideband
frequencies already present. The resulting amplitude of a mixed sideband
frequency (also a harmonic in this case) is dependent on the exact phase
between the modulating frequency and the modulated frequency.

Effect of Deep Frequency Modulation
If the modulating frequency is increased to 200 Hz and its amplitude is

adjusted so that the modulation index is equal to 2, then the waveform and
spectrum of Fig. 3-7D results. Note that the relative amplitudes of all of the
spectral components are the same as they were in Fig. 3-7B except that they
are spread out to 200 Hz spacing. The ear now interprets this as a 200-Hz
tone. Thus·, it seems that the apparenr pitch of the frequency-modulated tone
is equal to the modulating frequency. Before jumping to this conclusion,
however, consider what happens if the modulating frequency is not a submul
tipIe of the modulated frequency, such as 171Hz. The result in Fig. 3-7E
shows the expected 171-Hz spacing between the sideband components, but
these frequencies are not harmonics of a common fundamental unless 1 Hz is
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considered a fundamental. The resulting inharmonic tone is still pleasant to

hear but the timbre LS bell-like rather than horn-like. With larger modula
tion indices) sideband reflection, and nonsubmultiple modulating frequen
cies, a reflected sideband would typically not fall on the same frequency as a
nonreflected sideband. The result is a proliferation of spectrum lines and the
shattering glass sound mentioned earlier.

It should be apparent from the examples in Fig. 3-7 that the relation
between modulation index and sideband amplitudes is not a simple one. It is
predictable, however, with the aid of Bessel functions, some of which are
plotted in Fig. 3-8. If one wished to determine the amplitudes of the
sidebands of the Fig. 3-7B example, the first step would be to find the
horizontal position corresponding to the modulation index of 2.0. The J 0

curve at that position is the amplitude of the zeroth sideband, which is the
1,000-Hz center frequency ,J1 corresponds to the first sideband pair at 900
Hz and 1,100 Hz, and so forth. Note that these amplitudes are with respect
to the unmodulated 1,000-Hz signal, which is given a reference amplitude of
o dB.

Thus, if the modulating and modulated frequencies remain constant
and the modulation index changes, the spectrum undergoes a complex evolu
tion. This can be a very useful musical effect and is called dynamic depth FM
timbre synthesis. With a voltage-controlled synthesizer, it is an easy tech
nique to apply and produces dramatic effects with relatively few synthesizer
modules.
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Patch for Dynamic Depth FM

Figure 3-9 shows a possible patch for dynamic depth FM. VCO 1 is the
primary VCO) which provides the modulated signal. veo 2 supplies the
modulating signal. veo 1 is modulated by veo 2 through an auxiliary
linear control input. This is necessary for the preceding analysis to be valid.
Note that the main frequency control voltage is connected to both veos.
Since these control inputs are exponential, the "ratio" voltage level deter
mines the ratio between the modulated signal's cerreer frequency and the
modulating frequency. If, for example, it was set to 2 V, then veo 1
(unmodulated) would track veo 2) but two octaves higher. The modulation
depth is set by a VCA controlled by an envelope generator.

Thus) if this setup were connected to a keyboard) for example, the
keyboard output voltage would control the frequency of both oscillators) but
veo 1 would always be four times higher in frequency than veo 2. The
apparent pitch of the generated tones would be equal to the frequency of
veo 2. The trigger and gate signals from the keyboard would be connected
ro the envelope generator, which, in turn, produces the control voltage that
determines the modulation index, and thus the spectrum of the rone. For
producing actual notes, the output of veo 1 would at the very least pass
through another VeA controlled by the same or another envelope generator
in order to apply an amplitude envelope.

Changing the ratio voltage also affects the modulation index and, if not
set for a simple ratio) results in inharmonic spectra. This voltage could even
be set so that the modulated signal's center frequency is less than the
modulating frequency. One point should be kept in mind as the parameters
in the system are varied. With the linear input to VCO 1, it is possible to
specify a negative instantaneous frequency. The most popular veo designs
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will simply cease oscillating under this condition and thus invalidate the
analysis as well as creating a suddenly harsh sound. Designs are possible,
however, that will oscillate in oppoJite phase if the instantaneous frequency is
negative. With this type of oscillator, the analysis holds and there need be no
concern about negative frequencies.



4

Direct COHiputer
Synthesis Methods

Although voltage-controlled synthesis methods are very flexible and very
popular, they are not the last wotd. Even though much work with direct
computer synthesis predates widespread application of the voltage-control
concept, it will be described here as an alternative to voltage control. As a
matter of fact, the earliest extensive direct computer synthesis program
actually used imaginary "modules" that corresponded closely to the voltage
controlled modules described in Chapter 3.

Direct computer synthesis and digital synthesis in general runs the
gamut in sophistication from buzzy one-voice "toy" programs to serious
ptOfessional program packages. Of course, this is not a unique situation,
since analog synthesizers and even standard musical instruments find the
same range of application. Throughout this chapter and indeed in all of
Sections II and III, emphasis will be on techniques suitable for high-quality
synthesis. The application of simplified versions of these as well as other very
elementary techniques in low-cost music systems will be addressed in Section
IV.

Limitations of Voltage Control

Let us first describe some of the very real limitations of voltage
controlled equipment and techniques. Accuracy is one problem. Although it
has been shown that extreme accuracy in the final result may be undesirable,
accuracy in the intermediate stages, which may then be degraded in a con
trolled manner, is very desirable. For example, in the FM patch just de
scribed, if the spectrum is harmonic and frequency components are reflected,
they mix with unreflected frequency components, and the resulting
amplitude is a function of the phase relationship between modulating and
modulated signals. However, since the oscillators are not exact, they will not
be at exactly the frequency ratio desired. The result is that the phase between
the two is drifting continuously, and thus the spectrum is changing continu-

101
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ously when it should be standing still. Although this shifting spectrum may
often be desirable, it would be nice if the speed and degree of shift could be
controlled rather than left to chance. Even if the frequency ratio were exact,
there is generally no way to control the actual phase with voltage-controlled
equipment. If nothing else, precise control of impreciseness is useful for
creating contrast among mechanical, rich, and sloppy effects.

Historically, voltage-controlled oscillators and filters have had the most
serious accuracy problems. The reason is that the exponential converters used
are not ideal devices. They are highly sensitive to temperature, and "parasit
ic" physical defects also reduce their accuracy at the extremes of the audio
range. Tremendous improvements in accuracy and stability have been made
over the years, however, so that today it is possible to make a VCO that is
adequately accurate at a reasonable cost. However, even small improvements
beyond this come at a great increase in cost and complexity. Voltage
controlled amplifiers had been less of a problem in the past, but the complex
patches of today routinely use VCAs to process control voltages in the fre
quency control paths of patches. The result is that inaccuracy in the VCA
will translate into frequency errors that are easily heard.

With a microprocessor in a hybrid voltage-controlled system, it becomes
possible to automatically compensate for inaccuracies to a great extent. In
such a system, the microprocessor can address each module in the system
with several "test" control voltages and measure the response to each. Using
this information, it can then compute a correction function that is saved in a
table in memory. Subsequently, all control values are modified by the
respective correction function before being sent to a module. Such an
automatic tuning routine would be performed whenever the equipment is
turned on and then occasionally thereafter as it warms up.

One of the characteristics of direct computer synthesis is that extreme
accuracy is inherent. The "standard precision" arithmetic in most computer
systems is good to about seven decimal digits or one part in 10 million. If
improved accuracy is desired, the "cost" of obtaining it is fairly small. Thus,
the question of accuracy in the control of sound parameters generally need
not even be raised.

Simultaneous Sounds
The maximum number of simultaneous sounds available is another

voltage-controlled synthesizer limitation. One aspect of this limitation is
that a fairly large number of modules is needed to generate and control a
single sound. To even simulate a small chamber orchestra all at once with a
synthesizer would be out of the question. The other aspect is the limitation of
the performer in controlling a number of sounds with a number of parameters
each. Thus, almost all synthesizer music is produced with the aid of a
multitrack tape recorder. Only one part or voice of the music is performed
and recorded at a time, and the parts are later combined by mixing the tracks
together.
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The multitrack recorder would seem to be a complete solution to the
simultaneous sound problem with the only disadvantage being that the
synthesis process is taken out of real time. However, this is not the case. As a
simple example, consider a rapid run (fast series of notes) on an instrument
with the amplitude envelope characteristics of a piano. Assuming initial
silence, the envelope of the first note struck would rise rapidly and then fall
slowly. Shortly afterward, the second note would be struck, but, since the
first note has not yet died away, there are now two simultaneous sounds. The
third note would increase the number to three and so forth. At some point,
the first note would be so faint that it could be ignored, but it is not clear
exactly how many simultaneous sounds were built up, although it is certainly
not more than the number of notes in the run.

A similar run on a synthesizer keyboard would create a very different
result even if the timbre and envelope of a single note was identical to the
previous instrument. In this case, the first note struck would start an en
velope identical to the previous case, but, when the second note was struck,
the pitch of the tone would immediately be updated to the second note's
frequency and a new envelope segment would be started. Thus, simultaneous
sounds are not created, which should be obvious since only one tone oscillator
was involved.

Theoretically, this could be corrected with the multitrack tape recorder
by recording each note of the run on a separate track, although such a
procedure would not really be practical. The problem could also be partially
solved by using a digital scanning polyphonic keyboard and enough modules
to create up to, say, eight simultaneous iridependenttones. Even if in the
ideal case there were more than eight simultaneous sounds, the effect of
abruptly terminating the first when seven others are still sounding would
probably go unnoticed. The important point is that such a need for large
numbers of simultaneous sounds may occur only rarely in a composition.
Either all of the equipment or effort needed for the worst case must be
available or the problem must be ignored.

In direct computer synthesis, a virtually unlimited number of simulta
neous sounds may be built up when circumstances dictate. The cost of this
capability is borne only when the event occurs. During other times, when the
sound is simpler, the ability to handle large numbers of simultaneous sounds
is free! This applies to other capabilities as well. The effect is like being able
to rent additional synthesizer modules by the minute from a company with
an essentially infinite inventory.

Programmability

The difficulty in controlling a number of simultaneous sounds to a
great degree by a single performer is also overcome in direct computer
synthesis systems. The control problem is actually one of time: during real
time performance, there is simply not enough time available for the per-
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former to attend to very many variables. In the typical direct computer
system, the control functions are programmed to any degree of detail desired
and without time constraints. An intricate passage of only 10 sec duration
may be fussed over for hours to get all the parameter variations right and then
be immediately followed by a long solo requiring very littl e effort to specify.
In a nutshell, the limits of complexity are determined by the imagination
and patience of the composer and not the equipment or technique of the
performer.

Sequencer modules are one attempt to add a programming capability to
the conventional voltage-controlled synthesizer, although they typically have
a small capacity and only control a few variables. However, more sophisti
cated sequencers based on microprocessors or minicomputers can extend
voltage-~ontrolled system programmability to the point of rivaling direct
computer techniques.

Experimentation in new sound generation and modification techniques is
much easier in a direct computer synthesis system than designing, building,
and troubleshooting precision electronic circuits. A "module" or processing
element is nothing more than a subprogram in the direct computer systhesis
system. A severe modification may amount to nothing more than typing in a
few dozen words of program code. A disastrous error requiring complete
redesign of the process wastes only the time spent on the faulty design, not
numerous precision electronic components. Also, many of the modification
techniques now under development are simply not possible with conven
tional analog techniques.

Direct Computer Synthesis Problems

Lest the preceding seem as if direct computer synthesis is faultless, let
us look at some of its limitations given the present state of the art.

Direct computer synthesis is presently not a real-time technique except
in limited circumstances with fast computers. This means that once the
sound has been specified and programmed, the computer must "crunch" on
it for awhile before the sound is actually heard. The amount of time involved
depends on a great many factors. Obviously, computer speed has a great
influence, since a large campus mainframe may easily be 100 times faster
than a personal microcomputer. Sound complexity is another important
factor with the more complex sounds taking a greater amount of time.
Finally, operational methods of the computer make a big difference. When
using a campus mainframe, the delay between program submission and
resulting sound can be many times greater than the actual computation time
because other people are using the machine. A personal system, on the other
hand, does not have this problem. The net result is that the time delay can
actually reach 1,000 times the duration of the sound being synthesized,
although common values are 10 to 100 times.
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Programmability is simultaneously an advantage and a disadvantage of
direct computer synthesis. Many people see it as a disadvantage because the
"immediacy" of direct experimentation and improvisation is not present.
Instead, programmability requires considerable preplanning and foreknowl
edge of the audible effects of various specifications and variations. A related
problem is an unwillingness to learn the basic programming concepts re
quired to effectively use the technology.

Most people, including musicians and many engineers, view the com
puter as a very complex device that is equally complex to use. In particular, a
complete lab manual for a large voltage-controlled synthesizer is usually not
very thick and covers most aspects of usage from how to turn it on to the
most advanced techniques possible with the equipment. In contrast, a man
ual for a particular direct synthesis program may not be any thicker but
contains little or no background material and does not attempt to explore the
limits of the program. If the potential user asks for applicable background
material, he may be handed a hundred pounds of books and manuals, or
worse yet, told that nothing suitable exists.

A very practical difficulty with direct computer synthesis is that a
critical mass with respect to expenditures of money for equipment and time
for programming exists before "significant" results can be obtained. Signifi
cant here means musically useful output as opposed to trite little demon
strations. With voltage-controlled techniques and some imagination, only a
few hundred dollars worth of equipment and a stereo tape recorder are needed
to get a good start. Reasonable sounding results are obtained almost from the
beginning and improve from there. A computer system capable of equivalent
results with a direct synthesis program may cost from $4,000 on up. At this
time, a considerable amount of programming effort is also necessary to get
the "basic system" running. It should be noted, however, that once the
critical mass is reached, the/ull power of direct computer synthesis is available
with any extra expenditure going toward increased speed and convenience of
use.

Overcoming the Problems
Until now the preceding limitations have severely restricted the use of

direct computer synthesis, particularly following the commercial introduc
tion of voltage-control equipment. However, many of these are now being
overcome.

The time factor is being improved substantially through the use of very
fast logic dedicated to the specific calculations needed for sound synthesis.
Personal computer systems, used only by the composer himself, eliminate
waiting time at large computer centers. The increased speed in conjunction
with improved man-machine interfaces and personal systems now means that
progmmmed control of the system can be supplemented with direct, interac
tive control. Programmed control is still desirable for the final output, but
rapid interactive control can also be used for experimentation. The perceived
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complexity of computers in general and programming in particular is being
overcome by easier to use computer systems and early introduction of pro
gramming concepts. It is not unusual for elementary school students to
become very adept at programming using simplified languages. Hopefully,
books such as this will take some of the mystery out of the theoretical aspects
of direct computer synthesis. Even the critical mass problem is decreasing in
severity as the performance/price ratio of digital electronics seems to double
every year.

These improvements in technology coupled with inherent limitless
capability would seem to indicate that direct computer synthesis will eventu
ally oust all other methods in serious electronic music applications.

SoundinDi~twForm

Computers deal with numbers and sound consists of continuously vary
ing electrical signals. Somehow the two have to be accurately linked together
in order for direct computer sound 1tynthesis to work at all. Fortunately, this
is possible with fewer limitations than might be expected.

The first problem to be solved is how to represent a waveform that can
wiggle and undulate in a seemingly infinite variety of ways with a finite
string of numbers having a finite number of digits. Intuitively, one would
probably suggest dividing the time axis up into a large number of segments,
each segment being a short enough time so that the waveform does not
change very much during the segment. The average amplitude of the
waveform over each segment could then be converted into a number for the
computer or vice versa. It would seem that the accuracy of the approximation
could be made as good as desired by making the segments small enough.

Let us take an example and see how small these segments must be for
high-fidelity sound-to-numbers and numbers-to-sound conversion. Figure
4-IA shows a I-kHz sine wave that has been chopped into 100 segments per
cycle of the wave. The segment time is thus 10 J.tsec. Assuming that the
desire is to generate the sine wave given the string of 100 numbers repeated
continously, the problem is to determine how good it will be.

Digital-to-Analog Converter

First, however, a device to do the conversion is needed. Such a device is
called a digital-to-analog converter, which is usually abbreviated DAC. Such a
device accepts numbers one at a time from a computer or other digital source
and generates one voltage pulse per number with a height proportional to the
number. Thus, a DAC that is calibrated in volts would give a voltage pulse
2.758 V in amplitude if it received a numerical input of 2. 758. The width of
the pulses is constant but varies with the type of DAC. For now, the pulse
width will be assumed to be very small compared to the spacing between
pulses.

Figure 4-IB shows the output from a DAC fed the 100 numbers
representing a I-kHz sine wave. As expected, it is a string of very narrow
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Fig. 4-1. (A) 1-kHz sine wave divided into 100 10iLSec portions. (B) Sine wave
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pulses spaced at lO-fLsec intervals. Each individual pulse or the number it
represents is called a sample because it gives the waveform amplitude at a
sample point in time. The frequency of the pulses is called the sample rate and
in this case it is 100 ks/s (kilosamples per second). The sample rate is almost



108 MUSICAL ApPLICATIONS OF MICROPROCESSORS

TIME (,usec)

(A)

always constant, although it is conceivable that changing it to match the
current degree of change in the waveform might be desirable.

As was demonstrated earlier, waveform appearances can be deceiving
when human hearing perception is involved so the spectrum of Fig. 4-IB is
shown in Fig. 4-1C. The interesting point about the spectrum is what is not
present. One would think that distortion components would be spread
throughout the spectrum at perhaps reduced amplitude compared with the
desired I-kHz component, but such is not the case for the lOO-dB range
shown. The first visible extraneous component is very strong but occurs at 99
kHz, well beyond the rang\; of hearing and audio recording devices. Thus,
the conclusion is that sampling of the I-kHz sine wave at a 100-kHz rate is
more than adequate for its high-fidelity reproduction.

Proof of Fidelity

Some skepticism is expected at this point, so an attempt at an informal
proof will be made. Consider a string of narrow pulses of constant height as
in Fig. 4-2A. This is an exactly repeating waveform so its spectrum consists
of harmonics of 100 kHz. Note that at least for the harmonics shown they
are all of equal amplitude. Since the pulse widths must be finite, however, a
point is reached at which higher frequency harmonic amplitudes decrease. As
an aside, note also that a train of narrow pulses is the only waveform whose
spectrum is the same shape as the waveform itself.

If this pulse waveform is one input of a balanced modulator and an
accurate, pure I-kHz sine wave is the other input, the output would be
exactly the waveform shown previously in Fig. 4-IB. Recall from Chapter 2
that a balanced modulator is really a multiplier that produces an output that
is the instantaneous product of the two inputs. Examination of the two input
waveforms and the output shows this to be true. It should also be recalled
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Fig. 4-2. Properties of a string of pulses. (A) String of narrow pulses. (B)
Spectrum of A.
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<B)

that if one input to the balanced modulator is a complex signal and the other
input is a sine wave, then each component of the spectrum of the complex
signal is split in half with one-half moving up and the other half moving
down in frequency an amount equal to the sine wave input's frequency. This
in fact is exactly what happened in Fig. 4-1C to produce pairs of components
at 99 and 101 kHz, 199 and 201 kHz, and so on. The component at 1 kHz is
due to the fact that the pulse train had a dc (zero frequency) component that
was also split in half. The upper half moved up to 1 kHz and the lower half
reflected through zero up to 1 kHz.

If desired, the spectrum of the sampled I-kHz sine wave can be cleaned
up with a low-pass filter. It is not very difficult to construct a filter that has
essentially no effect at 1 kHz but that attenuates 99 kHz and higher frequen
cies so much that they can be ignored. If the sampled waveform of Fig. 4-1B
were passed through such a filter all that would escape through the output
would be the single I-kHz frequency component, which would, of course,
appear on an oscilloscope screen as a pure I-kHz sine wave.

MUCH LESS SHARP

b
LOW-PASS FILTER

-2~ ------~",I

=: ,>"Ol:l!,.-----:'::!,--~,['.
- 10 20 30 40 50 60 70 80 90 100 110

FREQUENCY (kHz)

Fig. 4-3. Spectrum of sampled audio signals. (A) 50-ks/s sample rate. (B) 60
ks/s sample rate.

Setting the Sample Rate

Since reproduction of the I-kHz wave was so satisfactory, how low can
the sampling frequency be made before the results are unsatisfactory? If, for
example, the sample rate was lowered to 50 ks/s, then the preceding analysis
would predict a spectrum with a I-kHz component, 49-kHz component, 51
kHz, 99-kHz, and so forth. Other than the need for a better filter, the
situation is just as satisfactory as before. In fact, if a very good low-pass filter
is available, the sample rate could be as low as a shade above 2 ks/s or only a
little more than two samples per cycle of the sine wave. Obviously, the
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assumption that the wave did not change very much from sample to sample is
not necessary.

Of course, for sound and music a whole spectrum of frequencies must
be reproducible, not just single sine waves. Fortunately, a sampled arbitrary
waveform behaves just the same as a sampled sine wave. The spectrum of the
waveform is reproduced unaltered and then symmetrical pairs of copies
around each harmonic of the sampling frequency are also introduced. Figure
4-3 shows the result of a full 20-Hz to 20-kHz audio spectrum sampled at a
50-ks/s rate. Since there is no overlap between the desired spectrum and the
copies, a low-pass filter can once again be used to eliminate the copies.

The preceding argument is equally valid for conversion of sound
waveforms into numbers. The waveform is first sampled with a balanced
modulator or its equivalent and then the sample pulse amplitudes are mea
sured with an analog-to-digital converter (ADC),which is nothing more than
an ultrafast digital voltmeter. Each sample thus becomes a number that may
then be ptocessed by the computer. No information about the curves and
undulations of the waveform is lost provided that the spectrum of the
waveform has no frequency components above one-half of the sampling rate.
Dnfortunately, some natural sounds do have appreciable .energy beyond the
audible range so a low-pass filter is needed to prevent these high frequencies
from re~ching the sampler and ADC. Since these frequency components are
beyond the audible range anyway, the filter does not audibly affect the
sound. If signal frequencies higher than half the sample rate are allowed to
enter the sampler, their offspring in the copies will overlap the original
spectrum and will cause distortion. Such a situation is termed aliasing and
the resulting distortion is called alias distortion.

Any Sound Can Be Synthesized

Figure 4-4 shows a block diagram of a complete computerized audio
to-digital and back to audio again conversion system. If the two low-pass
filters are matched and have infinite attenuation beyond one-half of the
sample rate, the waveforms at points A and B are exactly alike! Since the
waveform at point A is not audibly different from the input, this is truly a
high-fidelity system. The computer could also be programmed to supply its
own stream of numbers to the DAC, and it therefore follows that the
computer can produce any sound. Note also that the system has no low
frequency limitation, thus allowing signals down to dc to be reproduced.

ANY
AUDIO
SIGNAL

LOW-PASS
FILTER

~
20 kHz

LOW-PASS

~
20 kHz

POINT A

Fig. 4-4. Computerized digital audio system.

POINT B
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Recently, variations of the system shown in Fig. 4-4 have been used in
ordinary sound record/playback applications. The "compact disk" digital
audio playback system, for example, breaks the block marked "computer" in
half but is otherwise the same. The left half becomes a digital modulator (to
encode digital information onto an RF carrier wave) and laser scriber to
produce a modified type of video disk. The right half becomes a laser scanner
to recover the modulated RF carrier wave and a demodulator to recover the
digital information, which is then passed on as before. Similar systems using
a video cassette recorder in place of the laser disk are also available. Such
systems far surpass regular analog disks and tapes in reproduction fidelity,
thus further emphasizing the fact that any sound can be synthesized by a
direct synthesis system.

The foregoing has all been an application of Nyquist's theorem, which
states in mathematical terms that an ADC or a DAC can handle signal
frequencies from zero up to a little less than one-half the sample rate with
absolutely no distortion due to the sampling process whatsoever. The low
pass filters employed to separate the desired signal from the spectrum copies
determine how close to the theoretical one-half limit one can get. The main
requirement of the filter is that it attenuate spurious signals above one-half
the sample rate enough to be ignored while leaving desired signals below
one-half the sample rate unaltered. For high-fidelity applications, this means
that very little attenuation of frequencies up to 20 kHz is allowed and that 50
dB or more attenuation above 30 kHz is desirable, assuming a 50-ks/s sample
rate. A filter that sharp is fairly difficult to construct but is in the realm of
practicality. Thus, a rule of thumb is that the sample rate should be 2.5 or
more times the maximum signal frequency of interest with the larger figures
allowing simpler filters to be used. This is shown in Fig. 4-3B, in which an
increase in sample rate from 50-ks/s to 60-ks/s has reduced the filter cutoff
slope requirement by half!

The sample rate may also be reduced for lower fidelity applications. The
laser-disk- and videotape-based digital audio systems mentioned earlier
operate at slightly over 44 ks/s. Broadcast FM quality may be obtained at
37.5 ks/s and ordinary AM radio quality (which can be surprisingly good
through decent equipment) could be done at 15 ks/s to 20 ks/s. The
advantage of lower sample rates, of course, is a reduction in the number of
samples that must be computed for a given duration of sound.

Signal-to-Noise Ratio

Of course, frequency response is not the only measure of sound quality.
Background noise is actually a much worse problem with standard analog
audio equipment. Figure 4-1C clearly indicated that the sampling process
itself did not introduce any background noise. However, when the samples
are in numerical form, only a finite number of digits is available to represent
them, and this limitation does indeed introduce noise. Such roundoff error is
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termed quantization error because a sample pulse, which can be any amplitude
whatsoever, has been quantized to the nearest available numerical representa
tion. Background noise due to quantization error is termed quantization
nOIse.

An actual ADC or DAC usually has a definite maximum signal
amplitude that it can handle. A typical value is from -10 to + 10 V. Inputs
to an ADC beyond this range are effectively clipped, and numerical inputs to
a DAC beyond this range are converted into a value that fits. The 20-V range
is then broken up into a large number ofquantization levels, which is usually a
power of two, since DACs and ADCs are typically binary devices. The
number of quantization levels generally ranges from 256 to 65,536, which
corresponds to 28 and 216 or 8 and 16 bits, respectively.

Let us try to estimate the amount of background noise present in a
12-bit (4,096 level) DAC output so that the number of levels necessary for
high-fidelity reproduction can be determined. Twenty volts divided by 4,096
equals 4.88 mV per level. Thus, the 500th level would be 2.44141 V and
would have to be used for all desired voltages between 2.43895 and 2.44384
V. It is reasonable to assume that if the desired voltage level falls in this
range, it is equally likely to be anywhere in the range and the same should be
true for any other quantization level. Thus, the average error (difference
between desired level and the nearest quantization level) is one-quarter of the
difference between quantization levels. This works out to an average error
amplitude of 1.22 mY. The maximum signal amplitude without distortion
is 10 V. Therefore, the maximum signal-to-noise ratio is 10/
0.00122 = 8,192. Expressed in decibels, this is about 78 dB. Actually, due
to an oversimplified analysis, the average noise amplitude is really one-third
of the quantization interval; thus, a more accurate figure is 76 dB.

If the number of quantization levels were doubled (one bit added to
make 13), the denominator of the previous equation would be halved, result
ing in an increase in the signal-to-noise ratio of 6 dB. Eliminating a bit
would subtract 6 dB from the signal-to-noise ratio. In real DACs and ADCs,
the quantization levels are not perfectly spaced or perfectly equal in size.
Such imperfections add about 4 dB to the noise level. Thus, the signal-to
noise ratio that can be expected is approximately 6 dB times the number of
bits in the DAC or ADC.

Compared with analog audio equipment, the 72 dB available from a
12-bit DAC is quite good, in fact better than any program source available to
consumers and better even than much professional recording equipment. An
increase to 16 bits, which is achieved by the newer direct synthesis
installations, and one has dynamic range far exceeding any available analog
recording device!

As a result, direct computer synthesis utilizing a 50-ks/s to 60-ks/s
sample rate and 16-bit DACs is capable of unsurpassed audio quality. At the
other end of the spectrum, 15 ks/s to 20 ks/s with 10 to 12 bits gives AM
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radio quality that is quite sufficient for experimentation. Rates as low as 8 ksls
to 10 ksls with 8 bits are suitable for demonstrations and telephone quality
but with the bass present.

A Typical Direct Computer
Synthesis Installation

Until recently, very few of the computer installations used for music
synthesis were used exclusively for that purpose. Most of them were just large
campus or corporate computer centers with the added equipment necessary
for digital-to-analog conversion and occasionally analog-to-digital conver
sion. One property of classic direct synthesis is that only a small portion of
the expense and size of the equipment necessary is specialized for sound
generation; the rest is standard computer gear that would be present anyway.
Thus, in such cases in which the computer center already existed, the initial
investment in sound synthesis was small. However, as we shall see later, the
calculations necessary to produce the millions of samples needed for even a
short musical piece can eat up large blocks of computer time, which, on the
large machines, is priced by the second. Thus, as a practical matter, usage of
the installation was budget limited after all.

Today it is possible for a music or electrical engineering department to
have its own minicomputer installation with the hardware necessary for
direct computer synthesis. Furthermore, these smaIl, inexpensive computers
have as much if not more power than the large mainframes of a few years ago.
Although these systems are less convenient to program for sound synthesis,
they are much more convenient to use because the computer's resources are
not shared with hundreds of other users. Also, the cost of maintaining such a
facility is no longer directly related to the running time of ditect synthesis
programs. It is perfectly feasible to allow a program to run all night comput
ing another iteration of the 2-min finale to a 20-min piece.

Microcomputers and personal computers are also at the point where it is
practical to consider their use in small direct synthesis systems for the
purpose of experimentation and increasing flexibility. The power of these
machines is surprisingly good with newer models equaling the power of
minicomputers three or four years ago. Microcomputers are easily interfaced
with conventional synthesis equipment for computer control applications
such as automatic patching or sequencer use. With the proper peripheral
equipment, they can do as good a job of direct synthesis for unique or
otherwise impossible effects as more expensive systems although at a slower
speed. The personal computer user, however, has only himself to please, so
program running time is even less of a factor than with dedicated
minicomputer installations.
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Minimum System

Figure 4-5 shows the minimum hardware complement necessary for
direct computer synthesis. Note, however, that the only device limiting the
quality and complexity of the sound is the DAC and audio tape recorder for
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Fig. 4-5. Minimum system for direct computer synthesis.

recording the results. Otherwise thefltll power of the technique is available on
this system. More elaborate setups can materially improve speed and conven
ience of use but do not directly improve the sound itself.

The program entry and editing facility is probably the most crucial in
providing an easy to use system. Music of significant complexity requires
dozens and even up to hundreds of pages of typed sound specifications, music
notation adapted for computer use, and other instructions. The ability to
easily enter and edit this information is of great importance. Perhaps the least
desirable medium for this task is the old punch-card and printer listing
approach. Use of a CRT terminal is probably the most desirable of all
standard computer input techniques. Dedicated and personal installations
may use any technique that is appropriate or affordable, although the CRT
terminal approach is still the most likely.

The computer itself is not really very important. If one of the "canned"
direct synthesis programs is to be used, the computer must be able to accept
the language it was written in and have sufficient memory to hold the
program. Speed is important, since it directly affects the running time of a
synthesis program. The computer also should have "automatic multiply and
divide," a feature that increases the effective speed of most synthesis pro
grams by a factor of five or more.

Storage of Samples

It is safe to say that any serious direct synthesis program computing
nontrivial music will not run in real time. This means that the 10,000 to

50,000 samples needed for each and every second of sound simply cannot be
computed as fast as they are used. Also, without a great deal of difficulty and
loss of efficiency, the rate that can be computed varies erratically according to
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sound complexity and other factors. Thus, the universal approach is to
compute the samples at whatever rate the program runs and save rhem on a
mass storage device capable of holding at least a couple million samples. An
IBM-type computer tape drive is probably the most economically suitable
device. A single $20 reel of tape can easily hold in excess of 10 million 16-bit
samples, giving an uninterrupted running time of over 3 min at 50 ks/s.
Large computer centers can also be expected to have enough disk capacity to

hold a sizable number of samples, which offers several advantages over tape.
Even the floppy disks commonly used in microcomputers can be a practical
storage medium in experimental systems, although lower sample rates must
be used and a single diskette can only hold 15-30 sec of sound.

After the samples have been computed and stored away, they must be
passed through the DAC at the final intended sample rate. The obvious way
to do this is to read the samples back from the mass storage device and
transfer them at a constant rate to the DAC. For high fidelity, however, the
sample rate must be rock steady; even a few nanoseconds jitter will increase
the background noise level substantially. Thus, the DAC would typically
have its own crystal clock and at least one sample buffer. The computer
servicing the DAC for playback must be able to provide the next sample
before the current one is finished. What this all means is that the computer
must usually be totally dedicated to the task of reading samples and sending
them to the DAC. Unfortunately, the operating systems of most large com
puters are unable to insure uninterrupted execution of a single program so
music playback must be done in a stand-alone mode.

Often the expense of monopolizing the resources of a large computer
cannot be borne so the disk or tape containing the samples is played through
a DAC connected to a minicomputer. In the past, it was fairly common
practice to build a specialized hardware device for reading sample tapes. The
design of such a device was complicated by the fact that data on computer
tape is grouped into records of perhaps 3,000 samples each with gaps of
several hundred samples equivalent between. The playback device thus re
quired a substantial buffer memory to insure the uninterrupted flow of data
to the DAC. Of course, mini- or microcomputer installations for direct
synthesis should not experience any of these problems.

Sometlmes the tape or disk dnves available on smaller systems may not
be fast enough to provide the desired sample rate. This limitation may be
compensated for by running the DAC at half of the desired sample rate and
operating the audio tape recorder at half of the intended tape speed. Then
when the audio tape is played at full speed, the desired sample rate will have
been attained. One difficulty with this approach is that the high-frequency
equalization of the audio recorder is switched according to tape speed, which
would be expected to alter the high-frequency response somewhat. A more
severe problem is that during recording bass frequencies down to 10 Hz will
be generated but may not record. When played back at double speed, a
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distinct loss of bass is the result. Also, any power line hum in the recording
will be reproduced at a much more audible 120 Hz.

As mentioned earlier, the low-pass filter following the DAC is critical.
One might think that if the sample rate is above 40 ks/s a filter is not needed
at all, since all unwanted frequencies are above the audible range anyway.
However, since these frequencies are so strong, they can easily mix with the
bias oscillator in an audio tape recorder and result in audible beat notes.
Thus, a filter of at least moderate effectiveness is required with high sample
rates. The filter becomes more critical at the lower sample rates 'used for
experimentation because these unwanted frequencies are audible and sound
terrible. Sharp cutoff low-pass filter design will be discussed in detail in
Chapter 12.

Computation of Sound Waveforms

Now that it has been established that computers can generate sound of
the highest quality directly, the next topic of interest is the techniques used
for computing sound waveforms. Although one could theoretically sit down
at a computer console and type in sample values, just about anything that
could be done without recourse to a pocket calculator would sound like white
noise on playback. The problem is similar to the one experienced when
drawing waveforms directly onto movie film. Of course, this does not even
address the difficulty of providing tens of thousands of samples for every
second of sound output.

In this section, a general overview of practical methods of sound
waveform computation will be presented. A more detailed description of
these techniques and others along with example programs will be given in
Section III.

Sin and Other Built-in Functions

An obvious method of generating a single sine wave with a computer is
to use the sin function found in nearly all high-level programming
languages. The general expression for the Nth sample of a sine wave of
frequency F and the amplitude A is Sn = Asin(2'TrFTIFs), where T is time in
seconds and Fs is the sample rate in samples per second. Since time and
sample number are directly proportional and the sample rate is constant,
considerable computer time may be saved by defining a constant K = 2'TrIFJ
and using the form Sn = Asin(KnF). Samples for the sine wave are computed
simply by defining values for the variables A and F and then evaluating the
expression for sample numbers 0, 1, 2, up to M, where MIFJ is the duration
in seconds desired for the wave.

Of course, during the calculations the values of A and F can change.
Often separate expressions that are also evaluated every sample time deter
mine the value of A and F to be used in the "tone generation" expression
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given above. Thus, amplitude envelopes, amplitude modulation, and fre
quency modulation are all very easily accomplished.

Other waveshapes may be easily computed even though a built-in
function for the desired shape is not provided by the computer's program
ming language. A sawtooth wave, for example, is defined by the expression

where the mod function gives only the remainder when the expression to its
left is divided by the expression to its right. A triangle wave may be formed
from sawtooth samples by ~pplying

SnTRI = 2A TR! ( ISiJSAI\" I - A~w )

One must be careful when directly computing complex waveshapes
with sharp corners and vertical lines because alias distortion can occur. When
these waves are computed, they are computed perfectly with all of their
harmonics up to infinity. However, those harmonics that exceed half the
sample rate will be reflected back down into the audible spectrum and cause
distOrtion. The problem is generally not severe as long as these waveforms are
held to low frequencies, but it does prevent use of these shapes as fundamen
tal basis waves such as is done in the voltage-controlled synthesizer.

Fourier Series

Probably the most flexible method of generating waveshapes by com
puter is to use the Fourier series. Individual sine wave harmonic (or specific
nonharmonic) frequencies can be compuced at selected phase angles and
amplitudes and summed together to produce a composite waveform. Any
problem with alias distOrtion due to high harmonics is circumvented by
simply omitting those that exceed half the sample rate from the calculation.
Of course, the amplitudes of individual components may be continuously
varied for a changing spectrum shape. The effect of a filter with any arbitrary
frequency response may be simulated by multiplying each harmonic
amplitude by the filter response curve amplitude at the corresponding fre
quency.

Simultaneous Sounds

Simultaneous sounds are easily done by computing the string of sam
ples for each sound and then simply adding the strings of samples together to
get one string for the composite sound. Fortunately, the same effect is
realized if one sample for each sound is computed and then the samples are
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added producing a single sample for the composite sound, thus greatly
reducing storage requirements. The loudness of each sound in the combina
tion can be easily controlled by multiplying its samples by a gain factor for
the sound. It is a typical practice to compute all waveforms at the same
amplitude level and then adjust their relative amplitudes when the sounds
are mixed.

Since the DAC, which will eventually receive these composite samples,
can only handle a limited range of values, it is usually convenient to define
this range as being between - 1. 0 and + 1. 0 and then scale the samples
immediately before being sent to the DAC. This allows the sound generation
programming to be independent of the actual DAC that will be used for
playback. The amplitudes of the individual samples being summed up is
kept considerably below 1.0 so that there is no possibility of overflow and
distortion.

Updating of Parameters

The computation methods described so far are completely flexible and
allow the parameters of sound to be changed at will at any speed and in any
manner. Unfortunately, they are also very expensive in terms of the computa
tion time required. A particulary bad case is the sin function, which is
usually very slow compared with the overall speed of the computer. In order
to improve speed, it is necessary to impose some restrictions so that simplify
ing assumptions may be made. Of course, if a particular situation demands
full flexibility, it may be invoked for the particular sound or time under
consideration without affecting the computation efficiency of other sounds or
portions of the piece.

One simplifying assumption is that amplitudes, frequencies, spectra,
and other parameters of the sounds being synthesized do not cl1ange rapidly.
Thus, the programming that computes these parameters from other data can
be done at a slower rate than the waveform computation itself For a 50-ks/s
sample rate, it may be convenient to evaluate these slow-moving parameters
every 25 samples rather then every sample. This, of course, reduces the
computational load of these calculations by a factor of 25 but still gives a half
millisecond timing resolution-a factor of 10 to 20 better than hearing
perception. Since it is these slower variations that add most of the interest to
sounds, they may now be made more complex without appreciably extending
the total computation time for the piece.

Table Lookup

Another assumption is that waveforms change little, if any, from one
cycle to the next. Thus, one cycle of the waveform may be placed in a table
and then table lookup techniques applied to quickly retrieve the samples.
Most computers can perform a table lookup in considerably less time than
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even a simple sample computation. Unfortunately, implementation of the
technique is complicated somewhat by the fact that, for most ftequencies,
there is a nonintegral number of samples per cycle of the waveform. The
problem is solved by tabulating the waveform at a frequency for which there
is an integral number of cycles per sample. When table lookup is tequited at
a diffetent frequency, the table lookup routine, for example, might be
requested to "find the 8. 763rd entry" in the table. Interpolation between the
8th and 9th sample may be performed or, if the table is large enough, the
nearest tabulated entry, which would be the 9th, would be used. There is
thus a tradeoff between table size, lookup time, and sound quality, since
errors result in background noise being added to the waveform. Since the
costs of memory are declining faster than the speed of memory or computers
is increasing, table lookup without interpolation is a frequently used
technique. In fact, completely table-driven synthesis programs are possible.
Note that the table method can also be applied to envelopes and any other
curve that is likely to be used more than once. Table Lookup methods wilL be
studied in detail in Chapter 13 and again in Chapter 20.

Hardware Aids

Another way to increase computation speed is to connect some
specialized hardware to the computer that is designed to be especially effi
cient in the calculations typically needed for music. For the microcomputer
user, a hardware multiplier wouLd be of great benefit if his microprocessor
chip does not have multiply and divide built in. The difference in processing
speed can easily be 10: lover muLtiplication in software and might resuLt in
a three- to fivefold increase in overall music program speed. The multiplier
could be expanded into a muLtiplier-summer, which would speed up sum
of-products calculations such as a Fourier series. A full array processor nor
mally performs high-speed operations on matrices and vectors such as mul
tiplication, addition, and even inversion. In sound synthesis, it could be used
to compute severaL samples of several sounds at once and thus greatly speed
things up. A device known as a "fast Fourier transform processor" is specifi
cally optimized for computing Fourier transforms. Although normally used
to rapidly compute the spectrum of a waveform for sound and vibration
analysis, most can also compute a waveform given the spectrum. Although
there are limitations in using a Fourier transform processor for generating
changing waveforms, its availability can be a great asset.

Digital Sound Modification

Nearly all of the sound modification techniques described in Chapter 2
can be easily implemented in a direct computer synthesis system. Spectrum



120 MUSICAL ApPLICATIONS OF MICROPROCESSORS

modification by means of filtering can be accomplished with digital jilters,
Actually, a digital filter is nothing more than an equation that specifies the
Nth output sample as a function of several previous input samples and some
filter response parameters. A special case is the recursive digital filter, which
only uses the previous output sample and the current input sample along
with response parameters to produce an output sample. All of the common
filter amplitude response shapes such as low-pass, bandpass, and high-pass
are easily done with recursive digital filters. Arbitrary response shapes can
also be done in a straightforward manner with nonrecursive digital filters.
Calculation time is longer with these, since several up to several hundred
previous input samples are evaluated to produce the output but the response
shapes produced would be very difficult to duplicate with recursive digital or
analog filters. As with all other direct synthesis techniques, there is no real
limit to the number of digital filters that may be in use simultaneously.
Usually the programming is done with a small group of routines for the
different general types of filters and then the characteristics of specific filters
in use at the time are simply numbers stored in a table in memory.

Reverberation and chorus effects previously described are also easily
done. One of the simplest operations in a direct synthesis system is delay. All
that is required for delay is a memory buffer and a simple program for storing
current samples into and withdrawing delayed samples from the buffer. Very
little computation time is required for a delay function, although the buffer
memory could become substantial for long or multiple delays. Delay times
are easily varied in whole sample increments and interpolation may be used
for even finer increments. Thus, all methods for reverberation and chorus
may be applied directly and even refined considerably. If time is no object,
the characteristics of a particular concert hall may be duplicated using only
the waveform of a spark discharge (or other repeatable sharp sound) recorded
in the actual hall for input.

The tape-splicing methods covered earlier can be done also and with
great efficiency. Generally, the computer system should have a large disk
storage facility for quick access to a library of recorded natural and synthetic
sounds. The largest part of such a sound-editing system is simply the book
keeping needed to keep track of sound fragments in various stages of comple
tion. The actual cutting and splicing operations could be done at a graphic
display console showing actual waveforms or spectra with a light pen to
specify the cut or splice points.

One modification technique that does not always work well when done
digitally is nonlinear waveshaping. Since clipping and other waveshape dis
tortions are likely to generate strong high-frequency harmonics, alias distor
tion can become a problem. If necessary, the distortion operation can be done
at a much higher sample rate at which the alias distortion is less of a
problem, then digitally low-pass filtered to less than half of the system
sample rate, and finally resampled. Fortunately, such gross distortion tech
niques are seldom needed when more refined techniques are available.
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Music Programming Systems
and Languages

Although most of the calculations required for direct computer synthe
sis are fairly simple, it is not very practical to create a piece of music by
programming the equations one by one as needed and then assembling
everything as one large, highly specialized program. In~tead, general
purpose music programming systems are used. Besides reducing redundant
programming effort, a music programming system provides the framework
necessary for the orderly utilization of the infinite flexibility of direct com
puter synthesis. Also such programming systems make it possible for users
with little computer background to effectively, if not optimally, utilize the
system.

Two fundamental kinds of music programming systems can be readily
identified. A tightly structured system is planned from the start with specific
goals in mind. In it are all of the elements and functions necessary for the
specification and computation of all sounds falling within the system goals.
A distinguishing feature of tightly structured systems is the presence of a
specification or music language for controlling the system. A loosely struc
tured system basically consists of a central data base and a collection of
programs for processing information into or out of the data base. The indi
vidual programs in the collection are essentially independent and new pro
grams may be written at any time. Systems of this type are usually the
product of evolution. Note that the programs comprising a tightly struc
tured system could easily be part of a larger loosely structured system.

Tightly Structured System

The music programming languages found in tightly structured systems
are entirely different from typical computer programming languages. One
type, which will be discussed in detail in Chapter 18, has a simplified
structure and therefore limited goals. NOTRAN, for example, was designed
for playing organ music. Due to this very narrow subset of possibilities
a great many simplifying assumptions could be made. For example, musical
conventions of pitch, duration, rhythm, and in fact conventional music
notation itself could all be utilized to simplify the structure and language of
the system. The calculations involved in computing the waveforms, en
velopes , and other parameters were narrowed to specific types. The pro
gramming necessary for these calculations was all done by the system im
plementor and need not concern the user. In fact, the user need only translate
the written score for a piece into the NOTRAN language and then define a
number of parameters for each organ voice used in the piece. The NOTRAN
processor then interprets the translated score and voice parameters and sends
this interpreted information to the "prefabricated" sound computation
routines that actually compute the samples.
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Statements within the NOTRAN language are placed in strict time
sequence from beginning to end. Program flow and music flow are identical
and linear from one statement to the next. Statements are of two basic types,
control and sound specification. Control statements make no sound and take
no time themselves but do influence events occurring after their appearance
up until another control statement of the same type redefines the control
function. Voice statements (which describe the timbre or "stops" of a
specified voice) and tempo statments (which determine the speed of playing)
are of this type.

Sound specification statements, on the other hand, do cause the genera
tion of sound and take time in a musical sense. A single note statement, for
example, may consist of many separate note specifications, each correspond
ing to an individual note in the score and all starting simultaneously. Con
secutive notes each have their own note statements. Thus, notes in NO
TRAN are specified in two dimensions: horizontally for different pitches at
the same time (harmony) and vertically for sequencing. A note specification
specifies a voice, a pitch, a duration, and an articulation (such as staccato).
Additional parameters describing the timbre of the specified voice are taken
from the last encountered corresponding voice statement. After a piece has
been coded in the NOTRAN language, the job is essentially over. The
complete specification of the sound is contained in the resulting string of
NOTRAN statements, and all that remains to be done is to run the program
and record the results.

As can be seen, NOTRAN is highly structured and very limited. This
does not mean, however, that enhancements would not be possible. For
example, a couple of years after it was first defined and implemented, percus
sion sounds were added. A percussive voice definition statement type was
added and percussive note specifications were formulated. This feature was
added, however, in a manner completely consistent with the existing struc
ture of the system. With such a constraint, there are definite limits to
expanslOn.

Maximum Flexibility System

A second type of structured music system is similar but has as a goal
maximum usable flexibility. Even with such a goal it is still necessary to
make simplifications although not nearly as severe. The MUSIC V system,
for example, retains the concept of a note that is best described as an event. A
piece consists of a quantity of events, each starting at specified points in time
independent of their durations or other events. Another simplification is that
the system actually simulates an idealized, modular synthesizer similar in
concept to the voltage-controlled equipment described previously. For the
most part, sounds are generated by specifying the inputs and interconnec
tions of imaginary modules that themselves must be specified. In most cases,
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the user can actually think in terms of standard voltage-controlled modules
but with functions, accuracy, range, and quantity impossible to achieve
with real modules.

The actual music language associated with MUSIC V is quite different
from that of NOTRAN. In particular there is no parallel with standard
music notation. Instead, all of the information is in terms of physical sound
parameters such as frequency in hertz, amplitude in volts or decibels, time in
milliseconds, etc. Often tables of values are used to specify how each of these
parameters are to change with time during an event.

The MUSIC V processor is actually configured into three passes or scans
of the input data. During pass one, the services of a macroprocessor program
are available to allow certain repetitive statements to be generated under the
control of higher-level parameters. Also done during pass one is instrument
definition as a combination of predefined modules called unit generators.
Integration of parameters in graphic form into the score is also possible. One
unique feature of the MUSIC V system is that during pass one the statements
describing instruments and notes do not have to be in time order. This
feature makes the macroprocessor more flexible and easily applied.

Pass two is a sorting program that sequences the output from pass one
into strict time sequence. At this point, some additional processing of
parameters that influence a number of sequential notes can be performed,
since the statements are in time sequence. For example, time scale shifts for
retards or fine frequency ratio control among simultaneous notes would
normally be done during pass two.

Pass three is the actual language interpreter and sound generation
program. It works much like the NOTRAN interpreter just described except
that it is much more sophisticated. One or two streams of samples may be
produced for monophonic and stereophonic sound, respectively.

Extending the MUSIC V system is much less restriered than with
NOTRAN. Most desirable expansions amount to writing additional process
ing programs for pass one. For example, it would be possible to write a
processor that would convert a NOTRAN score into equivalent MUSIC V
complete with equivalent voices constructed from available unit generators.
Additional unit generators or even entire instruments that are not conven
iently described in terms of unit generators could also be added to pass three.

Loosely Structured Systems

Looking again at loosely structured systems, the data base is seen to be
the most important component of the system, in fact, the only link (hat
holds it all together. Several different kinds of data can be kept in the data
base. Using a hypothetical system as an example, it is obvious that sample
data representing a previously computed piece or sampled natural sounds
would be present. Curves of all sorts such as amplitude envelopes, spectrum
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shapes, and actual waveforms would also be present. Finally, text represent
ing perhaps statements in one or more music languages or just lists of
instructions would be there too.

The purpose of a program in the loosely structured system is to either
convert data from the data base into sound; take data out, process it, and put
it back in a different form; or convert external information into a suitable
form and enter it into the data base. A sound output program is an example
of the first type because it would take sample data from the data base and
convert it to sound through the DAC. A reverberation simulator would take
sample data and perhaps a list of instructions from the data base and return
reverberated samples to the data base. A synthesizer program would take
language statements and curves out and produce samples. A macroprocessor
could take statements in a very powerful, structure-oriented rather than
note-oriented music language and convert them into statements (probably
much more numerous) in a lower music language. This would circumvent
the immediate necessity of an interpreter for the new language. An input
processor program might look at a keyboard interfaced to the system and
convert the key action it sees into music language statements or other suit
able form. A sound analysis program could take sample data and produce
curves representing the changing parameters of the sound analyzed. Nearly
an infinite variety of possibilities exist for programs in such a system.

Using a loosely structured system is not unlike tape-editing methods for
producing electronic music. Initial sound material or language statements
are taken through a sequence of steps using various programs until the final
result is obtained. At intermediate points, the piece may exist as a number of
fragments at various stages of processing. Contrast this to a highly structured
system in which the entire specification for the piece is self-contained in a
string of language statements.

Because of its very nature, the loosely structured system is easily and
almost infinitely expandable. The only limitation is the structure of the data
base itself. Even that can be expanded by adding more data types, but a
proliferation of conversion programs could develop if many were added.
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~icroprocessors

The development of microprocessors and the subsequent refinement of
semiconductor memories to go with them will undoubtedly become the most
important technological breakthrough of this half-century. Even now they are
finding their way into all kinds of products from microwave ovens to music
synthesizers. Eventually, it will become so cheap to apply computer
intelligence to products that it will be done almost automatically if even the
slightest need exists. However, such widespread application is still in the
future, although nobody really knows if that means 2 years or to.

Returning to the present, the significance of microprocessors in music
synthesis is that the cost of doing things with computers is now much less
than it was a few years ago. For the most part, computer music techniques,
both direct and synthesizer controlled, were hypothesized and developed
years ago by well-backed institutions. So although no really new techniques
are made possible by microprocessors, rhe existing ones can now, or soon be,
utilized by individuals at a reasonable cost. Also, the low cost of components
makes practical the implementation of some of the grander schemes that have
only been hypothesized in the past.

Sequencers, for example, have been very expensive (compared to other
modules in a voltage-controlled system) and highly specialized devices. Their
innards consisted of-dozens to a couple of hundred digital integrated circuits,
and their front panels had several dozen controls. Even with all of this, ir
took only a few minutes of use to discover just how limited those devices
were. Now a microprocessor in conjunction with a few integrated circuits can
perform all of the functions of even the most sophisticated sequencers and
still be grossly underutilized. Panel control action and quantity can be
designed more for the convenience of the user rather than for the simplifica
tion of logic circuitry. The microprocessor is inherently reprogrammable for
altered or enhanced function, although sequencer manufacturers may not
always encourage this. In fact, microprocessors today are often designed into
a product (not just musically oriented ones) as a cost-saving or performance
improving measure and are not even mentioned in advertising literature or
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the user's manual. The reason given for such behavior is that users are not yet
sophisticated enough to handle the increased f1exibility olTered by pro
grammability.

The forces necessary to change this attitude are already at work,
however, because the increasing number of computers in use also brings on
increased public awareness of their nature, and most importantly, program
mability. In the 1960s, computers were so expensive that only large
corporation accounting departments and well-financed research organizations
could afford them. Consequently, there were very few people working with
and knowledgable about computers and programming. Now with inexpen
sive business and school computers and particularly millions of home and
hobby computers, many more people are being exposed to programming
concepts. It has been proven many times with elementary school children
that programming itself is an easy skill to acquire, and what's more, is nearly
intoxicating when introduced properly. Thus, a more aware public will
encourage designers of all microprocessor products, not just synthesis
equipment, to make available full f1exibility through programming.

In this chapter, a cursory review of the history of microprocessors will
be given and the important characteristics of three microprocessor chips that
will be exemplified in Sections II and III will be outlined. Unfortunately, a
tutorial overview of microprocessor hardware and software fundamentals
would require an entire book this size to cover. For those unfamiliar with
computers in general, there are indeed several such volumes, at least one of
which should be read in conjunction with the remaining text of this book.
Those only familiar with a high-level computer language such as BASIC or
FORTRAN should also study the sections of those books devoted to machine
code programming. The discussion to follow will therefore assume some
familiarity with fundamental hardware and software concepts so that we may
concentrate on the specifics of music synthesis with microprocessors.

Microprocessor Terminology

The terminology that will be used very frequently in the discussions to
follow needs to be defined. A microprocessor is the central processing unit
(CPU) of a computer system built with a small number of integrated circuits.
Most microprocessors are single ICchips, although the more powerful ones
may be a set of highly specialized ICs specifically designed to work together.
Standard logic components have also been put on a single printed circuit
board and marketed as "microprocessors," but they do not fit the present
definition.

A microcomputer is a microprocessor with program memory, data storage
memory, and input and output means added. It is functionally equivalent to
the contents of conventional minicomputer cabinets. Recently, single-chip
microcomputers have become available. Although they satisfy the definition,
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the size of the memories and I/o system provided and the difficulty or
impossibility of expansion make them special-purpose devices unsuited for
most general-purpose computer applications. However, they do have signifi
cant potential in music synthesis, which will be shown later.

A microcomputer system is a microcomputer with actual 110 devices
added. The ease of use and ultimate potential of the system is strongly related
to the speed and type of I/O equipment present. Also, the majority of the
cost of the system is due to 110 gear. A general-purpose system is one with a
sufficient software and 110 complement to be easily used for many types of
applications. For most work, this simply means that the system has program
development capability, program assembly or compilation capability, and
program execution capability. For many of the musical applications of
microprocessors that will be discussed, a general-purpose system is a
necessity.

Brief History of Microprocessors

Although the history of microprocessors has been short, it has been very
interesting. Reviewing their history here is relevant because it gives an idea
of what to expect for the future. This is important in music synthesis because
today's large computer techniques will be implemented on tomorrow's per
sonal microcomputer. The dates given in this synopsis are not the manufac
turer's official introduction dates but rather the approximate dates of
availability of the devices to individuals and small businesses. Larger com
panies undoubtedly had access to information and prototype chips well before
general availability.

The microprocessor started out as just an ordinary calculator chip that
was documented well enough by the manufacturer so that customers could
program it. Its initial use was simply to expedite the development of
specialized hand-held calculators and business machines such as cash regis
ters. Shordy thereafter, the semiconductor manufacturers realized that,
whenever a microprocessor chip was sold, memory Ies to hold the programs
were also sold. In fact, it was often the case that more money was spent on
memory than the microprocessor. Thus, the expense of developing ever more
sophistlcated microprocessor chips was justified on the expectation of in
creased profits from memory device sales!

The First True Microprocessor

The first well publicized true microprocessor was the 4004 from Intel,
first available in early 1972. "True" here means a device that works primarily
in the binary number system; is at least theoretically infinitely expandable in
program memory size, data memory size, and 1/0 capability; and can handle
text characters as easily as numbers. Such a device could, if the necessary
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effort were expended, be programmed to handle any kind of computer task
except at a slower speed. Intel marketed the 4004 strictly as logic replace
ment where speed was not important but logic decision complexity was high
such as in traffic light controllers or automatic bowling pin setters. The 4-bit
word size, instruction set, and data memory-addressing method utilized by
the 4004, however, seemed quite strange to those already familiar with mini
and maxicomputers, so they did not show much interest in using the device
for conventional computer applications. Another inhibition to its use by
individuals and small enterprises was the virtual requirement that
specialized, mask-programmed I memory components from Intel be used.

The First Popular Microprocessor

Several months later, Intel made available the 8008 microprocessor.
This 8-bit machine overcame many of the problems of the 4004. It was
designed to be usable with standard memory components from a variety of
manufacturers. Its method of addressing memory was much more conven
tional with program and data memory being identical. Also, it could directly
address without bank switching 16K bytes, an amount considered ample at
the time. Its instruction set was definitely limited but conventional enough
to be identified with the instruction sets of the smaller minicomputers. The
major limitations of the 8008 were slow speed and a rudimentary interrupt
capabili ty.

This air of conventionality and familiarity, however, was the key to its
success and, in the opinion of some, the cause of sooner-than-expected use of
microprocessors as minicomputer replacements in many applications. What
was actually being offered was not a cheaper way to make traffic light
controllers but a computer, with all of the capabilities and potential of other
much more expensive computers. People knowledgeable about computers
realized this and acted on it. Universi ty electrical engineering, chemical
engineering, and computer science departments launched microcomputer
projects so that each student could work with a real computer in lab sessions.
Entrepreneurs dreamed up small microcomputer-based systems and immedi
ately set out to develop them. Hard-core hobbyists started building their
own computers around the 8008. The semiconductor manufacturers found
customers writing huge, complex programs and adding extra outboard logic
to the microprocessor to overcome the weaknesses that still remained.

The Dawn ofPersonal Computing

One event of major significance was the publication in one of the major
hobby electronics magazines in March 1974 of an article describing a build-

1A mask-programmed memory device incurs a tooling charge of $750 to $2,000 and a
minimum order of 25 copies or more. Any change ro the program requires a new
mask. Thus, such a technique is only suitable for large-quantity production.
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it-yourself computer based on the 8008. Although a handful of dedicated
hobbyists had been constructing computers from surplus parts as much as 6
years earlier, this was the first public exposure of the concept that computers
can make a fascinating hobby. Immediately, significant interest in the
MARK-8 arose along with three newsletter-type publications devoted to the
computer hobby. Hundreds of machines were eventually built, which may
seem small until compared to only a couple dozen hobby computers in
existence prior to that article.

Toward the end of 1974, Intel made available its successor to the 8008:
the 8080. This machine was indeed an enhancement of the 8008 and was
influenced heavily in its design by what people were coaxing the 8008 to do.
Among its improvements were a tenfold increase in speed, quadrupled
memory-addressing capability, unlimited stack length, and a number of
added convenience instructions to perform tasks that were found to be sub
routines in nearly all 8008 programs. A few months earlier, National
Semiconductor introduced its IMP-16 microprocessor. This device (actually a
set of five ICs) was not just similar to a minicomputer, it was a full 16-bit
minicomputer CPU with multiple addressing modes and optional multiply/
divide (a sixth IC). For some unknown reason, probably related to the
marketing approach, it never caught on like the 8080.

In the 1975 time frame, every major semiconductor company intro
duced a microprocessor. Motorola, for example, entered their 6800 into the
race at this time. Its organization philosophy was very different from the
8080 in emphasizing efficient addressing of memory over numerous on-chip
registers. Its bus timing protocol was also much simplified and, in the
author's opinion, was more effective. The 6800 was also the first micro
processor to operate entirely from a single 5-V power supply.

Shortly thereafter, MaS Technology offered the 6501, which was plug
in compatible with the 6800. Its instruction set was entirely different,
however, and in many ways substantially superior. It was the first micro
processor to use pipelining to speed up internal operations. Most significant,
however, was its price, which, at $25, was 8 to 10 times less than the
prevailing price of microprocessors. This was more in line with true
manufacturing costs, thus rapidly forcing the other suppliers to adjust their
pricing structure accordingly. A lawsuit by Motorola subsequently forced
slight changes (actually improvements) to the 6501's electrical interface so
that it was not compatible with the 6800, and the model's number was
changed to 6502.

Also during this time, Signetics offered their 2650, while RCA
introduced their COSMAC, and General Instruments announced the 1600
(technically a 16-bit unit). National Semiconductor simplified their IMP-16
into the PACE (another 16-bit unit) and then further simplified it into the 8
bit SCAMP (later SClMP). Other manufacturers opted to copy existing
architectures, with Texas Instruments making the 8080 and Intersil offering
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a 12-bit microprocessor that was Digital Equipment PDP-8 software
compatible. A new company called Zilog was formed to make a substantially
improved 8080 called, appropriately enough, the Z-80. All of these
companies ultimately offered complete computers built around their micro
processors, but none was ever successful in the general microcomputer
market.

The Altair 8800 Microcomputer

The next milestone in the popularization of microprocessors has to be
the announcement in January 1975 of the Altair 8800 microcomputer kit by
MITS as a feature article in another major hobby electronics magazine.
Announcement is emphasized because machines were not delivered until
several months later. Nevertheless, tremendous excitement and quite a bit of
confusion was created by the announcement. The excitement was due to the
microprocessor chip used: the yet to be generally available, exceedingly
powerful (compared to the 8008) 8080. Also, the availability of a kit in
terested many more people who were not skilled enough to acquire parts and
etch printed circuit boaids themselves. One confusing factor was the price of
the kit; $60 less than the current price of the microprocessor IC itself, and
the kit contained cabinet, power supply, and several dozen additional ICs
and other parts necessary to support the microprocessor. Most could not
believe that the $360 8080 chip was actually included! This time thousands
of machines were ordered and delivered, and real magazines sprang up to
meet the tide of interest created.

MITS itself was completely overwhelmed with thousands of orders,
which explains the delivery delays that have since become commonplace in
the industry. Had they been able to deliver immediately, the subsequent
evolution of the hobby computer industry may have been entirely different
with one manufacturer in a position of complete dominance. As it was, the
market was thrown wide open to dozens of small companies that materialized
to meet the demand.

Since the Altair used a parallel bus structure with sockets for plugging
in extra memory and peripheral equipment interfaces, these same companies
were able to effectively compete in the add-on market even after MITS started
delivering machines. This bus structure, now called the S-lOO bus, has
become a defacto standard in 8080 (and later Z-80) systems because such a
variety of CPU, memory, and peripheral interface boards are available. Keen
competition in the S-lOO marketplace kept prices low and innovation high.

The First Wave

The original Altair, and later lmsai and some others, were strictly
"hobby" computers. They were nearly always built from kits and expanded
piecemeal as time and resources permitted. In most cases, software consisted
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of little more than what the owner could write and perhaps copy from
magazine articles or friends at computer club meetings. The mass storage
hardware and operating system software that makes a computer easy and
efficient to use was not often seen on these machines.

Then in 1976-77, three integrated microcomputers were introduced,
two by relatively large companies, and each gained a Large following. The
PET (Personal Electronic Transactor) computer manufactured by Commodore
was the first. Actually, Commodore had already made a name for itself in the
pocket calculator business but at the time was struggling. The PET was truly
integrated with a keyboard, display monitor, and tape cassette storage all in
the same cabinet. Most important, a large amount of software was built-in as
a ROM, including a highly sophisticated (at the time) and speedy BASIC
interpreter and rudimenrary operaring system for controlling the cassette
storage. One weakness in comparison to S-100 computers was the lack of a
convenient expansion facility. The $600 asking price (which later proved to
be a teaser) was an incredible shock, being much less than what a similarly
equipped S-100 type compurer would cost. One reason for the low price was
that Commodore, who had earlier acquired MaS Technology, manufactured
most of the key ICs themselves, including the 6502 microprocessor, the
masked ROM, and the memory ICs. The 6502 in fact had been invented by
MaS Technology while they were independent and had many advantages
over the then popular 8080 in an integrated computer product.

Shortly thereafter, Radio Shack introduced its TRS-80 computer. The
name was simply an abbreviation of the manufacturer (Tandy Radio Shack),
while the 80 referred to its Z-80 microprocessor, which was a substantially
improved 8080. Radio Shack packaged their machine differently than
Commodore did. The computer and keyboard were combined into a single,
somewhat overgrown keyboard case, whereas the display, cassette storage,
and power supply were each separate units. All were connected to the
keyboard unit by cables and each was separately priced. The ROM software
was similar with an operating system and BASIC, although the latter was a
greatly simplified version of the language. Expansion was better provided for
in that larger-capacity-memory ICs could simply be plugged in, and a
separate expansion box having even more memory and a disk controller was
later offered. Pricing for a comparable system turned out to be somewhat less
than the PET's, which had risen to $800. This, coupled with Radio Shack's
thousands of already existing electronics stores, made the machine an instant
hit with sales that quickly outstripped the PET's early lead.

The third popular computer of the period was not designed in the
engineering department of a large company. Instead it evolved from an earlier
model in the California basement of two entrepreneurs, Steve Wozniak and
Steve Jobs. The Apple II was packaged much like the TRS-80 bur had a
built-in power supply and used a 6502 microprocessor like the PET. Its ROM
operating system was more advanced than the other two, however, but, like
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the TRS-80, the BASIC interpreter was a simplified integer-only version.
Two features set it apart, however, and, in the author's opinion, were
responsible for its ultimate success. One of these was its much superior
display, which offered full color (when used wirh a color monitor) and, for the
first time in a microcomputer, true bit-mapped graphics at a moderately high
resolution (280 wide X 192 high). The other was the presence, right in its
keyboard enclosure, of eight unused printed circuit board edge connectors
where expansion boards could be easily plugged in. Because of the designers'
background as hobbyists, the Apple's hardware and software were thoroughly
documented, which further accelerated support by other hardware and
software manufacturers and user groups.

During this time, S-IOO computers were also being improved. The
early practice of entering "bootstrap loader" programs through the front
panel switches was replaced by ROM boards, while video display boards
displaced teletypewriters as the primary user interface. Most important,
however, was the increased use of floppy disks for mass storage in place of tape
cassettes. This was made possible by the introduction of the CP/M operating
system in a generic form, which could be easily adapted to the wide and
somewhat disjointed variety of S-IOO systems available. As would be
expected due to their inherently expandable and modular nature, it was
possible to build an S-IOO computer that was much more powerful than the
PET, TRS-80, Apple, and orher similar but less well-known machines. With
memory capacities as large as 64K, S-IOO computers could start being used
for serious business, engineering, and research putposes.

The Second Wave

The introduction and success of these three microcomputers and others
during 1976-77 caught· the attention of numerous entrepreneurs, venture
capitalists, and, to a lesser extent, larger established companies. During the
1978-80 rime period, many, many more integrated microcomputers were
introduced. Simultaneously there was an explosion of computer clubs,
computer stores, computer magazines, and both regional and national
computer shows to support the marketing needs of this sudden increase in
available machines. The split between home/hobby/educational usage and
business applications that barely showed up earlier widened considerably.

The business side showed the most growth probably because, at the
time, the business market was seen to be larger and more immediate than the
home/hobby/educational market. The basic S-IOO hardware architecture and
CP/M operating system dominated the design of second-wave business
microcomputers. In nearly all cases, the microprocessor was a Z-80, memory
was 64K bytes, and the display was a separate 24-line X 80-character
terminal. Floppy disk mass storage was obligatory, but many shifted from 8
inch diskettes to the less expensive and lower capacity 5-inch size. Costs were
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further reduced by integrating all of the standard circuitry onto one
motherboard to which was added several S-lOO bus sockets for memory and
I/O expansion. Several of these machines even omitted the sockets (and the
power supply capacity needed to drive them), opting instead for a minimum
cost "standardized" computer.

Dozens of computers of this type were developed and introduced to the
marketplace. The lack of diversity and in many cases virtual identity led to

rhe first use of "clone" in magazine reviews of many of these systems.
Ultimate success became largely a matter of who could manufacture machines
at the lowest cost and market them most effectively. As a result, most of these
computers had relatively short lifetimes, many only a few months, and some
never went beyond the announcement stage.

Also during this time, the "original three" were upgraded to meet
business needs but still retained their architectural identity. Commodore
offered floppy disk drives for the PET and later upgraded its display from 40
to 80 characters per line. Apple also offered a disk drive and much improved
BASIC, although the display was kept at 40 characters. Interestingly
enough, independent companies developed Apple-compatible plug-in boards
to expand the display to 80 characters and changed the microprocessor to a
2-80, thus allowing the CP/M operating system and associated business
software to run. Radio Shack also offered disks for the TRS-80, but nothing
was ever done about the display, which was 16 lines of 64 characters. Also,
the architecture was not compatible with CP/M, even though a 2-80
microprocessor was used. However, since TRS-80s outnumbered other
microcomputers at the time, much business software was written specifically
for it.

There was also much activity in the home/hobby/education arena where
participation was more by established companies rather than new startups.
Atari, who had established themselves with arcade video games, offered their
model 400 and 800 computers. Packaged much like an Apple and even using
the same 6502 microprocessor, these machines were intended for a somewhat
less sophisticated audience. One new feature they offered was a ROM cartridge
slot that could be accessed without removing the cover or even turning the
power off The idea was that software packages could be offered on ROM in
enclosed "cartridges" that could be changed in the computer as easily as
cassette tapes are changed in a stereo system. Texas Instruments introduced
their 99/4 computer, which was intended for the same audience. Tech
nologically, it was a quantum leap past anything else at the time and
included a 16-bit microprocessor (the TI 9900), very sophisticated color
graphics IC, and four-voice sound (one might hesitate to call it music)
generator. Its sophistication was largely wasted, however, because the
machine's complex architecture was kept secret and TI software obscured its
inherent power. Amid much speculation about dominating the market,
Heath introduced a Z-80-based kit computer called the H-8. Although bus-
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organized much like the S-100 machines, it turned out to be incompatible
with them. In spite of the speculation, it never was very successful. Mattell
also introduced a 6502-based machine that never became popular.

Not all of the companies were established, however. Exidy offered their
8080 based Sorcerer, which was best known for its programmable charactet
generator approach to graphics. Another was the Superbrain, remembered for
its flashy ad campaign. Micro Technology Unlimited, previously a small add
on board manufacturer, offered their 6502-based MTU-130 near the end of
this period. It had many advanced hardware and software features, such as an
independent (from the CPU) disk controller and very fast, device-indepen
dent disk-operating system, which were fully appreciated only by advanced
hobbyist and research users.

Strangely enough, the original three continued to fare well in the
hobby/education arena. The TRS-80 benefitted from its low price, ready
availability, and extensive coverage in new TRS-80-specific magazines. Also
some schools had started"using it in courses. The PET also found significant
acceptance in schools, largely due to its all-in-one packaging and an
educational "3-for-2" promotion by Commodore. In Canada and Europe,
however, the PET did extremely well being the dominant computer in those
areas. Apple made the biggest gains during this period. A great variety of
add-on boards became available, perhaps even exceeding the number ofS-100
add-oos in the marketplace. Software support mushroomed as programmers
began to realize the power of its architecture and learned to make it perform.
Of all of the machines introduced during the first two waves, the Apple II is
the only one that has survived, essentially unchanged.

More Microprocessor Advancements

During the 1976-80 period, things were also changing in the
microprocessor and memory markets. The winners of the early micro
processor race became apparent, and thus many manufacturers opted instead
to second-source (copy) the more popular chips, although virtually none
discontinued their own proprietary entries. In terms of number of different
microprocessor-based products using it (so-called "design wins"), the 2-80
was victorious. In terms of actual numbers of ICs sold (most in a few very
high-volume products), the 6502 was the clear leader. The 6800 placed a
distant third, while the others barely showed up on the charts regardless of
the measuring method.

Simultaneously, the semiconductor manufacturers were readying their
next generation of higher-performance, 16-bit microprocessors. Although
16-bitters had been introduced in 1974 (IMP-16) and again in 1976 (9900
and PACE), designers tended to ignore them. The reasons are obscure, but
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perhaps one was that the expense of building a 16-bit system outweighed the
relatively small performance increase these early entries offered.

The earliest high-performance 16-bit microprocessor beyond those
mentioned above was the LSI-ll from Digital EquipP1ent. The micro
processor was actually designed by Western Digital and was a set of three
large ICs. DEC only offered it on a board with memory and bus interface and
at a relatively high price too. It could run most software written for the
PDP-Il, which is probably the most popular minicomputer ever. Not to be
outdone, Data General came out with their MicroNova, which was available
as a chip as well as a board and executed the Nova minicomputer instruction
set. Its electrical characteristics were highly unorthodox, however. Fairchild
also introduced a Nova-compatible microprocessor called the Microflame,
which was faster and more conventional in its interfacing. None of these
minicomputer emulator microprocessors was ever successful, however. The
seemingly valid approach of solving the software problem by making the
microprocessor execute already written minicomputer software likely failed
because nobody really wanted to run old minicomputer software.

Intel moved next in 1979 and introduced their 8086, which was the
first 16-bit offering from a company with an already successful 8-bit
microprocessor. Compared to some that immediately followed, the 8086 was
not really very sophisticated, but it was faster than earlier offerings and, most
significantly, could run 8080 software after being processed with an
automatic translator program and reassembled. Not much later, Zilog
announced the Z-8000 and Motorola their 68000. These two were incredibly
sophisticated, having large register complements, rich instruction sets, and
very high-speed potential. The 68000 in particular surpassed all but the
biggest minicomputers in its potential power. It actually looked like a 32-bit
computer to a programmer with 16 32-bit general-purpose registers but with
a 16-bit data bus! It could also address up to 16 megabytes of memory directly
without the bank switching (segmentation) the 8086 and Z-8000 required.
Although there was much hope and speculation about a 16-bit version of the
6502 during this time, it never materialized. Much later in 1982, National
Semiconductor tried a new 16-bit design called the 16032. Like the 68000,
it had 32-bit internal architecture but was more oriented toward high-level
language execution and efficient use in time-sharing systems.

As this is being written (late 1984), Intel has had the greatest success
with the 8086 and its variations in terms of both design wins and units sold.
The 68000 is the prestige winner, however, being preferred in systems where
high computation speed and large memory-addressing capacity is important.
The Z-8000 and 16032 are clearly behind with the former suffering from a
lack of promotion and the latter from its late start. True 32-bit versions of all
of these plus new entries from AT&T (the Bellmac-32) and NCR are being
worked on now and can be expected to be generally available in a couple of
years.
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Memory Advances

In many ways, the availability and pncmg of memory ICs drive
microcomputer development almost as much as the microprocessor chips do.
The key component is the random-access memory IC, or "RAM chip" for
short. The first RAM chip large enough to do anything significant with was
the 1101. Its capacity was 256 bits, and typical cost was about $4 in 1971.
Shortly thereafter, at about the same time as the 8008 microprocessor was
introduced, the 1103 lK bit RAM became available for $7. This was the first
dynamic RAM, which meant that each row of memory cells had to be read
periodically to refresh and maintain the stored information. Dynamic RAMs
are inherently denser and cheaper to make than static RAMs and thus led the
way in increased RAM chip capacity.

While lK RAM chips were adequate for dedicated applications of
microprocessors, it was expensive and space-consuming to make memories
large enough for a general-purpose microcomputer from them. For example,
an 8K byte memory board required 64 of the 18-pin 1103 RAMs plus a
nontrivial amount of drive circuitry. Microprocessor applications got a good
boost in 1974, however, when 4K bit RAM chips made their appearance.
Most of the industry settled on a 22-pin package with full address decoding
that was known generically as the 2107. Mostek, however, pioneered a 16-pin
version (the MK4096) in which the full 12-bit address was entered into the
IC sequentially as two 6-bit halves on only 6 pins. This allowed packing
densities almost twice as high as the 22-pin version, although many
engineers were reluctant to use them because of greater circuit complexity.
Prices on both versions dropped to the $10 level by 1976 and ultimately to
about $2.50 near the end of their lifespan in 1978. It was now possible to

build a 32K byte memory board for about the same cost as 8K bytes would
have cost 3 years earlier.

The 16K RAM chips made their appearance in 1977 and became really
practical to use in 1979. By then, the wisdom of 16-pin packaging and
address multiplexing was fully realized, and, as a result, only the 16-pin
package style was offered. The availability of these RAM chips is what really
fueled the second wave of CP/M business computers described earlier. One
could actually build the maximum addressable 64K byte memory for a Z-80
microprocessor in a small 3.S-inch X 3.S-inch area in the corner of the
computer's motherboard. Interestingly enough, both the Radio Shack and
the Apple II computers were designed to use the 4096 type of 4K RAM with
provisions to also allow use of the 16K chips. When 16K prices fell to the
$12 range in 1979, 16K upgrade kits were offered by dozens of firms for less
than $100. Within a year, Apple and Radio Shack computers with less than
maximum memory (48K bytes) were a rarity indeed.

The 64K RAM chips appeared in 1981 and quickly came down to a
practical price level of about $8 by 1982. Besides the greater bit capacity, a
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significant difference was that only +5-V power was necessary rather than
the + 12, + 5, and - 5 voltages needed by earlier RAMs. This change also
freed up two pins on the package, thus allowing continued use of a 16-pin
package with one pin left over! Now full memory for an 8-bit microprocessor
was a single row of 8 chips, which could easily get lost among the other
circuitry. Thus, the issue of addressing much larger memories to allow more
sophisticated applications became more urgent. While some companies
tacked bank switching logic onto 8-bit 2-80s and 6502s, most switched to
16-bit microprocessors that had large memory-addressing capability built in.
To a great extent, the 64K RAM drove the third wave of microcomputers that
will be described shortly.

As this is being written, 256K-bit RAM chips are becoming available,
still in a 16-pin package, at a price of about $35. Meanwhile, 64K RAMs are
selling for about $4.50. Price crossover with 64Ks is expected in 1986 and,
by then, 1M-bit RAMs will probably be visible on the horizon. Whether the
16-pin package will be retained is unknown (it could be by combining the
data-in and data-out pins), but one thing seems certain: memory capacity for
a given cost will continue to double every 2 years for the remainder of the
1980s. The future effect this will have on microcomputer architecture is
uncertain, but it can be nothing but good for programmers and users.

The Third Wave
The third wave of new microcomputers had a very definite starting

date: August 17, 1981. This was the date that IBM introduced their "IBM
Personal Computer." While some were disappointed and others were pleased
about the level of technology it utilized, all were surprised. For a micro
processor, it used the Intel 8088, which was an 8-bit bus version of the 16-bit
8086 mentioned earlier. Thus, it potentially had greater power than 2-80
based computers but could not run the CP/M operating system. Instead, it
ran a somewhat improved operating system that came to be known as MS
DOS. The biggest surprise to this writer, however, was its reasonable price
compared to existing CP/M-based business computers.

The "PC," as it was nicknamed, was an instant hit and immediately
garnered the software support that has become crucial to the long-term
success of a new computer. Since it included several sockets for expansion
boards, a whole new add-on industry has sprung up. Its immense popularity
and initial supply shortage also spawned a flood of "workalikes," "compati
bles," and outright clones from over two dozen new companies. The PC
architecture (8086 instruction set and MS-DOS operating system) has in fact
so thoroughly dominated that any new business microcomputer today simply
must be able to run IBM PC software. Conversely, the 2-80 and CP/M type
of machine has virtually dropped out of sight in the business arena. The
S-lOO bus, in the meantime, became an official IEEE standard but now
seems to have retreated to use in industrial microcomputers.
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The home and hobby type of microcomputer became even more
differentiated from the business type. This was the era of the mass-produced,
incredibly cheap, throwaway computer. The race was started by Sinclair, who
introduced a machine about the size of a textbook that used a 2-80, could
run BASIC, and connected to a color television set-for $100. Although it
had its shortcomings (it couldn't compute and display at the same time, for
example), it sold well. Commodore followed with their 6502-based VIC-20
and later Commodore-64. The latter was unique in that it provided 64K
bytes of memory for the same price others were charging for 16K and less.
Texas Instruments repackaged their 99/4 and trimmed its price substantially.
Atari also cut the price of their 400 and 800 machines to be competitive, but
Apple held firm on the Apple II. During 1983, a raging price war broke out,
which saw the Commodore-64 price fall as low as $180 with the other
contenders proportionally less. By early 1984, only Commodore and Apple
remained in the high-volume home market. Since then, Coleco and IBM
have attempted to enter the market but with limited success.

With the great power of recent 16-bit microprocessors, a third class of
microcomputer became possible: the scientific/engineering workstation.
These typically used a 68000, had memory from 256K to 1M bytes or more,
a very-high-resolution graphic display, and disk storage of 5M bytes and up.
The operating system was typically UNIX, a very large and complex
operating system originally developed for PDP-ll minicomputers. Unfor
tunately, along with their great power and capacity came prices that started
at nearly $10,000 and went up from there. While only a tiny number
(compared to business and home microcomputers) have been sold, their mere
existence has influenced engineers, programmers, and product planners
greatly.

Apple Computer, in designing a successor for their aging Apple II,
used the 68000/large-memory/graphics-display theme of the engineering
workstations, scaled it down a little, and combined it with intuitive,
graphics-oriented software to create their Lisa and later MacIntosh com
puters. The former was intended for business use and is more expensive,
whereas the latter seems appropriate for almost any application and costs less
than $3,000. Strangely enough, neither machine has any expansion slots nor
significant program development support and thus has not been attractive to
hobbyists and independent add-on manufacturers at all.

As you can see, the history of microcomputers has been tumultuous
indeed, and the immediate future is not likely to be less so. But use in
complete computers is just one application of microprocessors. Outside of the
swirling computer mainstream, microprocessors are used extensively in
dedicated applications to simply replace logic or increase circuit capability.
Since the primary purpose of this book is to explore the musical applications
of microprocessors, further discussion of specific computers will be held until
Chapter 20.
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Microcomputer Peripheral Devices

Although any peripheral device that can be used with a large computer
can theoretically be connected to a microcomputer, only a small subset is
commonly used in general-purpose microcomputer systems. This subset has
been found to give the maximum convenience of system use consistent with
performance and cost requirements. However, as we shall see later, certain
big system peripherals may be desirable for some musical applications.

Main Memory

In a microcomputer system, main memory is often considered as a
peripheral. Usually additional memory is available from several manufac
turers, and it may be freely purchased and plugged into the system when
needed. Main memory comes in two flavors, read-only memory, usually
abbreviated ROM, and read/write memory, usually abbreviated RAM. ROM
is not affected by loss of operating power and cannot be overwritten; thus, it
is generally used for unchanging system programs such as a monitor or
language translator. Pure ROM is completely unalterable, having had its bit
pattern frozen in during manufacture. Although masked ROM is by far the
cheapest type, much of the ROM used in general-purpose microcomputers
today is of the erasable and reprogrammable type. This type can have its bit
pattern erased with a strong ultraviolet lamp and a new pattern entered with
special programming equipment. This capability is a valuable asset because
virtually all programs are subject to some change as the system expands or
program "bugs" are uncovered.

RAM may be freely written into and therefore may hold different
programs at different times. RAM is required for the storage of programs
under development and the data they use. Large computers have always used
RAM exclusively for main memory. However, the core memories used by
earlier computers did not lose their contents when power was shut off so
operating system programs loaded into them could be expected to remain
until specifically overwritten. The RAM used in microcomputers, on the
other hand, is highly volatile and subject to complete data loss within
milliseconds of a power failure. Thus, operating software kept in RAM must
be reloaded whenever the system is turned on for use. Appropriate peripheral
equipment such as a disk can reduce this task to a few seconds duration or
even allow its automation. Although programs frozen into ROM are conven
ient, there is sometimes a tendency to spend too much money on ROM when
the more flexible RAM would be a better choice, particularly when the
needed peripheral equipment for efficient reloading is available.

The amount of main memory in a microcomputer varies widely.
Amazing things have been done with a 6502-based system having only 1.1K
of user RAM and 2K of system ROM. At the other extreme, the Apple
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Macintosh computer was just recently expanded to 512K of memory because
its original 128K was deemed inadequate for the needs of its extremely
complex software. Since the cost of memory is so low and continues to
decline, there is less interest now in space-efficient programming techniques
and more in time-efficient ones, both for the programmers and for the
machines.

The amount of memory actually needed is largely determined by the
application. In later discussion, three broad classes of microprocessor
applications in music will be explored. These are logic replacement in actual
synthesis and control circuitry, general-purpose computers that control external
synthesis circuitry, and very powerful general- and special-purpose computers
that perform direct computer synthesis. Accordingly, the logic replacement
application requires the least amount of memory, often only a few thousand
bytes, while additional memory can always be put to effective use in a direct
computer synthesis system.

Mass Storage

Next to main memory, external mass storage is the most reliable indi
cator of overall system capability. Further, the type of external storage used
has a great influence on typical system operating procedures. A system with
no external storage at all is extremely limited in general-purpose applica
tions.

The earliest microcomputers, if they had any mass storage at all, often
used punched paper tape. This was the natural result of using a teletype
machine for text input and output, but it was very slow (l0-50 bytes/sec),
noisy, and the tape was nonreusable. Another often-used early storage
peripheral peculiar to microcomputers was an audio tape recorder. It turned
out to be fairly easy to program a microcomputer to generate audio signals
dependent on the data to be saved and then recognize them on playback to
recover the data. Generally, the encoding/decoding circuitry was simple, and
cheap portable cassette recorders were adequate, which meant that audio
cassette storage could be implemented for less than $50. While faster,
quieter, and cheaper to run than paper tape storage, the recorder still had to
be manually operated and the stored data could not be edited in a
straightforward manner. In the late 1970s, some experimental products using
program-controlled cassette decks were introduced in an attempt to overcome
the manual operation and editing problems, but none was successful. Even
now, one occasionally hears of a new low-priced microcomputer that uses
some kind of tape cartridge for low-cost storage, but then invariably the
manufacturer offers or completely switches to disk storage instead.

Floppy Disk

The flexible or "floppy" disk is a relatively new mass-storage device that
seems custom made for microcomputer systems. Introduced by IBM in 1970
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as a fast method of loading control programs into their big computers, the
floppy disk is considered by most microcomputer users to be the ultimate
mass storage device when cost is considered. The storage disk itself, called a
diskette, is square, moderately stiff like a piece of cardboard, and sells for two
to five dollars. Three physical sizes are in common use: the original 8-inch
size, the 5-inch size, which was introduced around 1977, and the 3-inch size,
which came out in 1983. Data on the diskette is divided into a number of
concentric (not spiral) tracks, each of which is divided into a number of sectors.
Each sector typically holds 128, 256, 512, or 1,024 bytes depending on the
computer. Some disk drives record data on both sides of the disk. A record/
play head is mounted on a carriage that can be quickly moved in and out to
access any track on the disk just as a cut on a record can be quickly accessed
by moving the pickup arm. After positioning to the correct track, timing
circuitry waits for the desired sector to rotate by. Any sector may be randomly
located and read or written in less than a second, making the floppy disk a
truly random access device. This and the fact that individual sectors may be
very quickly updated by reading and rewriting gives the floppy disk
complete editing capability.

Original 8-inch floppy disks held 77 tracks, each of which had 26
sectors of 128 bytes on one side for a total capacity of about 250K bytes. Data
could be written or read at the rate of 31K bytes per second after the sector
had been found. Later improvements doubled the recording bit density and
data transfer rate, and, even later, double-sided drives with a separate head
for each side appeared, upping the rotal capacity to just over a million bytes
per disk. With more efficient sectoring schemes (8 sectors of 1,024 bytes
each per track), up to 1. 26 million useful data bytes could be stored.

The first 5-inch diskettes had only 35 tracks and 8 or 9 sectors of 256
bytes each for a total of about 80K bytes. Also, the rotational speed was
reduced to 300 rpm from 360 rpm, which, with the shorter track length,
reduced the data transfer rate by half to about 16K bytes/sec. Nevertheless,
5-inch disk systems became very popular because they were less expensive,
software could replace hardware in encoding and decoding the slower bit
stream, and smaller sizes simplified packaging. These too have been
improved in several stages. First, the bit density was doubled as in 8-inch
systems and then both sides of the disk were used. Later, slightly more of the
disk surface was utilized, thus increasing the number of tracks to 40, and
finally the track density itself was doubled to provide 80 tracks. At that
point, 720K bytes of useful data could be recorded on a 5-inch disk,
although the read/write speed was still half that of an 8-incher. Very recently,
the bit density has been increased again, and the rotationa1 speed stepped
back up to 360 rpm to produce a 5-inch disk drive that has the same
attributes as an 8-inch drive. Experimental products with even higher
capacities up to 5M bytes on a 5-inch diskette have appeared but so far have
not caught on.
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Three-inch diskettes and drives are still quite new but already have
equalled the most popular 5-inch formats in storage capacity and speed.
Their main attractions are even smaller size and lower power consumption
than 5-inch units, although at this time 3-inch drives and the diskettes
themselves are more expensive. Another feature that is often important when
inexperienced people use them is that some types of 3-inch diskettes are
packaged in a rigid plastic case with a door that automatically closes when
the diskette is removed from the drive. Ultimately, it is expected that 3-inch
disks will replace 5-inch ones just as 5-inchers have now largely replaced 8
inchers.

Winchester Disk

Floppy disks have two inherent limitations, however, that prevent them
from operating faster and storing truly large amounts of data. First, the
plastic-based media are not dimensionally stable with temperature and
humidity changes so the track density is limited ro about 100 tracks per
inch. Also, since the recording head actually contacts the surface during
reading and writing, the rotational speed is limited to minimize wear. Even
before microcomputers and floppy disks, large mainframe computers used
rigid media disk drives to store tens or hundreds of megabytes with data
transfer rates of 1M byte per second or more. This was accomplished by using
magnetically coated metal disks that were spun so fast (up to 3,600 rpm) that
the read/write heads floated on a cushion of air. Besides being large (the disk
platters were commonly 15 inches in diameter) and heavy (drives often
weighed several hundred pounds), prices started at several thousand dollars
and went up from there, making them clearly impractical for microcomputer
use.

One reason for the high cost and storage capacity still far below
theoretical levels was the need for removability. Just as diskettes are
frequently changed in a floppy disk drive, disk packs are often changed in a
mainframe installation. Allowing for removability tequires a complex
mechanical arrangement to align the disk within the drive, means to purge
dust particles from the new disk, and wide mechanical tolerances (which
translate into reduced capacity) to allow for drive-to-drive and disk-to-disk
differences. In the early 1970s, the Winchester project at IBM discovered that,
by permanently sealing the disk within the drive, much lower costs and
higher capacities could be obtained. When applied to microcomputers in the
late 1970s, the tremendous capacity of these mainframe fixed disk units (often
ovet 1,000M bytes) was traded off for a smaller disk platter size and even
lower cost. Additionally, the expensive, high-speed, servo-driven access arm
was replaced with a simpler but slower stepper motor driven mechanism.
Initial units were still 15 inches in diameter (only one platter, however), but
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that was quickly reduced to 8 inches and later to 5 inches. With each size
reduction, the typical capacity range remained about the same, which means
that the bit and track density figures of current 5-inch units are truly
remarkable.

Today, miniature 5-inch Winchester disk drives (sometimes called
"mini-winnies") are fairly common on high-end microcomputers. The most
popular capacities are 5 and 10M bytes on one and two sides, respectively, of
a single platter, and the data transfter rate is typically 625K bytes/sec.
Greater capacities up to 40M bytes are possible by stacking up additional
platters, while experimental units have attained up to 160M bytes by
increasing the bit and track density. Although the 5- and 10M-byte drive
prices have gradually declined to under $500, the real impetus to their
increased use was availability of controller ICs. Prior to that, a rigid disk
controller board might have 50-100 IC packages and could easily cost in
excess of $1,000.

One fundamental problem with any kind of Winchester disk drive is
that the recording medium is fixed in place within the drive. Archiving and
keeping backup copies of data (in case of computer or disk drive failure)
required that it be read off the Winchester disk and rewritten onto a
different, removable medium. Although special cartridge tape drives are
often promoted for this purpose, in most cases the floppy disk drive (which
still must be present to get new software loaded into the machine) is used
instead. Another problem is that when the application fills up the
Winchester disk, one does not have the option of just changing the medium
and continuing; another drive or a capacity upgrade is necessary. Attempts
have been made to retain the high bit and track densities of Winchester
technology while offering removable media and still keeping the cost
reasonable. After several false starts, it appears that this goal will ultimately
be reached.

One unique approach that is creating quite a bit of interest is "Bernouli
technology" pioneered by IoMega Corporation. The floppy medium is fixed
to a simple metal hub and packaged in a rigid plastic case. When inserted
into the drive, the disk is spun at high speed, typically 1,500 rpm, which
makes it rigid due to centrifugal force. The speed is also high enough to
make the disk pull toward yet float over the head on an air cushion (Bernouli
effect). The real advantage is that momentary contact between the disk and
head (called a "crash" in rigid disk terminology) is not detrimental, which
makes the units rugged and reliable. Problems with dimensional stability of
the medium are solved by using a servo positioner (rather than stepping
motor), which does tend to increase the drive cost. The removable cartridges,
however, are potentially very inexpensive. This feature makes a Bernouli
technology system very attractive in direct computer synthesis applications in
which the media cost for storing digitized audio data must be minimized.
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Text Keyboard

The most fundamental microcomputer input device is a typewriter-like
"text" keyboard. Typically, it is also the most used peripheral device because
the operator spends most of the time interacting with the system by typing.
Unfortunately, quality keyboards with full-sized keys having the proper
surface contour and desirable mechanical feel are relatively expensive. More
than a few manufacturers have attempted to skimp on the keyboard only to
be forced to offer an improved model later with a "real" keyboard or have the
computer fail in the marketplace.

Text keyboards are interfaced to a microcomputer in one of three ways.
The S-lOO and CP/M type of computer popular in the late 1970s typically
used a CRT terminal and thus its keyboard for input. This was a particularly
inflexible interface technique, since it was the terminal that actually operated
the keyboard and determined how it functioned rather than the microcom
puter's program. Many quirks and inconveniences in CP/M's operation can be
traced to this limitation.

Most low-priced computers have a built-in keyboard that is directly,
and often minimally, interfaced to the microprocessor. Typically, the program
actually scans the keyswitch array, that is, constantly monitors the status of
each individual key. This approach give the programmer much more
flexibility in determining exactly how the keyboard functions. For example,
some keys could be programmed to automatically repeat if held down, while
others would have single action in a word-processing program. A game
program might have a different action altogether. A simple music input
program could be able to tell how long a key was pressed and perhaps even
track simultaneous keypresses.

The IBM Personal Computer made the third interface method, a
detached keyboard, popular. The keyboard becomes a physically separate
peripheral device connected to the computer through a cable. Logic (often a
single-chip microcomputer itself) on the keyboard does the scanning and
reports the results to the main system using a serial bit stream format. In
order to retain much of the flexibility of the directly interfaced keyboard, the
scanning logic usually sends one keycode when a key is pressed and another
when it is released. This information then allows the program to be aware of
the status of each key without having to constantly look at all of the keys.

Computer system designers are constantly looking for ways to input
information that do not involve a text keyboard. This is particularly
important for "casual" users who may be unfamiliar with computer opera
tion. Direct voice input is, of course, a natural suggestion and some limited
success has been realized in special function systems. Most other alternate
schemes are graphic in nature and will be described in Chapter 11.
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In the early days of computing, even before microcomputers became
commonplace, users interacted with the system via punched cards and
printed listings. If they were lucky, a teletype-like terminal could be used for
interactive computing rather than waiting hours or overnight for results.
CRT display screens were a luxury usually reserved for the computer center
operator. Today, it is safe to say that virtually all microcomputers are
equipped with a CRT display, either built-in or through a connection to an
external monitor or TV set.

The vast majority of such displays form their image by illuminating
dots in a large, fixed array of dots. Thus, text characters as well as graphic
elements such as lines, curves, and symbols are formed from dot patterns.
Text characters, for example, are typically formed from a matrix of dots either
5 or 7 dots wide X 7 or 9 dots high and either can produce a highly
readable, though stylized, type font. Horizontal, vertical, and 45° diagonal
graphic elements are also formed well from a dot matrix, but other angles
and shapes such as circles show noticeable and often objectionable distortions
due to the fixed dot matrix construction. Chapter 11 details these and other
considerations in displaying music-synthesis-related information.

The capacity of a CRT display for showing text and graphics varies
widely. Inexpensive microcomputers intended to connect to a home television
are severely limited to as few as 23 lines of 22 characters each or a 176 wide
X 184 high display matrix, although color is usually available. The popular

Commodore-64 home computer extends the capacity to 25 lines of 40
characters or 320 wide X 200 high graphics, about the limit for most TVs
due to blurring. More sophisticated systems and all business microcomputers
have a text display capacity of at least 24 lines of 80 characters up to 66 lines
of 132 characters, although many do not have any graphics capability. Those
that do have graphics offer matrix sizes up to 640 wide X 400 high,
although most are less. The Apple Macintosh, for example, is 512 wide X

342 high. Even higher resolutions up to 1,280 X 1,024 are found on
engineering workstation type of systems. A color display is seldom seen on
business microcomputers because their· typically blurred and misregistered
images are hard on the eyes after hours of use.

Printers and Plotters

Even with easily operated computer systems and high-speed displays,
there is no escape from the need for printed output. Standard file folders of
printed text and graphics will always be required for effective communication
with others.
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The most commonly available and least expensive printers are of the dot
matrix type. In these, characters are formed from a fixed matrix of dots just
like on a CRT display screen. Mechanically, the print head consists of a
column of seven or nine small, stiff, magnetically driven wires that press an
inked ribbon against the paper on command, often within a millisecond or
less. As the head scans across the printed line horizontally, the wires are
driven in a precisely timed sequence to produce the dot matrix characters.
Print quality is not one of the strong points of dot matrix printers, but
generally it is easily readable.

Recently, a technique called multipass printing has been developed that
improves the print quality substantially. The idea is to overprint the line
twice up to as many as eight times with the dots displaced slightly on each
pass so they overlap and produce smoother, more continuous lines. The
technique is indeed successful in hiding the dot structure of the characters
and produces results comparable to a standard typewriter with a cloth ribbon.
One model produced by Sanders Technology, however, uses precision
mechanics and a carbon film ribbon to produce results comparable to

typesetting. Dot matrix printer speeds range from about 40 to 50 characters
per second up to 300 and more, while prices range from well under $300 to
well over $1,000. Naturally, the more expensive models are faster and may
have the multipass capability.

Most dot matrix printers can also accept arbitrary binary patterns from
the computer and print them as corresponding dot patterns on the paper.
This then allows the printer to reproduce exactly any kind of graphics the
CRT can display in a process often called a "screen dump." Common dot
densities are 80 dots per inch horizontally X 72 dots per inch vertically up
to as high as 240 X 288. Because the printers must reproduce traditional
horizontal and vertical spacings when printing characters, the graphics dot
density is seldom equal in both directions. Even at the lower density, a
standard printed page can typically hold many more dots than the standard
screen can display, although uniformity of dot placement is not as good as the
display's. Such graphics printing capability is very important in most
musical applications.

"Daisy whee]" printers are normally used when office typewriter print
quality is desired. Characters are printed by rotating a wheel with characters
embossed on its spokes into position and then magnetically hammering it
against the ribbon and paper. The print wheels are interchangeable for
different type sizes and styles. These machines are also capable of producing
general dot graphics but typically at lower densities from 60 X 48 up to 120
X 96 dots per inch and at much lower speeds than dot matrix printers.
Graphics is accomplished by positioning the paper and print head under
program control then printing the period. In fact, most of the drawings of
waveforms, response curves, etc., in this book were produced with a printer
of this type on 17 X 22-inch paper and then photographically reduced.
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The best device for printed graphics output is a plotter. These produce
dtawings as well as text by inking smooth lines between designated
endpoints using an X-Y coordinate system. Drawing pens are easily
interchangeable for different colors or even different line widths. Quality is
usually high, since only the endpoints need be on the fixed grid and no dot
structure is evident in the lines. Some models show irregularities and wiggles
in plotted lines at certain angles, however, due to the stepper motor drive
system employed. Also the X-Y grid itself is fairly fine with 200 and 254
(metric) grids pet inch being common densities. Unlike a dot matrix printer
in which the print time depends only on the image size, plotting time
depends on the image complexity. For most images, plotters come out being
substantially slower than dot matrix printers. Only recently have plotters
become inexpensive enough to be practical to connect to a microcomputer. It
is now possible to get a unit capable of8.5 X ll-inch plots for under $500,
while a unit with extra features such as automatic circle drawing and an 11 X

17-inch plotting size can be under $1,000. Larger sizes are available but at
sharply higher prices.

Miscellaneous Devices

Many other miscellaneous peripheral devices are found on microcom
puters but not as frequently as those mentioned above. One of these is a
telephone modem. The word is actually a contraction of "modulator" and
"demodulator." In essence, it allows a computer to send binary digital
information over telephone lines by modulating an audio carrier tone with
data to be sent and also demodulating the received tone signal to recover
received data. This then allows a microcomputer to call up a mainframe and
exchange data with it or call another microcomputer and exchange program
or data files. Computer "bulletin boards" operated by clubs or hobbyists can
also be accessed by any computer equipped with a modem. Data transmission
speeds are moderately high with common values being 30 and 120 bytes per
second. Prices range from under $200 for a 30-byte/sec unit up to $400-500
for a 120-byte/sec unit. Transmission accuracy for modern units is remarka
bly good, even over long-distance telephone circuits.

Another common convenience item is a computer-readable clock and
calendar. Besides allowing the operating system to automatically keep track
of creation and update dates for data files, such a clock can be useful in
keeping track of time for real-time music input or synthesis applications.
Actually, one would think that with three-dollar stick-on electronic clocks
everywhere, they would be built into all computers, regardless of price. Such
is not the case, however, and in fact such a capability is usually either a
moderately expensive add-on board Ot a highly promoted standard feature.

Speech input and output capability is also occasionally seen. Of these,
speech output has been much more successful, although speech input is
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beginning to show potential. Both have a long way to go before computers
can be used by conversing with them. Speech synthesis devices will be briefly
described in Chapter 20.

Microcomputer Software

Software, of course, is the key to a useful microcomputer system
regardless of the amount of memory or other peripheral devices available.
While much of the software that will be discussed in succeeding chapters is
specialized for music synthesis, a considerable amount of standard support
software is used in all general-purpose microcomputer systems. Although the
term "standard" is used, there is considerable variation in implementaion and
use details according to the individual manufacturer's pqilosophy. Most of the
discussion will be centered around the support software required for program
development in assembly language, although much of it applies equally well
to compiler languages. Conversely, the vast body of business software such as
word processors, spreadsheets, databases, and "business" graphics packages
that has been developed for microcomputers recently is of little interest here
and will not be considered further.

System Monitor

The most fundamental piece of support software is the system monitor.
With very few exceptions, microcomputers are unlike minicomputers in that
the traditional "programmer's console" with dozens of toggle switches and
lights is absent. Instead, a system monitor program is used to allow
equivalent console functions to be performed through the primary interactive
I/O device, such as a keyboard/display. All system monitors have the
capability of reading memory, modifying memory, examining the micro
processor registers, and controlling the loading, dumping, and execution of
programs. More comprehensive monitors have debugging functions such as
search memory and breakpoints or program trace. Sometimes these and other
debugging functions are part of a separate debugger program.

Systems using a floppy disk term their monitors "disk-operating
systems," or DOS. In addition to the basic console and debugging functions
outlined above, DOS controls the allocation of disk space, finds and creates
files given a mnemonic name, and does other disk housekeeping chores.
Through DOS, the user may request a disk index listing, delete an unwanted
file, copy files from one disk to another, specify programs to be loaded by
name, and read or write data files a character at a time. DOS handles all of
the blocking or unblocking of characters to make full disk sectors. An
important DOS feature is the ability to do all of these tasks on command
from a user program as well as with console commands.
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Much of the actual time a user spends with a microcomputer system is
probably spent with the text editor program. Even if he or she is a perfect
typist and never needs to actually edit, the editor is necessary to create text
files for the assembler or compiler or even music interpreter. However, since
people are seldom perfect typists and are never perfect programmers, the
editor is also used to add, delete, change, and move program text. Most
editors are limited to editing files that are small enough to fit into main
memory. Thus, large programs must be broken into acceptably small
segments and edited separately. Typically, a file would be read into a text
buffer in memory, edited as required, and a new file would be created. The
old file can then be deleted if desired. If large insertions that might cause the
file to exceed available memory are anticipated, a portion of the text buffer
contents may be written as one file, deleted from memory, and the remainder
along with the insertion would be written as another file. The assembler or
compiler can link the segments together into a single program. Having a
large amount of memory available is obviously a benefit when using this type
of editor.

Highly sophisticated editors supplied as part of some disk-operating
systems are able to handle any size file by scrolling the text through memory
forward and backward in response to user commands. Insertions and dele
tions may be made in any order by scrolling the text on the screen to the
desired point and then keying in the change. The inherent editing capability
of the disk allows long files to be edited directly without creating unneces
sary copies. Less advanced editors may still allow unlimited file size and
insertions but can only scroll forward, thus requiring that editing be done in
sequence to some extent.

Assembler

The purpose of an assembler is to convert program source text statements
into binary machine language object code and a printed listing. Assemblers
work in a variety of ways according to the size of system they were designed
for and level of sophistication.

Today, good assemblers work with a disk-operating system in a general
way that is much more convenient than the early cassette-based ones were.
Before being run, the assembler is given the name of the source file, which
already exists, and the names of two new files that it will create; one to hold
the object code and the other to hold the listing. The assembler then scans
the source file two or three times and produces the object and listing files.
Before printing the listing file, the user can quickly scan it using the editor
to see if any errors were flagged by the assembler. Assuming there were few or
none, the editor can be commanded to print the listing if one is actually
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desired. The operating system may either load the object file into memory
itself or a loader program may be used for that purpose. After loading, the
user may specify the data files, if any, and execute the program. With such a
setup, program size is limited only by the capacity of the diskette and the
amount of memory available for the assembler's symbol table. Most of the
preceding comments also apply to compiler languages such as FORTRAN or
the new structured microcomputer languages such as C and Pascal.

High-Level Language

By far the most popular high-level language for microcomputers is
BASIC. Originally developed at Dartmouth University for student use on a
large time-sharing computer, it has evolved well beyond its design goals into
a general-purpose programming language. Although its strengths and weak
nesses in music programming will be detailed in Chapter 18, it can be said
here that it is an excellent one-shot problem-solving language but not espe
cially suited for large or complex programs. As a matter of fact, most of the
waveforms and plots in this book were done using simple BASIC programs.
BASIC will also be used periodically to illustrate program algorithms. One
unique feature present in nearly all microcomputer BASIC is the PEEK and
POKE functions. These allow a BASIC program to directly address and read
or write any memory location in the microcomputer. If the system utilizes
memory-mapped 1/02 , then BASIC programs may be written to operate any
I/O device on the system!

On microcomputers, BASIC is almost exclusively implemented as an
interpreter and is permanently stored in read-only memory. Thus, BASIC
programs exist in memory as character strings in the same form as they
appear in print except for perhaps the substitution of single, normally
unprintable, bytes for keywords. Part of the BASIC interpreter is a simple,
line-number-oriented text editor. When the "run" command is given, the
interpreter scans each program line, extracts the meaningful information
from the line, acts upon it, and then goes to the next line. As a result, BASIC
programs tend to run very slowly compared to the inherent capability of the
microcomputer. Nevertheless, BASIC is very easy to learn and use and for any
but highly repetitive calculations its speed is adequate. Most disk-based
microcomputers also have a BASIC compiler available, which greatly speeds up
execution at the expense of losing the interpreter's interactive program
development feature.

Another commonly used language on microcomputers is simply called
C. It was developed at Bell Laboratories to run on PDP-ll minicomputers
and has efficiency features that make it suitable fot system programming as

2Memory-mapped I/O is peculiar ro the PDP-II line of minicomputers and most
microprocessors. Essentially all I/O device status, control, and data registers are
addressed like memory locations with all memory reference microprocessor instruc
tions available for I/O register manipulation.
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well as application programming. For example, an often-required program
function is incrementing a variable. Most languages require a whole
statement of the form A = A + I! which when compiled will almost
invariably result in at least three machine instructions: load from A, add
constant 1, store into A. In C, a variable can be incremented by writing A +
in an expression, which would normally compile into a single "increment
memory" machine instruction. There is also an excellent facility for handling
addresses (pointers), often lacking in other languages. Because of its
efficiency, C is often used in direct synthesis applications and in fact is
recommended for that application. The only real drawbacks to C are its
sometimes cryptic appearance and lack of direct support for sophisticated
data structures.

Many other languages are used as well. Pascal is becoming a very
popular teaching language in formal computer science courses. FORTRAN,
a very old language, is often available to make the task of converting
mainframe scientific software to microcomputers straightforward if not easy.
Other specialized mainframe languages such as COBOL (business) and LISP
(artificial intelligence) have microcomputer versions. A very large and
comprehensive language developed for the Department of Defense called Ada
is being implemented on large microcomputers and shows a promising
future.

As microprocessors become faster and microcomputers incorporate
mote memory, there is more interest now in writing all software in high-level
languages, not just specialized applications or one-shot problem solutions. In
many cases (but certainly not all!), the system's grearer power hides the
inefficiencies that can occur when system programs such as editors,
compilers, and even disk-operating systems. are written in a high-level
language.

Example Microprocessor Descriptions

The first edition of this book, completed in 1979, selected three major
musical application areas of microprocess.ors and then described the charac
teristics of the "best" microprocessor for each. These were logic replacement,
synthesizer control, and direct synthesis for which the 6502, 8080, and
LS1-11, tespectively, were recommended. Besides the apparent one-for-three
shooting performance (the 8080 became obsolete and the LSI-11 was never
popular), most microprocessor applications now seem better divided into just
two areas: general-purpose systems and dedicated-function systems. General
purpose systems, in which the user is aware of the operating system and often
does programming, are extensively used to control synthesizers and do direct
synthesis. Dedicated-function systems, in which the microprocessor is
"hidden" from the user, certainly cover logic replacement but also synthesizer
control and, to a growing extent, even direct synthesis.
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Since there is now almost total overlap between microprocessor types
and typical applications, the real distinctions have become performance
(speed and ease of assembly language programming) and cost (total hardware
cost of a typical system). Accordingly, only two microprocessors, one at each
end of the spectrum, will be selected for detailed description here.

In the comparative discussions to follow, two areas of difference among
microprocessors will be concentrated upon. These are its machine language
instruction set, since that directly influences assembly language program
ming, and its bus structure and timing, which influences system hardware
design, particularly in the logic replacement application. Only the most
important points that distinguish the subject microprocessor from others will
be covered. More detail can be found in the wealth of manufacturer's litera
ture and microprocessor design books available.

The 6502 for Logic Replacement and Low Cost

The original notion behind development of microprocessors was to

provide a standard LSI chip that, when combined with standard memories,
could perform the functions of a custom LSI chip. The reasoning was that,
since semiconductor cost is nearly inversely proportional to production
volume, the lower cost of standard parts would outweigh any cost advantages
of an optimized custom chip. Although things did not quite work out like
that, quite a lot of microprocessors are used for logic replacement instead of
building microcomputers.

Of all the 8-bit microprocessors now on the market, the 6502 comes
closest to filling all logic replacement needs. Its price, although not the
absolute lowest on the market, is low enough to replace even relatively small
logic systems. Its raw speed, which is the highest of all 8-bit MOS
microprocessors, is high enough to replace all but the most speed-sensitive
logic systems. Its instruction set, although not a programmer's dream, is
powerful and straightforward, unlike the obscure and convoluted sets of
many other logic replacement microprocessors. Its bus structure, which is a
model of simplicity, is very easily interfaced while at the same time allowing
some very sophisticated direct memory access and multiprocessor schemes to

be implemented with a minimum of effort. Although not nearly as popular
as the 2-80, there is a sizable core of users who swear by it for general
purpose computer applications also.

In music, there are numerous jobs that might normally be done with
conventional logic that can also be done by a 6502 cheaper, simpler, faster,
smaller, or just plain better. For example, a digitally scanned music
keyboard with velocity sensing on both press and release is one possibility.
Another is a universal multichannel envelope generator with the envelope
shapes programmable by the user. A supersequencer is another obvious ap
plication. The 6502 is fast enough to even generate tones with program-
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mabIe waveforms using simplified direct synthesis techniques. Many of these
applications will be detailed in later chapters.

The 6502 requires a single +5-V power supply, making it directly
compatible with TTL logic systems. A 16-bit address bus, 8-bit bidirec
tional data bus, and numerous control signals are provided. Incredibly, there
are three unused pins on the package! The on-chip clock oscillator/driver
requires only a TTL inverter, a crystal (or R-C network), and a few passive
components to generate a two-phase nonoverlapping clock. Although the
standard frequency is only 1.0 MHz, a complete machine cycle is executed in
just one clock cycle.

According to the manufacturer's literature, there are no fewer than nine
different package and pin configurations of the basic 6502. Two of these are
the typical 40-lead dual-in-line package with all features available and the
other seven are smaller and cheaper 28-lead packages with different mixes of
omitted functions and intended for small configurations. The primary dif
ference between the two 40-lead versions is that the 6502 has a built-in clock
oscillator and driver, whereas the 6512 requires an external two-phase clock
oscillator and driver. The advantage of an external clock is that timing and
waveshapes can be precisely controlled, although the oscillator pins of 6502
can also be externally driven. Thus, the 6502 will be the model for further
discussion.

Bus Structure and Timing

Figure 5-1 shows a 6502 read cycle that is about as simple as one can
get. The I-J.Lsec machine cycle is divided into Phase 1, which is the first 500
nsec, and Phase 2, which is the last 500 nsec. Actually, when using the on
chip oscillator, the cycle may not be split exactly 50-50, but the signal
relationships are still valid. During Phase 1, the address bus and read/write
line settle to valid indications, and near the end of Phase 2 the micro
processor reads the data bus. Static read-only devices can actually be
connected to the address and data buses without any other control signals at
all; if they see their address, they drive their data. Approximately 600 nsec is
allowed for memory access, although typically greater than 850 nsec can be
tolerated before malfunction.

I CLOCK CYCLE = I }J sec I

CLOCK ~~;g I ~'''' ~~
.,,"'~."'~ """ . -
READ/WRITE _ _ ~

1. 600 I 100

DATA IN 1?JZ??ZIZ?ZV7~~

Fig. 5-1. 6502 read cycle timing



154 MUSICAL ApPLICATIONS OF MICROPROCESSORS
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I----CLOCK CYCLE = I }Jsec ---I
CLOCK PHASE I PHASE 2 \'-- _

1-300-1
ADDRESS BUS Y// / / / / / / /X VALID

READ/WRITE~4 I///l///
I 100 1

Fig. 5-2. 6502 write cycle timing

The write cycle in Fig. 5-2 is quite similar. The address and write
indication settle during Phase 1, and the data to be written is put onto the
data bus by the processor at the beginning of Phase 2 and held until the start
of the next Phase 1. Devices written into will, therefore, have to look at
Phase 2 and read/write to decode a valid write operation, These are the only
cycle types; all input and output is memory mapped.

Being so simple, there must be limitations and indeed there are a
couple. A ready line is available for slow memories to request additional time
for access. If the 6502 sees a low level on this line at the beginning of Phase
2, it will delay reading the data bus until the next cycle. The catch is that
write cycles cannot be extended with this signal. 3 Actually, at the present
state of the art, there is little if any cost advantage in using such slow
memory. In fact, if only a couple hundred extra nanoseconds are needed, it
would be better to reduce the clock frequency anyway. The other catch is that
if "transparent latches" (level clocked) are used for output registers and the
clock is Phase 2, then glitches at the outputs are likely when written into.
The problem can be solved by either using edge-triggered registers (trigger at
end of Phase 2) or by generating a delayed Phase 2 that does not become
active until the data bus is stable.

One unusual property of the 6502 is that the address bus cannot be
disabled for direct memory access operations. This and the fact that there is
no hold pin like on other microprocessors and write cycles cannot be stopped
would seem to make DMA difficult, if not impossible. Actually, a little
study of the bus timing reveals that if three-state buffers are added to the
address lines and 400-nsec memory (or a slight clock slowdown) is used, then
transparent DMA becomes possible. Transparent means that the processor is
unaware that DMA is taking place and continues to run at normal speed.
This would be accomplished by using Phase 1 for DMA operation and
allowing the processor to use Phase 2 normally for data transfer. Since the
processor never drives the data bus during Phase 1, only the processor's
address bus would have to be disabled (via added three-state buffers) for
DMA during Phase 1. The result is that a guaranteed continuous DMA rate of

3 A new 6502 version consrrucred wirh CMOS transisrors rhar became available in 1984
does honor rhe ready signal during wri re cycles.
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1 million bytes/sec is available for dynamic memory refresh, DMA displays,
and other uses without any effect on the microprocessor at all. Most other
microprocessors would be stopped cold using conventional DMA techniques
at this speed. Even another 6502 may be connected to the same bus with
oppositely phased clocking (external clock operation would be required) for a
dual-processor system. Clearly, then, the 6502 bus is actually one of the most
flexible available.

Interrupts

Interrupts on the 6502 at first seem somewhat limited but on closer
examination are seen to be extremely flexible. Two priority levels of interrupt
are built in, the standard maskable (can be disabled by program instructions)
interrupt and a nonmaskable interrupt, which has a higher priority. The
maskable interrupt request line into the 6502 is level sensitive and will
continue to interrupt the CPU as long as it is enabled and active. Unwanted
multiple interrupts are prevented, however, because the CPU disables them
after the interrupt sequence until the program enables them again. The
nonmaskable interrupt is edge sensitive. Whenever the logic level at this
input goes from high to low, the nonmaskable interrupt sequence is
unconditionally executed. These two different interrupt actions are very
useful in logic replacement applications and in fact avoid a serious problem4

the 8080 has in general-purpose applications.
The interrupt sequence itself consists of executing a "jump to sub

routine indirect" through dedicated addresses in high memory. These ad
dresses are called vectors and are FFFC-FFFD (hexadecimal notation) for mask
able and FFFE and FFFF for nonmaskable interrupts. Any number of vec
tored interrupt levels may be implemented for each interrupt type by having
the interrupting device respond to read cycles at those addresses with the
address of the service routine.

Registers
The 6502 has possibly fewer bits of on-chip registers than any other

microprocessor. Besides the program counter, there is an 8-bit accumulator
and two 8-bit index regIsters. The stack pointer is also 8 bits and the stack is
thus limited to 256 bytes and is always in Page 1. The status register has the
usual negative, carry, and zero flags but also has overflow, interrupt disable,
and decimal mode flags. When the decimal mode flag is on, the arithmetic
instructions assume two-digit BCD data. As we will see later, what is
lacking in register count is made up double in memory-addressing flexibil
ity.

4 If an 8080 program gets caught in a loop with the interrupt disabled, it is impossible
to interrupt the program and return to the monitor. Reset is the only way our, which
destroys the program counter and other registers, making straightforward isolation of
the loop impossible.



156 MUSICAL ApPLICATIONS OF MICROPROCESSORS

6502 instructions may be either one, two, or three bytes in length. The
first byte is always the op code and the second and third bytes, if present, are
either immediate operands or addresses. The first 256 bytes of memory
(OOOO-OOFF) are termed the base page and can be addressed by many instruc
tions with a single address byte. However, the base page is indispensable for
most programming and is not merely a convenient way to save on memory.

The 6502 CPU is unusually efficient in executing instructions. Many
require only as many machine cycles as memory cycles and nearly all of the
remainder require only one extra cycle. Average execution speed may often
exceed 350,000 instructions/sec due in part to extremely fast conditional
jumps (2.5 f.Lsec average) and immediate mode instructions (2 f.Lsec). For
even higher speed, selected CPUs wi th clock frequencies as high as 4.°MHz
are available, which can approach speeds of 1.5 million instructions/sec
(MIPS) when combined with bipolar memory.

Addressing Modes

Like most minicomputers, the strength of the 6502 is its memory
addressing modes. Easy access to memory and a number of in-memory
operations reduce the need for registers. Although the manufacturer boasts
13 addressing modes, only 10 are sufficiently differentiated to be listed here:

1. Register, the operand is the designated register.
2. Immediate, the operand is the byte following the instruction.
3. Relative, the operand address is formed by adding the following byte to

the location counter (signed add). Used only by conditional branch
instructions.

4. Zero page, the address of the operand is contained in the single follow
ing byte.

5. Absolute, the address of the operand is contained in the two following
bytes.

6. Zero page indexed, the address of the operand is formed by adding the
following byte to the specified index register discarding the carry if
any.

7. Absolute indexed, the address of the operand is formed by adding the
following two bytes to the specified index register (unsigned add).

8. Indirect, the address of a byte pair containing the address of the
operand is in the following two bytes. Used only by the unconditional
branch instruction.

9. Indexed indirect, the zero page indexed sequence is used to locate a
byte pair on the base page containing the address of the operand.

10. Indirect indexed, the second byte of the instruction points to a byte
pair on the base page, which is added to the Y index register (unsigned
add) to form the address of the operand.
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A close examination of a detailed instruction set listing immediately
reveals that no instruction is legal in all of these modes and that most can use
half or fewer of them. In particular, instructions using one index register for
an operand cannot use the same register in forming rhe address of the other
operand. Also, the unqualified indirect mode would be very useful generally,
but the same effect can be achieved with either of the other indirect forms if
the index register contains zero. 5 Other than these, the selection seems to be
well thought out, since the need for an unavailable combination is not
frequent. Note that the base page must be used to perform variable addressing
of any possible memory location; the indexed modes only have a range of 256
bytes due to the 8-bit size of the index registers.

A full instruction set listing is shown in Table 5-1 along with the
allowable addressing modes and execution time. One unique feature is that
shift and rotate instructions can work directly in memory and with indexed
addressing to boot! Note that the condition codes are set even when some
thing is merely loaded. Both the LSI-II style bit test and compare any
register instructions are also included, although the immediate form of bit
test is mysteriously absent. 5

There are some weak points too. For example, the arithmetic instruc
tions always include the carry in the calculation. For the more common
single-byte or subtract, it is necessary to first clear or set the carry flag,
respectively (if its current state is unknown). Conditional branches are
limited to true and complement testing of individual condition flags,
although the inclusion of an overflow indicator makes it easy to simulate all
of the combination forms also. One perennial headache is that index registers
must pass through the accumulator on the way to or from the stack. 5

Interfacing Tricks

Although not obvious from the foregoing description, the 6502 lends
itself well to individual bit control functions. For individual testing of
external conditions such as key closures, a standard digital multiplexor can
be connected ro respond to a range of addresses and gate the addressed input
onto the most significant bit of the data bus. A shift or rotate memory left
instruction can then copy the addressed condition into the carry flag for
testing without disturbing any of the registers. Inexpensive addressable
latches can be used for individual control of output bits, again without
disturbing any registers. If the addressable latches are wired to respond to a
group of addresses and take their data from the least significant bit of the
data bus, then a shift memory left will clear the addressed bit and a shift

5 The CMOS 6502 mentioned earlier does have an unindexed indirect addressing mode
added as well as several new instructions including bit tesr immediate and direct push
and pop of the index registers.
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right will set it. Since indexed addressing is available with the shifts, very
efficient bit testing and control loops are possible.

Besides logic replacement, the 6502 can be used quite successfully for
general-purpose applications. The main factor inhibiting this besides the
course of history is its reliance on a base page and its limited indexed
addressing range. The base page complicates a relocating linking loader
considerably because both base page and regular memory relocation are re
quired. Although the 6502 is a model of efficiency when processing tables
less than 256 bytes in length, bigger lists cannot be handled using
straightforward indexed addressing. Instead, pointers must be formed on the
base page and address calculation done with normal arithmetic instructions.

Direct synthesis can be done significantly faster with the 6502 than
with other 8-bit processors. The addressing modes are quite efficient in
handling the waveform and other tables involved provided they do not exceed
256 bytes in length. Properly programmed, translation of a byte via table
lookup may add as little as 4 f.Lsec to execution time. An 8 X 8 unsigned
multiply can be performed by software in as little as 92 clock cycles average
for a full 16-bit product. These figures make the idea of using a 6502
microprocessor for each voice in a direct synthesis system at least worth
considering.

The 68000 for General Purpose and High Performance

Of the existing 16-bit microprocessors available for use by anyone in
1984, the Motorola 68000 is clearly the best performer in musical
applications. It is inherently fast with speeds as high as 3 million register-to
register instructions per second. It has a rich register complement of 16 32
bit general-purpose registers, which makes that speed claim meaningful.
And it can handle big applications using very large data arrays because of its
unsegmented addressing range of 16M bytes. These factors together allow an
instruction set that is very easy to program in assembly language and has the
power necessary for efficient code generation by high-level language
compilers.

Whereas an 8-bit microprocessor can be thoroughly documented in a
16- or 24-page brochure, Motorola needs a 200-page paperback book to do
the same for the 68000. Much of this bulk concerns usage in very complex,
multiuser, time-sharing computer systems for which it has been highly
promoted. In fact, the performance of the 68000 is comparable to that of
large minicomputers typically used in time-sharing systems and beats the
pants off the room-sized IBM 360/40 the author used in 1970. However, it is
possible, even easy, to use the 68000 in small single-user systems or even
logic-replacement-dedicated applications as well, which is the case for most
musical applications. These are the usage modes that will be covered here
with emphasis on those features that make the 68000 unusually effective in
high-performance single-user applications.
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The 68000 family is actually available in four different configurations
and three different clock speeds. The "standard" 68000, upon which this
discussion is based, comes in a very large 64-lead dual-in-line package that
measures about 1 inch X 3.5 inches. This version has a separate 16-bit data
bus and 24-bit address bus that together account for 40 of those pins. The
68008 is an 8-bit data bus version with 20 address lines (1M byte addressing
range) that fits into a more petite 40-lead package. It is absolutely
instruction-set-compatible with the standard 68000 but costs substantially
less (under $20) and runs about 60% as fast. The 68010 is essentially the
same as the 68000 but has hardware enhancements that are valuable in
multiuser applications. Due to more efficient internal operation, it is slightly
faster for most programming as well but costs twice as I?uch as a 68000. The
standard clock speed for these three versions is 8 MHz, although 10 MHz and
12.5 MHz are available at extra cost and 16 MHz may ultimately become
available.

The 68020 is the newest family member with a full 32-bit data bus and
separate 32-bit address bus. That gives it a linear, unsegmented addressing
range of more than 4 gigabytes! It is packaged in a small, difficult-to-use,
1l2-lead "pin grid array" that is less than 1.5 inch square. Because of the 32
bit data bus and incredibly efficient internal operation, it is 3 to 10 times
faster than the 68000, particularly for short loops, common in most direct
synthesis algorithms. The standard clock speed is projected to be 16 MHz. It
is interesting to note that the initial price of $487 is actually less than the
8080's initial price of $360 in 1974 if inflation is taken into account.

Bus Structure and Timing

The 68000 is really a 32-bit microprocessor with a 16-bit data bus.
Only 24 of the potential 32 address bits are available externally, and 32-bit
operands are transferred 16 bits at a time. All addresses are byte addresses,
which makes byte manipulation software easy. Since the registers and data
bus are more than 1 byte wide, a property known as "byte sex" becomes
important. In essence, this specifies how multiple byte operands such as 16
and 32-bit numbers are stored in memory. The 68000 uses positive byte sex in
which the most significant bytes (leftmost in registers) are stored at lower
byte addresses. Thus, reading values from a memory dump listing is easy
because they are listed in the same order one would write them on paper or
visualize them in registers. The address of a 2- or 4-byte operand is the
address of its most significant byte, which in the 68000 must always be even.

In order to simplify hardware handling of individual 8-bit bytes on a
16-bit data bus, the lowest address line on the 68000 is replaced by a lower
data strobe line and an upper data srrobe line. For 16-bit (word) transfers,
both strobes are activated, whereas for byte transfers, only one is pulsed:
upper for even addresses and lower for odd addresses.
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AODRESS STROBE

8 MHz CLOCK

FUNCTION CODE

ADDRESS BUS
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DTACK
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Fig. 5-3. Motorola 68000 read cycle (8-MHz operation)

Besides address and data strobe lines, the 68000 has three additional
lines that specify a function code. The function code acts like an address
modifier and identifies where the associated address came from as a 3-bit
code. Five of the possible combinations are used as follows: 001, user data;
010, user program; 101, supervisor data; HO, supervisor program; and 111,
interrupt acknowledge. In complex 68000-based systems, distinction be
tween operating system and user programs and also between program code
and data can be implemented using the function codes. In simpler single
user implementations, the function code is normally used only to identify
interrupt acknowledge bus cycles.

Virtually all normal 68000 program execution involves just two kinds
of bus cycles: a read cycle and a write cycle. Each of these requires jOur clock
cycles to execute (assuming no wait states); thus, the maximum bus cycle rate
is 2 MHz with the standard 8-MHz clock frequency. In addition to read and
write, there is a very rarely used read-modify-write cycle, a "68000
compatible" cycle, and an interrupt acknowledge cycle.

Figure 5-3 shows a simplified 68000 read cycle. Each half-cycle of the
clock is given a "state number" of 0 through 7. The bus cycle begins with
State 0, during which the three/unction code lines are updated. Next, during
State 1, the address lines are activated with the correct address. Note that the
address lines are disabled and float between bus cycles, a feature that requires
careful address decoder design and can be confusing when address signals are
examined on an oscilloscope. After this addressing setup, the cycle proper
starts in State 2 when Address Strobe is asserted. For read cycles, the Read/
Write line remains high to specify a read. Also during State 2, the Lower
Data Strobe and Upper Data Strobe lines are driven low according to the type
of data transfer and remain along with Address Strobe until the end of the
cycle in State 7.
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Fig. 5-4. Motorola 68000 write cycle

Like all microprocessors, the 68000 has provisions for waiting on slow
memories, dynamic RAM refresh, and so forth. The others, however, have a
wait signal, which must be activated to cause such a wait; ignoring the wait
signal will allow full speed operation. The 68000 instead uses a data transfer
acknowledge signal (DTACK), which must be driven to cease waiting and
allow the cycle to complete. Motorola literature, which is geared toward
large-system implementation, devotes a great deal of space to how this signal
should be driven, which makes 68000 bus cycles appear to be much more
complex than they really are. In reality, DTACK can be treated as simply the
inverse of wait in a simple system. In systems with all static memory
requiring no wait states, DTACK can simply be tied to ground, and the bus
cycles will proceed at full speed.

In any case, DTACK is sampled at the beginning of State 5. If it is low,
the cycle proceeds, and read data is latched in the microprocessor at the
beginning of State 7. If DTACK is high when sampled in State 5, States 4
and 5 are repeated indefinitely until it is seen to be low. Thus, waiting is in
increments of 125 nsec (assuming an 8-MHz clock), a much smaller penalty
than with the 6502. For static memories (such as ROM), the allowable read
access time is about 290 nsec, whereas, for dynamics (which are triggered by
address strobe rather than an address change), it is about 235 nsee. Neithet
requirement puts much stress on modern memory components, so zero wait
state operation should generally be possible.

Figure 5-4 shows a write cycle, which is quite similar to the read cycle
just discussed. During State 2, simultaneously with Address Strobe, Read/
Write goes low to signal a write cycle. The data strobes are not activated until
State 4, at which time data on the data bus is guaranteed to be stable. When
a word is written, both data strobes are activated to cause writing into both
halves of the word. However, only one is activated when a byte write is to be
performed. Memory must be organized into two 8-bit halves such that
writing only occurs when the corresponding data strobe is activated in
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conjunction with read/write being low. All signals remain stable until State 7
when the address and data strobes are removed. Address and data themselves
remain for one additional half-clock. Since valid data and address completely
overlaps read/write and the data strobes, there is no problem in using
transparent latches for output registers as there is in the 6502.

The read-modify-write cycle is shown in Figure 5-5. Most high
performance minicomputers and mainframes use this type of cycle, which is
shorter than separate read and write cycles because the address is sent out only
once, to speed up certain instructions such as "increment memory." In the
68000, it is actually longer (10 clock cycles instead of 4 + 4) and used only
for interprocessor communication in a multiprocessor shared-memory sys
tem. The idea is to link the testing (read) and setting (write) phases of
memory flag manipulation such that no other processor can test or change
that same flag between the two phases. Only one 68000 instruction, called
appropriately enough Test And Set, uses the read-modify-write cycle. Its
distinguishing feature is that Address Strobe remains active during both the
read and write halves of the cycle, which should prevent the bus arbitrator in
a multiprocessor system from giving control to another processor between the
halves. Since the Test And Set instruction does very little (other instructions
are much more useful for single-processor flag manipulation), its use can be
avoided and this type of bus cycle ignored in a simple system design.

Most of the time, 68000 bus cycles are executed back-to-back with no
dead time between State 7 of the previous cycle and State 0 of the next cycle.
This is due in part to pipelined internal operation in which the next
instruction is often read from memory while the previous one is still
executing. There can, however, be any number of idle clock cycles between
bus cycles, which causes problems when interfacing to I/O chips designed for
the 6800 (Motorola's original 8-bit microprocessor) and the 6502, which
require uniformly spaced bus cycles. The 68000 thus offers a "6800- (6502)
compatible bus cycle" option. At all times while power is applied and the
clock is running, the 68000 will generate a uniform rectangular wave called

B MHz CLOCK

FUNCTION CODE :::x _

ADDRESS BUS ----{C===================:::Jf-----
ADDRESS STROBE

READI WRITE

UDS, LOS

DTACK

DATA BUS

~'- -----JI

ZJ ,'--- L.l./7777Z72:...::...::..:.~

~'- --'I ''-__--'1

~~~ W0/ff$ffiW&&'iWA I//l/ll/ffi
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Fig. 5-5. Motorola 68000 read-modify-write cycle
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Enable, which is equivalent to the 6502's Phase 2. The frequency of this
signal is one-tenth the clock frequency and has a 60% low, 40% high duty
cycle. Any normal 68000 bus cycle can be converted into a synchronous 6800
cycle by driving the Valid Peripheral Address (VPA) line low before the
beginning of State 4. This would normally be done by a decoder recognizing
the address of an I/O chip on the address lines. The 68000 will then wait
until Enable goes low, drive Valid Memory Address low, and then transfer
data when Enable goes high and low again. Since Enable is a uniform
frequency rectangular wave and 68000 bus cycles can start at any time, the
amount of time required to execute a 6800-compatible cycle can vary from 10
clocks to 18 clocks. One could in fact make all bus cycles 6800-compatible
by grounding the VPA line, but then system speed would be less than half of
its potential.

Severa] other bus control signals are available for more complex
systems. One of these is Bus Error, which will abort a bus cycle in progress
and generate an interrupt if activated. In a small system, its main use is to
flag attempted access of nonexistent memory as an error condition and return
to the operating system. In a large system using virtual memory, this signal
would come from the memory manager and would indicate that the area of
memory just addressed is on disk and needs to be swapped in. In such cases,
bus cycles can actually be retried by proper use of the Halt signal. A simple
system would just tie Halt and Reset together and use the result as the system
reset signal.

Three signals are used for direct memory access (DMA) applications.
These are Bus Request, Bus Grant, and Bus Grant Acknowledge. They
operate in a complex two-phase handshake sequence that will not be detailed
here. The 68000 is quite efficient in releasing the bus for DMA with as little
as one clock cycle of overhead involved. As is traditional with micro
processors, once the 68000 has released control of the bus (which includes
data, adddress, and most of the controls), it is the responsibility of the DMA
device to generate all of the timing signals needed for data transfers.

Interrupts

All large computer systems have elaborate interrupt structures and the
68000 is no exception. Interrupts, which are called exceptions by Motorola,
can come from a variety of internal sources such as zero divide, external
hardware errors such as Bus Error, and from I/O devices. Every possible
interrupt source is assigned to a two-word (4-byte) vector in memory. These
vectors are stored at fixed addresses in memory starting at location zero and
extending up to 1023 for 255 possible interrupt sources. A summary of these
vectors is shown in Table 5-2. Each vectot, except number zero, is simply
the address of the interrupt service subroutine.

When an interrupt occurs, the processor status and a return address are
pushed onto the supervisor stack. Next, the corresponding vector is read to



Address (Hex)

000000
000004
000008
OOOOOC
000010
000014
000018
00001C
000020
000024
000028
00002C
000030-000038
00003C
000040-00005C
000060
000064

00007C
000080

OOOOBC
OOOOCO-OOOOFC
000100-o003FC

MICROPROCESSORS

Table 5-2. 68000 Interrupt Vectors

Description

Reset, initial stack pointer
Reset, initial program counter
Bus error
Address error
Illegal instruction
Zero divide
CHK instruction failed
TRAPV instruction saw overflow
Privilege violation
Trace interrupt
Unused op-codes beginning with hex A
Unused op-codes beginning with hex F
Reserved vectors
Uninitialized interrupt
Reserved vectors
Spurious interrupt
Level 1 autovector 1/0 interrupt

Level 7 autovector 1/0 interrupt
TRAP 0 instruction

TRAP 15 instruction
Reserved vectors
Available for 1I0-device-generated vectors
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determine where the service routine resides. It is the responsibility of the
service routine to save any registers it might use and restore them when it
returns. When complete, a Return From Interrupt instruction is used to
restore the status register and return to the interrupted program.

System reset is actually vector zero bur is handled differently. Nothing
is saved on reset; instead, locations 0-3 are loaded into the supervisor stack
pointer and locations 4-7 give the address of the initial program code. Thus,
a 68000 system must always have read-only memory for these eight
locations. Typically, all of low memory will be ROM, and the interrupti
vectors will point to a prearranged area of RAM that contains a modifiable
jump table to the actual interrupt service subroutines. Since low memory
must be ROM, most 68000 operating systems reside in low memory and put
user programs in high memory, the exact opposite of 6502-based systems.

The 68000 has a wealth of internally generated interrupts. The simplest
of these flag software error conditions such as division by zero, accessing a
word at an odd address, and illegal instructions or addressing modes. When
in user mode, some instructions are privileged and will cause an interrupt
when executed. Actually, illegal instructions are divided into three groups
and each group interrupts through a different vector. One group is truly
illegal and will remain so even with future incarnations of the 68000. The
other two groups comprise "emulator" instructions and each has potentially
4,096 variations. In the future, some of these may do something useful such
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as floating-point math. For now, the subroutine that services the emulator
instructions can decode and "execute" them in software. Beyond these, there
are 16 more trap instructions, each with its own interrupt vector. The traps
are typically used to call operating system routines (as many as 16) without
the user program needing to know where in memory the routines are stored.
Finally, there is a trace interrupt that is generated after evety instruction
execution if the trace bit is on in the status register. This feature makes it very
easy to implement software tracing of program execution.

There are eight separate interrupt priority levels in the 68000. The
highest are internally generated and external hardware error indications that
cannot be disabled. The other seven levels are normal I/O-type interrupts. A
3-bit level number in the status register determines which levels are allowed
to generate interrupts. When this register contains seven, all I/O interrupts
except Level 7 are inhibited. When it contains lower numbers, lower level
interrupts are allowed. A zero level number allows all interrupts. When an
interrupt is recognized, the current level number in the status register is
changed to match the level number being serviced, thus inhibiting further
interrupts on that or a lower level. Higher-priority interrupts, however, can
still interrupt the lower-priority service routine, thus providing a true
multilevel nested operation.

I/O interrupt hardware can be either simple or complex. For a simple
system, the 68000 can be instructed to generate a vector number based on
the priority level being serviced, thus providing up to seven possible
interrupt sources. This autovector mode is activated by driving the VPA signal
during interrupt acknowledge bus cycles. Using this approach does not
preclude having multiple interrupt sources on each level, but then the level
service routine would have to poll devices on its level to determine which was
interrupting. With more complex hardware, each interrupting device can
drive a unique 8-bit vector number onto the data bus during interrupt
acknowledge bus cycles. This would provide for direct, automatic entry into
each device's service subroutine with no polling or status testing necessary.

Registers

Whereas the 6502 offers a spartan set of four working registers but very
flexible memory addressing to compensate, the 68000 offers the most
registers coupled with the most useful addressing modes. There are in fact
eight data registers and eight address registers, each of which is a full 32 bits in
length. All eight of the data registers (DO-D7) and seven of the address
registers (AO-A6) can be used however the program sees fit. Address Register
7 is normally reserved as a stack pointer, since the interrupt, subroutine
linkage, and privilege hardware assume that. There are, in fact, two A7
registers, one for Supervisor Mode and one for User Mode. The present
privilege mode selects which one is active. Actually, any of the address
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registers can be used as a stack pointer with equal ease, a valuable feature for
many high-level languages.

Data registers act essentially like accumulators and all are equivalent;
none have dedicated functions. All of the standard arithmetic operations
including shifts and multiply/divide operate on data registers. Some of the
addressing modes can use values in the data registers as offsets and indices.
Since data registers are 32 bits long, they are often called upon to hold
shorter 8- and 16-bit values. In general, when a shorter value is loaded into
or created in a data register, it is put at the lower (rightmost) end and the
remainder of the register is not changed. This action can lead to program bugs
but is very useful when needed.

Address registers most closely resemble the index registers of classic
computers. Limited arithmetic such as add/subtract, compare, and incre
ment/decrement can be performed but not shifts or logical operations.
Address registers always contain 32-bit values; if a word value is loaded or
generated, it is sign extended to 32 bits. Byte-sized operations are not allowed
on address registers.

Addressing Modes

Historically, as small computers became more sophisticated, the
greatest improvement was in the variety of memory-addressing modes
available. For example, the Digital Equipment PDP-ll became the most
popular minicomputer largely because of its many and varied addressing
modes. Likewise, the 6502, Motorola 6809, and 68000 have reached the
heads of their respective classes because of flexible memory addressing.

Addressing modes are important because, when manipulating common
data structures, the availability of a single instruction with an appropriate
addressing mode can replace several time- and space-consuming address
calculation instructions. This is doubly important in music synthesis
applications, which typically manipulate large, moderately complex data
structures. A particularly strong point of the 68000 is that these addressing
modes work for data arrays as large as the addressing range, i.e., up to 16M
bytes. Other processors using segmented memory, such as the 8086 series,
may have nearly as many addressing modes as the 68000, but they are useless
when array sizes exceed 64K bytes. In fact, a considerable amount of segment
register swapping is usually necessary when the total size of all arrays exceeds
128K bytes.

Table 5-3 is a summary description of the addressing modes offered by
the 68000. Keep in mind that, whenever an address register or a data register
participates in an address mode calculation, the full 32 bits (or optionally 16
bits) of the register is used. Also, the result of an addresss calculation is
always a 32-bit integer of which the lower 24 are sent out to the address bus
on the 68000. The 68020, with its 4G-byte addressing range, merely sends
out all 32-bits of the result; the addressing modes still work the same way.
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Table 5-3. 68000 Addressing Modes

Name Function

000000

001AAA

010AAA

011AAA

100AAA

101AAA
00

110AAA
RO

111000
aa

111001
aaaa

111010
00

111011
RO

111100
I I
111100
I /I I
111101
111110
111111

Data register direct

Address register direct

Address register indirect

Address register indirect with
postincrement

Address register indirect with
predecrement

Address register indirect with offset

Address register indirect with offset
and index

Absolute short (16-bit)

Absolute long (32-bit)

Relative with offset

Relative with offset and index

Immediate short

Immediate long

Unused
Unused
Unused

Quick immediate short

Quick immediate long

Operand is content of data register
DOD

Operand is content of address
register AAA

Operand is content of memory at
address in address register AAA

Operand is content of memory at
address in address register AAA;
after the instruction, the operand
length (1, 2, or 4) is added to
register AAA

Before the instruction, the operand
length is added to address register
AAA; ttle operand is content of
memory at address in register AAA

Operand is content of memory at
address in address register AAA
plus the 16-bit offset in the word
following the instruction

Operand is content of memory at
address in address register AAA
plus the content of register R
(either A or 0, either 16 or 32 bits)
plus an 8-bit offset; both specified
in the word following the instruction

Operand is content of memory at
address in the 16-bit word following
the instruction

Operand is content of memory at
address in the 32-bit long word
following the instruction

Operand is content of memory at
address in program counter plus
the 16-bit offset in the word
following the instruction

Operand is content of memory at
address in program counter plus
the content of register R (either A
or 0, either 16 or 32 bits) plus an
8-bit offset; both specified in the
word following the instruction

Operand is the content of the word
following the instruction

Operand is the content of the long
word following the instruction

These are reserved for future
expansion of the addressing
modes; the 68020 uses two of
them

A 3-bit field in some instructions
specifies an operand between 1
and 8 inclusive

An 8-bit field in some instructions
specifies an operand between
-128 and + 127.

Notes: 1. The first line under "coding" is the 6-bit address mode specification field found in all instructions
using generalized address modes. Each symbol represents a single bit in this field.

2. The second line under "coding," if any, represents additional bytes following the instruction that
contains additional addressing information. Each symbol represents a complete byte.

3. The "move" instruction contains two generalized address mode fields. If each requires additional
following words, the source address word or words come first.
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Instruction Set

The 68000 instruction set is best described as simple and straightfor
ward. Although there are only 56 distinct instruction types (just a few more
than the 6502), there are thousands of variations when one takes into account
the addressing modes and other instruction "modifiers." The instruction set
is claimed to be highly "orthogonal" or "symmetrical," which in the limit
means that any instruction could use any addressing mode for both source
and destination operands. Since actual achievement of this ideal would
require a very large number of bits in the operation code and lead to many
nonsense instructions, most 68000 insrructions have some kind of addressing
mode restrictions. Occasionally, these are severe, for instance, the program
counter relative mode can never be used to address a destination.

Besides one or two addressing mode specifications, most instructions
have a size modifier that specifies the length of the operands (Table 5-4). The
available sizes are byte (8 bits), word (16 bits), and long word (32 bits). Some
instructions may have an implied size or may operate only on words or long
words. When either a data or an address register is used as a source operand,
the size modifier specifies how much of the lower part of the register to read.
When a data register is used as a destination, only the lower part is changed.
All 32 bits of an address register, however, receive the sign-extended result of
any instruction using it as a destination.

One reason for so few instruction types for such a powerful processor is
the presence of a generalized "Move" instruction. This instruction can use
any addressing mode or register for the source and almost any addressing
mode for the destination. So important is Move that nearly one-quarter of the
possible combinations of the 16 operation code bits are used by it. With
appropriate addressing modes, Move replaces the myriad loads, stores,
pushes, pops, etc., of other instruction sets. One of the variations of Move
uses what is known as a "quick immediate" source operand. In a single 16-bit
instruction word, any value between - 128 and + 127 can be loaded into any
data register. A "move multiple registers" instruction can move any combina
tion of the general registers to or from any memory location using any of the
memory-addressing modes. The combination of registers desired is specified
using a one-word bit map where each bit corresponds to a register. This
instruction really makes saving and restoring registers in subroutines easy,
and it executes at full bus-limited speed.

Add and subtract binary arithmetic can be performed on 8-, 16-, and
32-bit quantities. Not only can a register be the recipient of the result, but a
register can be added to memory with the result stored in memory. There is
no provision in the 68000 for pairing up data registers to hold 64-bit
operands or results so multiply is restricted to 16 X 16 and divide to 32/16.
Both signed and unsigned binary arithmetic is possible as well as binary
coded-decimal add and subtract. "Add quick" and "subtract quick" allow any
register or memory location to be incremented or decremented by 1 to 8 with



Table 5-4. 68000 Instruction Set Summary

Opcode Size Source Destination Operation

ABCD B D D Binary coded decimal add source to destina-
B M M tion with extend

ADD BWL Gs D Twos complement binary add source to des-
BWL D Gm-R tination with result stored in destination

ADDA WL Gs A
ADDI BWL I Gd-A
ADDQ BWL Q3 Gd
ADDX BWL 0 0 Twos complement binary add source to des-

BWL M M tination with extend
AND BWL Gs-A 0 Logical AND source to destination

0 Gm-R
ANOI BWL I Gd-A
ANOI xx B I xx Logical AND to condition code or status

register; status register is privileged
ASL BWL Q3 0 Arithmetic shift left data register; shift count

BWL 0 0 is in source
W Gd-R Shift memory left one bit position only

ASR BWL Q3 0 Arithmetic shift right data register; shift count
BWL 0 0 is in source.
W Gd-R Shift memory right one bit position only

Bcc BW 08,16 Branch relative if condition is true
BCHG L I 0 Test the bit number specified by the source

B I Gd-R and set the zero condition according to its
L 0 0 state; then change the bit to the opposite
B 0 Gd-R state

BCLR L I D Test the bit number specified by the source
B I Gd-R and set the zero condition according to its
L 0 0 state; then clear the bit to zero
B 0 Gd-R

BSET L I 0 Test the bit number specified by the source
B I Gd-R and set the zero condition according to its
L 0 0 state; then set the bit to one
B 0 Gd-R

BSR BW 08,16 Branch relative to subroutine; 32-bit return
address pushed onto stack

BTST L I 0 Test the bit number specified by the source
B I Gd-R and set the zero condition according to its
L 0 D state
B 0 Gd-R

CHK W Gs-A 0 Destination compared against zero and con-
tent of source; trap if less than 0 or greater
than source

CLR BWL Gd-A Clear the destination to zero
CMP BWL Gs D Subtract source from destination and set
CMPA BWL Gs A condition codes
CMPI BWL I Gd-A
CMPM BWL M+ M+
OBcc W 016 0 Continue if condition is true; if false, decre-

ment destination and branch relative if not
zero

OIVS W Gs-A 0 Divide 32-bit destination by 16-bit source
DIVU W Gs-A D and store 16-bit quotient and remainder in

the destination; signed and unsigned
EOR BWL 0 Gd-A Logical exclusive-or source to destination
EORI BWL I Gd-A
EORI xx B I xx Logical exclusive-or to condition codes or

status register; status register is privileged



Table 5-4. 68000 Instruction Set Summary (Cant.)

Opcode Size Source Destina tion Operation

EXG L 0 0 Exchange source register with destination
L A A register
L A 0

EXT WL 0 Sign extend next size shorter operand to the
designated length

JMP Gj Jump unconditionally to effective address
JSR Gj Jump to subroutine at effective address, 32-

bit return address pushed onto stack
LEA L Gj A Load effective address into address register
LINK 016 A The 32-bit destination content is pushed

onto the stack; next, the stack pointer is
loaded into the destination; finally the
source is added to the stack pointer

LSL BWL 03 0 Logical shift left data register, shift count is in
BWL 0 0 source
W Gd-R Shift memory left one bit position only

LSR BWL 03 0 Logical shift right data register, shift count is
BWL 0 0 in source
W Gd-R Shift memory right 1 bit position only

MOVE BWL Gs Gd-A Move from source to destination and set
condition codes

MOVE xx W Gs-A xx Move to/from condition codes, status regis-
W xx Gd-A ter, or user stack pointer; status register

and user stack pointer are privileged
MOVEA WL Gs A Move from source to destination
MOVEM WL RL Gd-R-+ Move designated registers sequentially to

memory
WL Gm RL Move memory sequentially to designated

registers
MOVEP WL 0 Mo Transfer data between a register and alter-

WL (A)+O 0 nate bytes in memory
MOVEO L 08 0 Move source to destination sign extended
MULS W Gs-A 0 Multiply 16-bit destination by 16-bit source

and store 32-bit product in the destination;
signed and unsigned

NBCD B Gd-A Binary coded decimal negate with extend
NEG BWL Gd-A Binary negate destination
NEGX BWL Gd-A Binary negate destination with extend
NOT BWL Gd-A Ones-complement destination
OR BWL Gs-A 0 Logical "or" source to destination

0 Gm-R
ORI BWL I Gd-A
ORI xx B I xx Logical "or" to condition code or status regis-

ter; status register is privileged
PEA L Gj Stack Push effective address onto stack
RESET Pulse the reset signal (privileged)
ROL BWL 03 D Logical rotate left data register, rotate count

BWL D 0 is in source
W Gd-R Rotate memory left 1 bit position only

ROR BWL 03 D Logical rotate right data register, rotate count
BWL 0 D is in source
W Gd-R Rotate memory right 1 bit position only

ROXL Same as ROL except uses extend bit
ROXR Same as ROR except uses extend bit
RTE Status register and program counter restored

from the stack, privileged
RTR Condition codes and program counter re-

stored from the stack



Table 5-4. 68000 Instruction Set Summary (Cont.)

Opcode Size Source Destination Operation

RTS
SBCD

Scc

STOP

SUB

SUBA
SUBI
SUBQ
SUBX

SWAP
TAS

TRAP

TRAPV

TST
UNLK

B 0
B M
B

116

BWL Gs
BWL 0
WL Gs
BWL J

BWL Q3
BWL 0
BWL M
W
B

14

L

o
M
Gd-A

o
Gm-R
A
Gd-A
Gd
o
M
D
Gd-A

Gd-A
A

Program counter restored from the stack
Binary coded decimal subtract source from

destination with extend
Set ail bits in destination equal to specified

condition (false = 0, true = 1)
Load source into status register and stop

until interrupted, privileged
Twos complement binary subtract source

from destination with result stored in
destination

Twos complement binary subtract source
from destination with extend

Swap 16-bit halves of destination
Set negative and zero condition code ac

cording to destination and then set bit 7 of
destination; uses special read-modify
write bus cycle

Generate internal interrupt to trap vector
specified by 4-bit immediate field

Generate internal interrupt if overflow condi
tion is set

Set condition codes according to destination
The stack pointer is loaded from the spec

ified address register; a long word is then
popped from the stack and loaded into the
address register

Addressing mode key:
Gs General source address, any of the coded address modes in Table 5-3.
Gd General destination address, any of the coded address modes except the immediate and relative

modes.
Gm General memory address, any of the coded address modes except register direct.
Gj General jump address, any of the coded modes except register direct, predecrement, postincre-

ment, and immediate.
-A Address register direct not allowed.
- R Neither address nor data register direct allowed.
- + Address register indirect postincrement not allowed.

Address register indirect predecrement not allowed.
- + Neither postincrement nor predecrement is allowed.
A Any address register.
D Any data register.
M Address register indirect addressing mode.
Mo Address register indirect with offset addressing mode.
I Any of the immediate addressing modes, length equal to operation length or a following number.
Q Quick immediate, either 3 bits (range 1-8) or 8 bits (range - 128 to + 127).
o Offset (displacement) following the instruction, either 8 or 16 bits.
RL Register list coded as a 16-bit word following the instruction. Each bit corresponds to a register

and a 1 bit means process the register.
xx Specialized source or destination as listed in instruction description.

a single 16-bit instruction. Along with arithmetic, the usual And, Or, and
Exclusive-Or operations are available with either a data register or memory as
the destination.

The 68000 maintains five condition code bits that are set after most
instructions. Four of these are Negative, Zero, Carry, and Overflow, which
are used by the conditional branch instructions. The fifth is called Extend
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and is set the same as Carryon arithmetic instructions but is not affected by
moves. The Extend bit is used instead of carry by the multiple-precision
instructions Add Extended and Subtract Extended. Conditional branch
instructions have a 4-bit field that is coded for useful combinations of the
condition codes. For example, the "greater than" jump condition is
determined by a complex logical combination of the Negative, Zero, and
Overflow bits such that it works even after comparing two signed numbers
that were large enough to cause overflow when subtracted in the comparison
process. Explicit branch conditions are available for all seven possible
relations between two operands, both signed and unsigned, plus an always
true and an always false condition to make a total of 16. The conditional
branch instruction itself can test for a condition and jump up to 126 bytes
away in a one-word instruction. A two-word format can jump up to 32K
bytes away while an unconditional jump instruction can use any addressing
mode to jump anywhere.

Other unusual or specialized instructions include test any bit by bit
number in either a register or memory and optionally set, clear, or flip it.
The bit number itself can either be specified in the instruction or in a data
register. Check is a single word instruction that simultaneously compares a
data register with zero and a value specified using any addressing mode. If
the register content is out of bounds, an interrupt is generated. This
instruction can be liberally sprinkled in sensitive code without significantly
increasing its space or time requirements. Another time-saver is the
Decrement and Branch instruction. As usual, it will decrement the content
of a register and simultaneously branch if the result is not yet negative.
However, it also tests a specified branch condition and will not branch if it is
met. Thus, there are two possible exits from a loop constructed using this
instruction. Link and Unlink instructions are used to conveniently reserve
space on the stack when a subroutine is entered and then freeing it upon
return. Load-Effective Address simply performs an addressing mode calcula
tion and puts the result into a specified address register or it can be pushed
onto the stack.

Speed

Computing the exact execution time of a particular 68000 instruction
is difficult because the effect of each addressing mode for both the source and
destination operands as well as the size specification must be considered. In
general, however, all of the simple instructions require time equal to the sum
of their memory cycles plus perhaps two to four more clock cycles for internal
computation. Shifts require two clock cycles per position shifted. Multiply
requires approximately 70 clocks, whereas divide needs 150, which translates
into 9 and 19 /-Lsec, respectively, at 8 MHz. Interrupt response takes about 44
clocks, which, when added to the longest possible instruction (a divide),
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gives a worst case response time of 24 J.Lsec. In order to obtain this level of
performance, the 68000 often "looks ahead" in the instruction and data
stream. Thus, there is some uncertainty in timing, and occasionally (such as
when a branch is successful) extra words are read from memory that are never
used.

As the foregoing figures show, the 68000 and indeed all current 16-bit
microprocessors are a little weak on math in relation to its strength in other
operations. Floating-point subroutines, which would be needed by most
high-level languages, are slower yet with typical times of 100 J.Lsec for
multiply and 40 J.Lsec for add/subtract (single precision). The universal
solution to this problem is the addition of a separate math "co-processor" Ie
connected in parallel with the microprocessor, which in effect adds hardware
floating-point instructions to its repertoire. Such chips bring the floating
point multiply-divide times down to the same range as the corresponding
integer operations and greatly simplify programming. At the time of
writing, Motorola had announced such a co-processor for the 68020 but was
far from actually having it available. Instead, applications needing high
performance arithmetic, such as music synthesis, have utilized the National
Semiconductor math co-processor intended for their 16000 microprocessor,
which can be easily driven by a 68000 as a peripheral.

Software

From the preceding, it should be obvious that the 68000 is exceedingly
easy to program in assembly language when compared with other micro
processors, both 8- and 16-bit. Inexplicably, usable and affordable 68000
software for single-user systems has been very slow in materializing.
Operating systems, such as UNIX, are typically very large, complex, and
expensive, with pricetags exceeding $1,000 per CPU not uncommon. OS-9 is
more reasonable but still much more complex and expensive than operating
systems for 8-bit processors were. Languages seem to suffer from the same
problem, with pricetags for good compilers equally as high as the operating
systems. Most of the problem stems from the 68000's historical use in large
and expensive time-sharing computers. Use of the 68000 in Apple's
MacIntosh computer was expected to quickly remedy the situation and may
ultimately do so, although not nearly as fast as expected. Hopefully, as more
low-cost single-user 68000-based computers are introduced with open architec
tures, low-cost software optimized for single-user applications will become
available.



SECTION II

Com uter Controlled
Analog S nthesis

As was often pointed out in Section I, computers can be involved in elec
tronic music synthesis in one of two distinctly different ways. A computer
may be interfaced to either standard or specialized sound-synthesizing
equipment and thus perform as a controller of this equipment. Or, with
suitable programming, the computer may merely simulate such equipment
and thus generate sound directly. Of these two means of involvement, the
application of microprocessors to control functions seems more straightfor
ward. In addition, the weight of current interest seems to be toward
computer-controlled synthesizers. Accordingly, Chapters 6 to 11 will be
devoted to describing more fully the types of circuits and equipment that
must be controlled, the interfacing techniques that may be used to allow
such control, and the programming and human interface techniques needed
to actually effect the control. In these chapters, the emphasis will be on the
control of analog synthesizing equipment using digital techniques. Analog in
this context refers specifically to the entire gamut of voltage-controlled
equipment whose general function and usage was described in Chapter 3.
Digital refers to the use of microprocessors both as general-purpose control
computers and as special-purpose logic replacements in interface equipment.
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Basic Analog Modules

Probably the most important idea in the history of analog music synthesis is
that of a modular synthesizer. Prior to the conception and implementation of
this idea by Robert Moog, numerous special-purpose synthesizers and, ac
cording to their designers, "general-purpose" synthesizers were built and
used. Music synthesis, however, is such a large and complex problem that
even the most ambitious general-purpose machines had serious
shortcomings. The major shortcomings were in the structure of the machines,
not the capability of the various oscillators, amplifiers, and filters that did
the work.

In a modular system, the structure is largely unspecified. The user
defines the structure appropriate to the requirements at the time and inter
connects the available modules to realize that structure. When that require
ment has passed, the modules are readily reconfigured to meet the next
requirement. The idea is roughly akin to the concept of movable type in
printing.

Analog System Standards
There must be some consistency among the modules, however, in order

to insure compatibility when they are connected. Before continuing, a few
system-wide "standards" that typically apply to a broad range of commercial
analog modules will be outlined. Standard power supply voltages are + 15 V,
+5 V, and -15 V with respect to system ground. The 5 V supply is used by
digital logic elements in the system and the ± 15 V is used by analog
circuits, such as operational amplifiers. All supplies are tightly regulated,
usually to better than 1%, although some high-frequency noise can be
expected on +5. The standard power supply voltages are generated and regu
lated at a central location and distributed to all of the modules in the system.
Other voltages used by some digital and analog ICs such as + 12 V, - 5 V,
and -12 V are conveniently derived from the standard voltages with IC
voltage regulators (some of which are less than 50 cents each) or zener diodes
or even resistive voltage dividers.

177
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Although the +15 V and -15 V supplies may be regulated well
enough for use as reference voltages, it can be difficult to keep them noise
free in large systems with many modules drawing varying load currents.
Thus, it may be advantageous to distribute a very carefully regulated refer
ence voltage also. Any board that uses the reference can then buffer it with a
simple op-amp voltage follower for load currents up to 20 rnA. For
maximum ease of use, the reference should be set equal to the standard signal
amplitude.

Signal and Control Voltages

Signal and control voltage levels are customarily standardized to either
± 5 V or ± 10 V. Either level is comfortably below the clipping level of
around 13 V exhibited by linear ICs operated on ± 15 V. With the almost
universally accepted VCO control sensitivity of 1 octaveN, a 5 V system will
have to use both positive and negative control voltages to cover an acceptably
wide frequency range. Ten-volt systems, on the other hand, have adequate
range with only positive control voltages, although negative values are often
desirable for further increasing the low end of the frequency range.

When used in a strictly computer-controlled system, it is attractive to
consider "binary scaling" of signal levels and control sensitivities. One very
nice set of numbers would be a signal amplitude of 8.192 V and a control
sensitivity of 0.9766 octavesN (1.024 V/octave). If potentials are expressed
in millivolts, then these are very "round" binary numbers. Positive control
voltages would therefore span eight octaves, which is quite adequate musi
cally (32 Hz to 8 kHz) but could also be extended by the use of negative
control voltages. Furthermore, the 8-V levels would be more easily handled
(translation: less costly) by analog-switching elements than full lO-V levels
while still having substantially better noise immunity than 5-V levels. Using
these round binary values in a computer-controlled analog system will con
siderably ease the transition to purely digital modules or direct synthesis at
some later date. In any case, virtually any voltage-controlled module,
whether scratch built or purchased, is readily converted (or simply read
justed) to any of these standards. The VCO to be described later, which is
designed to a lO-V standard, can be converted to 8 V simply by reducing
the system reference voltage to 8.192 V and touching up a few trim pots.

Digital control signals such as an envelope generator trigger can be any
amplitude but for compatibility with digital logic should swing between
ground and +5 V. The switching threshold level of digital inputs should be
around 1. 5 V, again for compatibility with digital logic.

Signal and control inputs of modules usually have a fixed impedance of
lOOK resistive. Although output impedances are sometimes set at 1,000
ohms to allow mixing of parallel-connected outputs, the author prefers a zero
output impedance level. This actually provides the most flexibility, particu
larly in a precalibrated computer-controlled system, because the output vol-
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tage remains constant regardless of load. Mixing of outputs is much better
accomplished with a multiple-input voltage-controlled amplifier or mixer
module anyway. Internal current limiting in nearly all IC op-amps prevents
damage if two outputs should be accidently paralleled or an output is shorted
to ground. If resistive output protection is required, the 1K output resistor
can be placed inside the feedback loop of the output amplifier to eliminate
loading errors.

Mechanical Considerations

Standard synthesizer modules are usually designed to mount into a rack
with an attractive front panel exposed. The height of the panel is usually
fixed at around 6 inches and the width varies upward from 11;2 inches
according to the number of I/o jacks and panel controls included. The actual
circuitry is usually contained on a small printed circuit board mounted to the
panel and connected to the jacks and controls with hookup wire.

Interfacing a standard modular system to a computer would probably
involve the construction of a "computer interface box," which would be a
patch panel with a few up to a hundred or more jacks installed. The interface
box would then be patched into the synthesizer just like any other module.
Pinboard-patched systems would be handled in the same way conceptually
but, of course, would be much neater in appearance. The advantages of such
an interfacing approach are that the synthesizer can still be used in the
conventional manner and that hybrid systems (conventional manual control
combined with computer control) are possible (and even probable).

However, a totally computer-controlled synthesizer need not require
any direct manual access to the analog modules. Instead, all patching and
operating parameters should be under the control of the computer. Further
more, the operating programs and procedures in an ideal system should make
it considerably easier for the user to set up patches and operating parameters
through the computer. In such a system, panel-mounted modules and scores
of knobs would be superfluous. Internal calibration adjustments would still
be necessary, however, to compensate for gradual drift of important parame
ters as the circuitry ages.

A preferable packaging arrangement then would be printed circuit
boards that plug into a backplane; essentially the same method used for logic
modules in microcomputer systems. These boards may either be small, each
being a one-for-one equivalent of the typical panel-mounted module, or they
may be large multichannel or multifunction boards.

The latter approach is quite feasible, since the number of parts needed
for a single module function is typically small. Also, large boards can be
more cost effective because some circuit elements, particularly computer
interface elements, may be shared among the channels. Examples of such
boards might be an eight-channel VCO or a completely general quad
raphonic "pan pot" consisting of a four-by-four array of VCAs.
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Another method of partitioning functions is the "voice per board"
concept. The modules that would typically be patched together for a musical
voice are all present on the same board, already interconnected. Although not
nearly as flexible as a standard functionally modular system, the voice modu
lar approach can be thought of as and controlled like an orchestra with a
limited, fixed complement of instruments. Also, much of the cost and
complexity of computer-controlled patching is eliminated because patching
itself is minimized.

Regardless of board construction and organization philosophy, the
backplane and card file housing the boards should be separate from the
computer packaging to eliminate possible pickup of digital noise. Also, it
may be necessary to shield the boards from each other with perhaps a steel
cover plate to minimize crosstalk. Backplane wiring of audio signals may also
need to incorporate twisted pairs or shielded cable.

The active analog circuits on such boards either could be built up from
scratch using the circuits about to be de~cribed as a foundation or may be
purchased as "epoxy modules" from several sources. The scratch method is
becoming much easier as linear ICs designed specifically for voltage
controlled modules are becoming available. Either way, the per module cost
of the computer-controlled system should be substantially less than that of
panel-mounted commercial modules. The disadvantage of the total
computer-oriented system is, of course, that the computer must be used to
"get into" the system at all.

A.nalog Components

Since a significant portion of the expense of an overall computer
controlled analog synthesizer is in the analog modules, it is appropriate to
become familiar with the circuitry in such modules even if the reader intends
to use an existing commercial synthesizer. In the following material, actual
circuitry! of the three most used analog modules will be described. These are
tested, practical circuits using a minimum of specialized components. Their
performance is excellent and well suited for use in computer-controlled
analog-synthesizing systems. The circuit discussions to follow will assume a
basic familiarity with linear transistor circuits and IC operational amplifiers.
If the reader is unfamiliar with these topics, several excellent references are
listed in the bibliography.

The most common active element in these circuits is the ubiquitous
operational amplifier. These devices have improved greatly with the introduc
tion of truly low-cost field-effect transistor (FET) input stages. The
semiconductor technology used to accomplish this goes by names such as
"BIFEr and "BIMOS" because junction FETs and MOSFETs, respectively,
are integrated with bipolar transistors on the same chip.

IThe original source of these circuits is Electronotes Newsletter.
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Op-amps made with these technologies possess an almost ideal
combination of desitable propetties such as low cost, wide bandwidth, fast
slew rate, and vanishingly small bias currents. It is now quite reasonable to
choose one of these amplifiers as a personal "standard" to be used in all
applications and forget about specialized "high-speed," "low-bias," or
"economy" devices. Even duals and quads are available at very attractive
prices. The only real shortcoming of this breed of amplifiers is generally
poorer initial offset voltage and drift with respect to equally priced bipolar
input types. The appendix gives a listing of the more popular FET input op
amps as well as several conventional bipolar types for comparison.

In spite of the convlllcmg arguments just gIven, a variety or op-amps
will often find their way into circuit diagrams given in this book. The author
is reluctant to specify such premium performance devices when a common
garden variety 741 or LM30 1 will suffice. Also many circuits are not original
with the author, and, therefore, the originally specified components are
shown. The reader can freely substitute the newer types (designated as "gen
eral replacement" in the appendix) wherever these are used with no detrimen
tal effect on circuit operation. Occasionally, really high performance in one
specification may be neeeded, which would require the use of a specialized
device. Most likely this would be an ultra-high-speed or really low offset
voltage or drift requirement.

Voltage-Controlled Oscillator
The veo is simultaneously the most important and most critical mod

ule in the system. The circuit topology chosen must, as much as possible, be
"inherently accurate" with any practical shortcomings being due to less than
ideal components rather than the circuit configuration. The waveform from
the basic oscillator should be readily shaped with frequency-independent
networks into several additional shapes with distinctly different harmonic
spectra containing both even and odd order harmonics. Finally, of course, the
circuit should meet the usual goals of low cost, minimum use of specialized
components, and operation from standard voltages.

Fundamental Types

Two fundamentally similar oscillator types are popular. One type nor
mally produces triangle and square 'waveforms, while the other generates a
sawtooth and a narrow pulse. Either pair of waveforms can be readily shaped
into sawtooth, triangle, rectangle, and sine waveshapes with simple,
frequency-independent (containing no inductors or capacitors in the signal
path) networks.

A block diagram for either type of oscillator is shown in Fig. 6-1. Note
that the oscillator itself is actually a current-controlled oscillator. The control
voltages are combined by the input-processing block into a single, properly
scaled control voltage but still in exponential (actually logarithmic) form.
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AUOIO 7
FREQUENCY
WAVEFORM

CONTROL --- INPUT EXPONENTIAL CURRENT-CONTROLLED
VOLTAGE --- PROCESSING !CONVERTER !OSCILLATORINPUTS ___

EXPONENTIAL LINEAR
VOLTAGE CURRENT

OUTPUT
PROCESSING

Fig. 6-1. Elements of a veo module

The exponential converter block simultaneously takes the exponential of the
scaled control voltage and converts it into a current, thus exponentially
converted voltages never occur. The reasons for this are the same as those that
forced us to go to an exponential control relationship in the first place; small
voltages are extremely susceptible to noise, thermoelectric voltages, and
other errors. Small currents, on the other hand, are less readily polluted.
Furthermore, practical, accurate exponential conversion elements are inher
ently voltage-to-current converters.

The oscillator block uses the control current to charge a capacitor. The
greater the control current, the faster the capacitor charges (or discharges for
a negative current) from one voltage level to another. The triangle-square
type of oscillator, for example, uses the positive control current from the
exponential converter to charge the capacitor from lower voltage "A" to
higher voltage "B" as shown in Fig. 6-2A. When the capacitor voltage
reaches B, a level sensor operates a current reverser, which negates the control
current, causing the capacitor to discharge toward A again at the same rate.
When A is reached, the level sensor reverses the current again and the cycle
repeats. Thus, it can be seen that the capacitor voltage assumes a ttiangular
shape. The square wave available is actually the control signal for the
current-reversing switch.

The sawtooth-pulse oscillator is similar in that the capacitor is charged
from A to B by the control current. The discharge cycle, however, is made as
rapid as possible by shorting out the capacitor with a switch when B is
reached. The capacitor voltage, then, is a sawtooth shape as in Fig. 6-2B.
The advantage is that no current-reversing device is needed, but a very fast
shorting switch is necessary for good high-frequency performance. Note that,
if the current and voltage levels are the same, the sawtooth citcuit will
oscillate at twice the frequency of the triangle circuit. In either case, the
greater the control current the faster the cycle repeats and the higher the
frequency. This relation is theoretically linear for either type of oscillator,
assuming that the reversing switch is perfect or the discharge switch has zero
resistance and zero on time.

The output-processing block converts the naturally occurring
waveforms in either circuit into those waveforms that are customarily used in
voltage-controlled synthesizers. Besides shaping, it scales the amplitude and
average dc level of the waveforms to match standard signal levels in the
system.
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Fig. 6-2. Current-controlled oscillators. (A) Triangle-square oscillator. (B)
Sawtooth-pulse oscillator.

For purposes of illustration, the sawtooth type of oscillator will be
described more fully. The author feels that the difficulties in rapidly dis
charging the capacitor are significantly less severe than those encountered in
finding a "perfect" reversing switch. Also, a digital equivalent of the saw
tooth oscillator, to be described in a later chapter, is substantially simpler to
implement than the triangle oscillator equivalent. We will start in the
middle with the exponential converter, which is the singular most critical
part of the circuit, and work out in both directions.
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Fig. 6-3. Silicon junction diode characteristics

Exponential Converter

Before the widespread use of semiconductor technology, accurate non
linear transfer functions were very difficult to obtain. Those that could be
obtained were only approximations that were imperfect even with perfect
components. Silicon semiconductor junctions, however, are predicted by
theory to possess a current-voltage relationship that is exponential in nature.
The classical semiconductor diode equation relates current through the diode
with the voltage across it as I = AlseBT (eCV/T -1), where A, B, and Care
constants (combinations of fundamental physical constants), Is is another
constant related to the construction of the diode, T is the absolute tempera
ture in degrees Kelvin, and V is the applied voltage. Thus, it can be seen that
the current is an exponential function of voltage if ecvrr is much greater than
unity.

Fortunately, available real diodes are of sufficient quality to very closely
conform to theory. The graph in Fig. 6-3 shows the current-voltage rela
tionship of a 1N4001 diode, a very common lO-cent item. The graph is on
semilog coordinates to make exponential behavior readily apparent. Also
shown is a plot of an absolutely ideal exponential response, a theoretically
perfect diode, and a perfect diode with a fixed series resistance of 0.05 ohms,
a typical value for the 1N400 1. Note the extremely close correspondence
between the actual diode and the ideal diode with series resistor model over a
current range of better than 109 to 1. In fact, the range of close conformity
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with an ideal exponential response exceeds 106 to 1. Obviously, this diode or
something similar is worth considering for the exponential converter.
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Fig. 6-4. Temperature dependence of diode characteristics

All is not rosy, however, as the graph in Fig. 6-4 shows. The diode
characteristic is adversely affected by temperature! Not only does the curve
shift to the right with increasing temperature, its slope changes somewhat.
This behavior, of course, was predicted by the diode equation, since both
exponential terms are dependent on temperature. Variation of the first term
is responsible for the right shift, and the magnitude ofB is such that the diode
current doubles for every 10°C increase in temperature, assuming every
thing else remains constant. Variation of the second term with temperature is
much less, since T is alone in the denominator and is responsible for the
change in slope.

A voltage-controlled oscillator based on this diode would have drifted
over five octaves upward in frequency and would respond at the rate of 1.16
octavesN relative to initial tuning and 1 octaveN at 25°C (equivalent to
room temperature of nOF). Drifts with smaller temperature changes would
be proportionally less but still a 1°C change in temperature would cause
nearly a half-step pitch drift. This temperature dependence is clearly unac
ceptable unless the diode is kept in a very precise temperature-controlled
chamber!
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Compensating Temperature Drift

Part of the solution to this problem lies in the use of an additional diode
with characteristics identical to the first one and the circuit configuration of
Fig. 6-5. A constant reference current is applied to this added diode with a
magnitude about midway in the range of usable output currents from the
converter. The voltage to be converted is now applied between the two
diodes (in practice from an operational amplifier so that the reference current
is not upset), and the current flowing in the converter diode is the exponen
tially converted current. Note that the input voltage must swing positive and
negative to get the full range of currents above and below the reference
current. This circuit completely compensates for the right shift of the diode
characteristic with increasing temperature because a similar shift occurs for
the voltage across the added compensation diode. The change in slope is not
corrected, but it is a much smaller effect than the horizontal shifting.

In a practical application, matched transistors are used for exponential
conversion partly because matched diodes are rare but mostly because the
three terminals on a transistor allow the circuit paths for voltage application
and current output to be separated. For good-quality transistors (constant,
high current gain), the collector current is proportional to the exponential of
the base to emitter voltage according to the equation,
Ie = AaleseBT (eIl627Vbe1T -1), where Ie is the collector current, a and Ies are
transistor-construction-dependent constants (common base current gain and
emitter saturation current, respectively), and Vbe is the base-emitter voltage.
This equation is essentially identical to the diode equation given earlier.

Figure 6-{; shows a practical configuration with the input voltage
referenced to ground and an op-amp-regulated reference current source. The
op-amp maintains a constant reference current independent of changes in the
exponential output current by adjusting its own output voltage to carry away
the sum of the reference and output currents. The only real constraint on
reference current magnitude is that it not be so large as to cause internal
transistor resistances to come into play or be so small that leakages become
significant. Therefore, the reference current is ideally set to 1 /.LA, about
midway in the range of useful currents (1 nA to 1 rnA) but, due to finite
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Fig. &-6. Practical exponential converter. (A) Exponential voltage to current
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op-amp bias currents, is typically set to around 10 /LA. When connected to
the oscillator to be described later, a current range from about 0.25 /LA to
0.25 rnA will cover the audible range. The resistor in series with the
amplifier output serves to limit the maximum output current to a safe value.
Like the two-diode circuit, the matched transistors cancel the major tempera
ture dependence of the exponential converter. The output current flows into
this exponential converter and the voltage-compliance range is from roughIy
ground to the positive collector breakdown voltage. Note that negative-going
input voltages result in increasing magnitudes of output current. The polar
ity may be reversed simply by swapping connections to the bases of the two
transistors. This circuit performs well but still has two remaining imperfec
tions, which will be remedied later.

Linear Control Input

A linear control input for the dynamic depth frequency modulation
described in Chapter 3 can easily be added to this exponential converter. One
possibility is to simply modulate the reference current by summing the linear
control voltage with the reference voltage in the reference current regulator.
The effect can be understood by noting the overall I/O relation for the
exponential converter: lout = I",je39vin. Thus, the linear control voltage
input multiplies the oscillator frequency by factors greater than unity for
positive inputs or less than unity for negative inputs. Linear frequency mod
ulation implemented through this input will be such that the modulation
index (ratio of frequency deviation to center frequency) will be constant as the
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center frequency is varied. For musical purposes, this is generally more
desirable than 'constant deviation. If the linear control input becomes suffi
ciently negative, the reference current may be completely shut off, giving
zero output current and thus zero frequency.

Another possibility for a linear input is a separate linear voltage-to
current converter whose output current is summed with the exponential
current via a direct connection. This gives constant deviation FM, which also
has some uses. For maximum usefulness, the linear current converter should
be able to sink current for a positive input and source current for a negative
input. A circuit configuration having these characteristics is shown in Fig.
6--6B. The type 3080 operational transconductance amplifier gives an output
current that is proportional to the difference in voltage at the plus and minus
inputs. This current is positive if the plus input is more positive and negative
if it is more negative. The sensitivity and range of the circuit are adjusted by
changing the 3080's bias current. Although the actual control current can
become positive (sourcing) with this circuit, the following current-controlled
oscillator would probably stall if that were to happen.

The 3080 is described more fully in the next section on voltage
controlled amplifiers.
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Fig. &-7. Input voltage processor

Input Processor

The exponential converter transistors are driven by the input-processor
block. Typically, several control voltages are summed together to form a
composite control voltage with two or three of the control inputs coming
directly from the front panel of the module. The sensitivity of one or more of
these front-panel inputs is usually adjusted by front-panel controls. Another
one or two voltages come from additional panel controls used to adjust the
tuning of the module.

The ideal circuit configuration for combining these together with com
plete isolation is the inverting op-amp summer as shown in Fig. 6-7. In this
example, inputs A and B would have a fixed sensitivity, usually of 1 octavelV
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(or 0.9766 for a binary-calibrated system) and C could be varied from zero up
to perhaps 3 octavesN. The "tune" control determines the basis frequency
(frequency with all inputs at zero) by feeding a variable dc voltage directly
into the summer. A fine-tuning control and more inputs can be added to this
sttucture essentially without limit. Note that algebraic summation of the
input voltages is inherent; thus, a negative voltage at one of the inputs will
counteract a positive voltage at another input.

The output voltage from the input processor is scaled by adjusting the
value of R relative to the input resistors. Since this circuit will drive the base
of an exponential converter transistor directly, the transistor equation must
be solved to determine the range of output voltages needed. It turns out that
a 0.018-V increase in base voltage will double the collecror current at room
temperature. It is common practice to set R to 2,000 ohms when WOK
input resistors are used which would scale a 1-V input down to 0.020 V. An
internal trimming potemiometer between the op-amp output and the ex
ponential converter base is then used to adjust to the exact value needed
around 18 mY. Note that the polarity inversion (positive-going input vol
tages produce negative-going outputs) precisely matches the requirements of
the exponential converter.

Assuming that the tuning control is set to midrange (no net effect on
the control voltage sum) and all control inputs are zero, the output of this
circuit would also be zero. The exponential converter would then produce a
current equal to the reference current, which is typically set to 10 !LA.
Positive control voltage sums (more negative input to exponential converter)
give higher currents from the exponential converter, while negative sums
give lower currents. For normal operation, the tuning control would be set
negative so that 0 V from the other inputs would produce the lowest normal
audio frequency. Then positive control voltages from 0 V to 10 V would
cover the audio range. Negative control inputs in addition to the negative
contribution of the tuning control could produce even lower frequencies,
useful as control voltages themselves.

Sawtooth Oscillator

The current from the exponential converter could be used to charge
(actually discharge since it is a negative current) a capacitor directly. Greater
accuracy is obtained, however, if the exponential converter collector remains
at a constant voltage near ground, since then the collector-base voltage is
near zero and leakages are minimized. This desire is satisfied by feeding the
current directly into the summing node of an integrator as shown in Fig.
6-8. The negative current is integrated and inverted by the op-amp and
appears as a positive-going ramp at its output. The op-amp used for the
integrator must have low bias current yet high speed for optimum low- and
high-frequency performance, respectively, which usually means a FET op
amp.
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The comparator compares the integrator output with a positive refer
ence voltage, Vrif. As long as the integrator output is less than Vrif, the
comparator outpur is negative, which keeps the FET switch across the inte
grating capacitor off, allowing it to charge. As soon as the integrator voltage
reaches Veef, the comparator output starts to go positive. As it does, the
positive comparator input is forced even more positive through C2 giving
positive feedback and causing the comparator to snap on. The comparator
output is constrained to rise no further than ground, but this is enough to
fully turn on the high-threshold-voltage FET switch, which discharges Cl
and brings the integrator output back to ground potential in preparation for
another cycle. The comparator is prevented from responding instantly to the
drop in integrator voltage by the charge accumulated on C2 when the com
parator switched high. In effect, a one-shot is formed with a time constant of
RC2, which is arranged to be long enough for the FET to completely
discharge C 1. Even though every reasonable effort is made to speed the
discharge, the control current still loses control for a finite time each cycle.
This will cause the higher oscillator frequencies to be flat, that is, lower than
expected from the control current magnitude. This error can be compensated
for as will be shown later.

The value of C 1 is chosen to provide the required range of output
frequencies given the 0.25 MA to 0.25 rnA range of current input. The
expression for frequency is F =I/CVrej and the expression for capacitance
is C=I/FVrif where Vrif is the reference voltage in volts, F is frequency
in hertz, C is capacitance in farads, and I is the exponential current in
amperes. The easiest way to calculate C is to first determine the highest
frequency of interest and then solve the second equation for I = 0.25 rnA.
The lowest frequency for really accurate response (and zero control voltage if
the highest frequency corresponds to a + lO-V control voltage) is 1,024
times lower. Much lower frequencies are possible with good components and
moisture-proofed circuit boards, as much as 1,000 times lower yet for a total
range of over a million to one. For a nominal audio range of 20 Hz to 20 kHz
and Vrif of +5 V, C 1 would be about 2,500 pF. For optimum performance
over a 32-Hz to 8-kHz range in an 8-V system with Vref of 4.096 V, Cl
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should be increased to about 5,000 pF. Cl should be a high-quality poly
styrene capacitor for best accuracy and temperature stability.

Waveshapers

The integrator output is a low-impedance sawtooth that oscillates be
tween ground and Vre( with very little error. The pulse output from the
comparator is generally not useful as an audio signal because its width is only
a few hundred nanoseconds, although it could be used to trigger digital
circuits. Figure 6-9 shows the waveshaping circuits needed to derive the
standard synthesizer waveforms at standard levels from the basic sawtooth
provided by the oscillator.

The sawtooth is readily standardized with a simple op-amp circuit. If
Vre! is 5 V, the 5-V peak-to-peak sawtooth amplitude must be increased to
20 V (a gain of 4) and the 2 .5-V average de level must be removed. Trimmer
pots or precision (0.1%) resistors are generally needed to do this job well.
Although this amount of precision is not really necessary for straight audio
use of the output, it may be desirable if the oscillator is used to generate
control voltages.

A rectangular waveform is easily obtained from the standardized saw-
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Fig. 6-9. Waveshapers (cont.). (E) Triangle-la-sine conversion. (F) Triangle
lo-sine converter.
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tooth with an op-amp connected as a comparator. The sawtooth is fed into
one side of the comparator and a dc width control voltage is fed into the other
side. The comparator output will be high whenever the instantaneous saw
tooth voltage is higher than the dc comparison voltage and low otherwise.
Thus, the duty cycle of the output varies between 100% and 0% as the dc
comparison voltage varies between - 10 V and + 10 V. A small amount of
positive feedback gives a Schmidt trigger action to the comparator, which
maintains fast rise and fall times even though the sawtooth frequency may
only be a fraction of a hertz. The amplitude of the rectangular wave is set by
the saturation voltage of the op-amp's output in the circuit shown, although
precise standard voltage levels may be easily obtained if desired.

Deriving a triangle waveform from a sawtooth is interesting but rela
tively simple. The basic idea is to full-wave rectify the sawtooth, which gives
the required shape, and then remove the de component and rescale it back to
standard levels. The first step is to obtain a standardized sawtooth opposite in
phase to the one already generated with a simple unity gain inverter. The two
out-of-phase sawtooths are then fed into a classic two-diode full-wave
center-tap rectifier. A resistor to the negative power supply keeps some
current flowing through one of the diodes at all times. This simple, open
loop rectifier is far superior to the usual closed-loop rectifier found in op-amp
application notes at the higher audio frequencies. Finally, the triangle output
amplifier removes the dc (a portion of which is the rectifier diode's forward
voltage) and scales the triangle to standard levels. Although the shaping is
essentially perfect, there is a small glitch in the triangle when the sawtooth is
resetting. This may be minimized by injecting a pulse of opposing polarity at
this time or by using a low-pass filter to smooth over the glitch.

A good sine wave may be obtained from the triangle wave by distorting
it with a nonlinear circuit. Figure 6-9E shows how a sine-shaped transfer
function can round the pointed peaks of a triangle wave into an approximate
sine shape. Although several types of nonlinear circuits can be used, the
FET-based circuit in Fig. 6-9F works well and is inexpensive. Note that the
amplitude of the triangle input must be very carefully matched to the non
linear transfer function for minimum sine wave distortion. This would nor
mally be accomplished with two trim adjustments, one for amplitude, and
the other to compensate for asymmetry. Total harmonic distortion can usu
ally be trimmed to less than 1% with this circuit. Lower distortion is
possible by following the sine shaper with a tracking low-pass filter.

Practical Schematic

A complete, practical schematic of the veo is given in Figs. 6-10 and
6-11. All input structures are resistive (lOOK) to an op-amp summing
junction and can be expanded to fit individual needs. Trimming adjustments
are provided so that input sensitivities and output amplitudes can be ad-
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justed to precisely match the system standards for use in a precalibrated
computer-controlled system. The existence of + 10 and -10 system refer
ence voltages is assumed. Also, several refinements beyond the basic circuit
blocks just described have been incorporated.

The input circuit for exponential control voltages has been refined by
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using a thermistor in the feedback network to cancel out the remammg
exponential converter temperature coefficient. At room temperature, this
coefficient is about - 3,300 parts per million (ppm) per DC; thus, a resistor
with a +3,300 ppm temperature coefficient is required. Note that the
compensation is exact only at 27 DC because the exponential converter tem
perature dependence goes as liT rather than as KT, which the resistor pro
vides. Nevertheless, temperature drift due to the exponential converter is
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reduced to the same order of magnitude as other circuit drifts in the typical
studio environment.

Two other minor errors are corrected by modifying the reference cur
rent regulator for the exponential converter. One of these is due to the finite
"bulk" resistance in the converter transistors. The other is due to finite
discharge time in the sawtooth oscillator. Both effects cause high frequencies
to be lower than they should be. The magnitude of both errors is directly
proportional to the magnitude of the control current from the converter. The
addition of Oland R5 couples a voltage that is directly proportional to the
control current back into the control input summer. This voltage is de
veloped across the 10K protective resistor in series with the reference current
regulator. The diode cancels a o.6-v offset that exists at low values of control
current. In use, R5 is adjusted for optimum high-frequency tracking.

The sawtooth oscillator proper uses a high-speed, very-Iow-input
current op-amp as the integrator. The odd power supply hookup for A3 is
necessary because it cannot stand total supply voltages beyond 15 V. Note
that the type 311 comparator has an open-collector output so that when its
pullup resistor is tied to ground its output voltage swings between -15 V
and a V, the range needed by Q4.

Figure 6-11 shows the waveform standardizers and shapers with all
adjustments and parts values. The sawtooth output is taken from the second
inverter rather than the first shown earlier so that a positive going ramp is
produced. The negative ramp at the output of A4 could also be brought out
if desired. The glitch in the triangle wave mentioned earlier is largely cancel
led by injecting an opposite polarity pulse derived from the rapid retrace of
the negative ramp. The rectangular-wave amplitude is standardized by the
saturating complementary emitter follower, Q5 and Q6. Using this circuit,
voltage levels of the rectangle will equal the ± 10-V system reference voltages
to within a couple of millivolts.

Adjustment

Adjustment of the circuit is straightforward and need not require a lot
of test equipment, although a frequency counter, accurate digital voltmeter,
and oscilloscope are' helpful. For use in a precalibrated computer-controlled
system, the adjustments should be made to the values listed in Table 6-1.
These values offer the most logical control relationship and widest possible
range in a precalibrated system. Ideally, they should be set as accurately as
possible and then rechecked every few months of operation. This will allow
programming of the system to proceed with minimal concern over analog
errors in the system. Also shown in the calibration table are performance
parameters obtained from a breadboard of the circuit. As can be seen, the
performance is excellent in nearly all respects and certainly much better than
could be obtained just a few years ago at 10 times the cost.
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Table 6-1. Adjustment of Voltage-Controlled Oscillator

Oscillator adjustment
1. Set "zero input frequency" pot for 60 Hz (use power line sync on oscil

loscope) with no control voltages applied
2. Apply 1.000 V to an exponential control input and adjust "ocVv adjust

pot" for 120 Hz output
3. Remove the control voltage and adjust the "zero input frequency" pot for

16.3525 Hz
4. Apply +10 V to a control input and adjust "high-frequency track" pot for

16745 Hz

Waveshaper adjustment
1. Using a moderate frequency (1 kHz) adjust "triangle balance" pot for

best triangle waveshape
2. Adjust "triangle offset" pot for equal positive and negative peaks
3. Vary the capacitance across 02 for minimum "glitch" on the positive

peak of the triangle
4. Alternately adjust "sine shape trim" and "sine symmetry trim" for lowest

harmonic distortion
5. Adjust sine amplitude for 20 V pop output. Sine symmetry may have to be

touched up for equal positive and negative peaks

Performance of breadboarded unit
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Control voltage

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

Frequency (Hz)

16.35
32.71
65.44

131.1
261.9
524.3

1048.0
2096.0
4190.0
8379.0

16745.0

Error (%)

o
o

+0.05
+0.21
+0.10
+0.19
+0.14
+0.13
+0.09
+0.08

o
Average temperature coefficient at 1 kHz from +25°C to +35°C is 0.11 %/ °C.

Voltage-Controned Amplifier
The VCA is the second of the "basic three" modules. For many applica

tions, its performance is not nearly as critical as the VCO just described. This
is because VCAs are normally utilized to control the amplitude of an audio
signal, and the human ear is much less sensitive to inaccuracies in amplitude
control than it is to imperfect frequency control. The typical VCA module
used in a "manual" synthesis system, therefore, is seldom very precise or
carefully calibrated. For a critical application, the user is expected to cali
brate the VCA using the several panel controls that are normally available.

In the precalibrated computer-controlled system, however, the use of
VCAs to process control signals, which may eventually control a VCO, is
more likely. For example, the control inputs to a precalibrated VCO will



198 MUSICAL ApPLICATIONS OF MICROPROCESSORS

have a fixed but precisely known octave/volt control sensitivity. If one wishes
a variable (by the computer) control sensitivity, then a VCA with the control
input driven by the computer is inserted in the control path to the VCO.
Depending on the design, a VCA may be used as a multichannel mixer with
the gain of each channel set by an individual control voltage. When used to
mix control voltages, its accuracy again becomes important. Thus, it is
apparent that for maximum usefulness attention should be given to accuracy
and temperature drift in the design of the VCA.

Controlled Gain Block

The heart of the VCA is the controlled gain block. Actually, a multi
plication of one signal (the signal voltage) by another (the control voltage or a
function thereof) is being performed. Full four-quadrant multiplication
where the output is the true algebraic product of the instantaneous voltages,
either positive or negative, at the control and signal inputs is certainly
acceptable if not desirable. Note that if this were true, there would be no
distinction between control and signal inputs to the block. Actually four
quadrant circuits are fairly difficult and less accurate than two-quadrant
circuits. The two-quadrant circuit restricts the control voltage to positive
values, while both positive and negative signal voltages are acceptable.

In the past, virtually any scheme that would electrically vary the gain of
a circuit was a candidate for the controlled-gain block. Really ancient
methods include the use of a photoresistive cell (cadmium sulfide type)
illuminated by a neon lamp and remote cutoff pentode vacuum tubes that
were designed for variable-gain applications. Even servo motor-driven poten
tiometers were used when cost was no object. More modern methods include
the use of a junction FET as a voltage-variable resistor or recognition of the
fact that the dynamic resistance of a diode decreases with increasing forward
current. Variation in the gain of a transistor amplifier with bias-current
variation was another popular method.

The two standards of comparison that have been used in the past for
gain-control techniques are control-to-signal isolation and signal distortion.
Control feedthrough into the signal generally results in high-amplitude,
low-frequency thumping noises whenever the gain is rapidly changed. Even a
moderate amount of such feedthrough is completely unacceptable in modern
voltage-controlled equipment usage. Signal distortion, if present, is usually
worst at low-gain settings wI,ere it is least likely to be noticed. Besides these,
speed and accuracy of response are now of great importance also.

Using the first two performance standards, the lamp-photocell ap
proach is essentially perfect. The FET voltage-variable resistor has no control
feedthrough but does distort the signal some unless its amplitude is quite
small. All other methods (except servo pots) suffer from both maladies to

some extent. Unfortunately, a lamp-photocell variable-gain block is imprac
tical for an electronic music VeA because it is very slow, having time
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constants in the tens of milliseconds range, and is very unpredictably non
linear in its control relationship. Response of rhe FET is instantaneous, but it
too possesses a nonlinear control response, although somewhat more predict
able. Varying the bias in a transistor amplifier, which is the worst method
from an inherent control isolation standpoint, is the one that is normally
used now to build a YeA. Such a controlled-gain block is called a transcon
ductance two-quadrant multipler.

+

SIGNAL (EI
INPUT
VOLTAGE

E2O-------f------J

DIFFERENTIAL OUTPUT
CURRENT = 12 - II

Fig. 6-12. Basic transconductance gain block

Transconductance Gain Block

The basic transconductance gain block is the differential transistor
amplifier stage shown in Fig. 6-12. For normal two-quadrant operation, the
signal voltage is applied differentially between the two transistor bases, and a
control current applied to the emitters determines the gain. The output signal
is the difference in collector current of the transistors, which may be converted
into a differential voltage by use of equal-value collector load resistors.
Normally, the two transistors are assumed to be carefully matched. Impor
tant parameters that must be matched are current gain, which should be high
(over 100), and the base-emitter voltage versus collector current relationship.

Basic operation is easily understood if a few observations are made.
First, the sum of the two collector currents is always equal to the control
current. Regardless of the individual base voltages (within reason), the com
mon emitter voltage will adjust itself to make this fact true. Since the
transistors are matched, if the differential input voltage is zero, meaning that
the base-emitter voltages are equal, then the two collector currents are equal
and the differential output current is zero.

Now, recalling the transistor equation given earlier, it was learned that
at room temperature a transistor's collector current will double for every
I8-mV increase in base-emitter voltage. Therefore, if the differential input
voltage became 18 mV, that is E 1 = E2 + 0.018, then 11 would be twice as
great as 12. Since the sum of the currents must equal the control current, it
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can be concluded that II = 2/3Ic and 12 = 1/3Ie . Increasing the input to 36
mV would shift the ratios to 4/5 and 1/5. Further increases in the input
voltage will cause essentially all of the control current to flow through Q 1.
Reversing the polarity of the input would favor 12.

Figure 6-13A is a plot of the collector cutrents as a function of dif
ferential input voltage for two different control currents. For the reasonably
linear portions of the curves in the ± 10 mV range, it is apparent that the
slope of the I-mA curve is half that of the 2-mA curve, which means that the
gain is also half as much. In fact, the gain is directly proportional to the
control current over a range as wide as the exponential relation between base
current and base-emitter voltage is valid.

Figure 6-13B shows the differential output current undet the same
conditions. Note that although the individual collector currents show severe
control feed through (the whole curve moves downward when the control
current decreases), their difference does not show such a shift meaning that
the feedthrough has been cancelled out. Since the input is a voltage and the
output is a current, gain is properly called transconductance.

Although the basic transconductance gain cell is very simple, driving it
properly is not. Generating the differential input voltage is not difficult, but
sensing the differential output would require one or more op-amps and
excellent common-mode rejection in order to obtain decent control isolation.
A variable-current sink, which is required for the control input, requires
additional circuitry also.

Operational Transconductance Amplifier

Fortunately, variable-transconductance gain-controlled blocks are
available in Ie form at prices under a dollar. The 3080 type of operational
transconductance amplifier (OTA), for example, has the diff-amp gain cell, an
output differential amplifier, and a current-controlled current source for the
control all-in-one package. Figure 6-14 shows the symbol for an OTA and a
highly simplified internal schematic. The device operates on standard
± 15-V supplies and has a fairly high-impedance differential-voltage input.
Since the common-mode voltage range is quite large (nearly equal to the
supply voltages), in practice one of the inputs can be grounded and the signal
applied to the other input. The control current is fed into the Ie terminal
and is absorbed at a constant voltage of about - 14.4 when using 15-V
supplies. The output is single-ended and is a current. Although this takes
some getting used to, it usually proves to be an advantage. At room tempera
ture, the output current is equal to 19.2 X Bin X Ie, where Bin is the
differential input voltage in volts, leis the control current in milliamperes,
and the output is in milliamperes. Note that this relation is accurate only for
input voltages less than lO-mV peak and that the output current can never be
greater than Ie. The allowable range of Ie for accurate operation is from
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Fig. &-13. (A) Individual transistor currents for two control currents. (8) Dif
ferential output current for two control currents.

0.0005 rnA to 0.5 rnA with range extension to even lower currents allowable
at moderate temperatures.

Internally the 3080 is composed entirely of transistors and current mir
rors (shown as circles labeled "eM" in Fig. 6-14), which in turn are com-
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Fig. 6-14. Operational transconductance amplifier

posed entirely of transistors. A current mirror is essentially a common
emitter transistor stage with a current gain of unity to close tolerances. A
current mirror is a very commonly used device in linear ICs but to the
author's knowledge has never been packaged and sold as a discrete device.
Like transistors, current mirrors may be either npn (arrows entering) or pnp
(arrows leaving). Since the current gain is unity, the collector current is
exactly equal to the base current.

The controlled-gain cell of the 3080 is a two-transistor differential
amplifier. Tracing the simplified 3080 schematic will reveal that the dif
ferential gain cell emitter current is equal to Ie by virtue of CMl. Ql's
collector current, 11, gives a positive contribution to the output current via
CM3, while Q2's collector current 12, is inverted by CM4 and gives a
negative output contribution. The net output current is therefore 11-12,
which means that the current mirrors have performed a differential to single
ended current conversion. Since the output is connected only to transistor
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Fig. 6-15. Linear VCA using 3080
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collectors, the output impedance IS very high and IS typically several
megohms for the 3080.

Application of the 3080 OTA

Figure 6-15 shows an application of the 3080 as a simple yet accurate
linear YeA. The gain of the circuit is given by A = Ein/lO, which means
that unity gain is obtained for a + lO-V control and zero gain for zero
control. Signal input voltages may range between - 10 V and + 10 V, while
the control input is operable over a range of 0 V to + 10 V. Negative control
inputs completely shut off the signal.

Note that the signal input is attenuated by a factor of 1,000 by R4 and
R5 before it is applied to the 3080. This is necessary in order that the
± lO-mV linear range of the 3080 input not be exceeded and cause excessive
distortion. The control current for the 3080 is generated by A 1 in conjunc
tion with Q1. If the current gain ofQl is high, then IE is nearly equal to Ie.
The precise value of IE is monitored by R3 to create VE and is fed back to
AI's input via R2. In operation, Al will adjust its output voltage to make
VE = - Vin, which is perfectly normal inverting amplifier operation. Ac
tually, the effective current-sensing resistance is R3 in parallel with R2 (A l's
inverting input is at virtual ground) so the output current with a +10
control voltage will be approximately 0.5 rnA.

The output current from the 3080 is converted into an output voltage
by A2, which functions as a current-to-voltage converter. With the control
current set at 0.5 rnA and a lO-V input signal, evaluation of the transcon
ductance equation for the 3080 reveals that the output current amplitude
will be approximately O. 1 rnA. R6 therefore should be approximately lOOK
for unity gain through the entire circuit when the control voltage is + 10 V.
The value ofR3 may be trimmed to adjust the control sensitivity. For use in
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Fig. 6-16. Voltage-controlled amplifier with exponential gain control

a 5-V system one could either select a - 5 to +5 control range or a 0 to +5
control range. In the former case, the input to Al would have to be offset by
connecting an additional lOOK resistor to the + 5 system reference voltage.
In the latter case, the control sensitivity would have to be doubled by
reducing R3 to about 12K.

For maximum accuracy, the offset voltages of both op-amps should be
nulled. Offset voltage in the 3080 should also be nulled for minimum
control feedthrough. This may be accomplished by using an attenuator on
the noninverring input similar to that on the inverting input and feeding it
with a variable de voltage. The offset null will have to be a compromise
value, however, since it changes somewhat wi th control current.

Exponential Gain Control

As outlined in Chapter 3, an exponential relation between amplifier
gain and control voltage is quite desirable. Since the 3080 is a current
controlled device, it would seem that the exponential converter used in the
voltage-controlled oscillator could be used directly. Unfortunately, a close
look reveals that the 3080 requires a positive control current (current enters
the 3080) and the exponential converter used earlier supplies a negative cur
rent.

The most straightforward solution to the problem is to use a pnp
matched transistor pair in the exponential converter, which reverses the
output current polarity-and everything else. Input polarity reversal, there-
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fore, must be cancelled with another op-amp inverter in the control-current
input processor. A complete circuit for an exponential response VCA is
shown in Fig. 6-16.

Improving Linearity

There are still several problems that limit the overall accuracy of a
transconductance gain-control element. Probably the most serious is the
remaining nonlinearity of the device. A related problem is the marginal
signal-to-noise ratio created by the necessity of very small signal amplitudes
at the gain element's input. Proper shielding can reduce coupled noise, but
the signals are so small that semiconductor device noise is significant. With
the lO-mV peak levels used by the preceding circuits, nonlinearity will cause
about 1.3% harmonic distortion and give a signal-to-noise ratio of about 66
dB. Used as a control voltage processor, nonlinearity is nearly 5% of full
scale and rms noise is 0.05% of full scale. Tradeoffs are possible, that is, less
distortion but more noise or vice versa, but neither parameter changes
dramatically with input signal level. Clearly, much improvement is neces
sary if the VCA is to be useful in the control path to a VCO! A final problem
is that the gain drifts with temperature according to the semiconductor
junction equation. The magnitude of this drift is the same as the control
voltage sensitivity drift in a VCO, about 0.33%fc.

Concentrating on linearity first, it is seen that the linearity error is
independent of the control current. This means that a lO-mV input will
produce the same percentage of distortion at a low-gain setting as it will at a
high-gain setting. Furthermore, the effect of the nonlinearity is always a
reduction in the actual instantaneous output below what it ideally should be.
It should therefore be possible to predistort the input signal with an opposite
nonlinearity to compensate for the gain cell nonlinearity and therefore im
prove things considerably.

Figure 6-17 shows a simple predistorter that can be added directly to
the 3080-based circuits given earlier. Analysis of the circuit is rather in-

RI
SIGNAL 33 kfi

INPUT
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+50 mV

06

R2 R3
33 kil 33 kfi

+15 Vo----'VI/\r---« ~-'VVI~-----o-15 V

04

ALL DIODES IN A CA3019
MATCHED DIOOE ARRAY

Fig. 6--17. Diode bridge predistortion circuit
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volved but a few observations can be made with little effort. D5 and D6 are
protective diodes that normally do not conduct; thus, they can be ignored.
Resistors R2 and R3 in conjunction with the supply voltages act like current
sources and bias the diode bridge. Since the diodes are all matched, equal
currents flow in each one and in turn give equal dynamic impedances of
about 100 ohms each. The dynamic impedance of the bridge acts with R 1 to
form a voltage divider for the signal voltage. With zero signal input, the
impedance of the overall bridge is also 100 ohms so the attenuation is about
330, one-third that used in uncompensated circuits.

For positive input voltages, the current through D1 decreases and
increases through D2. Because of the constant bias current, the current
through 1)4 must therefore decrease, while that through D3 increases. Since
the dynamic impedance of the diodes is inversely proportional to their cur
rents, the bridge impedance will change also. For small signals, the impe
dance decreases are closely matched by the increases and the bridge impe
dance remains constant. As the signal voltage rises, the diodes with increased
impedance dominate (since they are in series with a decreased impedance
diode) and the bridge impedance rises. The input voltage tolhe 3080 is
therefore boosted to counteract its tendency to flatten the waveform peaks.
The circuit runs away when the signal current exceeds the bridge bias current
so D5 and D6, which are in the diode array Ie anyway, prevent any possible
damage to the 3080.

The improvement offered by this circuit is impressive. With a 50-mV
peak voltage into the 3080, the harmonic distortion is only 0.25%. The
increased signal amplitude also improves the signal-to-noise ratio by nearly
14 dB to a total of 80 dB. Resistors R2 and R3 should be carefully matched
as well as the 15-V power supplies to prevent even order harmonic distortion.

Vbio, V+

I3' 14

01 02

II 12

V-

Fig. 6-18. Gilbert multiplier
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For peak performance, it may be necessary to trim the resistors to better
match the diode array characteristic to the 3080 input characterisric.

Essentially this same predistortion circuit can also be found inside a
CA3280 dual OTA. The diode predistortion network is connected directly
between the + and - inputs and is floating; thus, it is not necessary to
ground one of the inputs as in the previous circuit. The output and control
structures are the same as the 3080, and the diode circuit has a variable bias
current control. This is accomplished by adding a terminal called ID, which
sinks current into the negative supply the same as Ie. In practice, the
magnitude of ID determines the average impedance of the diode network,
which, when combined with a series input resistor, determines the signal
level applied to the variable gain cell. The diode network impedance is 70/ID
ohms where ID is given in milliamps and is usually set in the 0.1 rnA range.
Note that the input series resistor value should be at least 20 times the diode
network impedance for best predistortion action. Since all of the input
components are inherently matched in the 3280, adjustment of the
predistortion circuit is not required, and output distortion can be expected to
be less. Noise level has also been reduced (the original 3080 was not
specifically designed for audio use) to less than 2 fLV rms, which makes
signal-to-noise ratios over 80 dB possible.

Gilbert Multiplier

Another predistortion circuit is shown in Fig. 6-18. This circuit is
termed a Gilbert multiplier after its inventor. Diodes D1 and D2 actually do
the predistortion and receive the input signal as currents, 11 and 12. For
greater convenience of use, transistors Q3 and Q4 convert a conventional
differential input voltage to the differential current required by the rest of the
circuit. The two resistors set the input voltage range, which can be made as
large as standard 5-V signal levels. The output is a differential current as
before. Performance is even better than the diode bridge predistorter, offer
ing an additional 6-dB improvement in noise level and distortion reduction
to O. 1%. Last but not least, the circui t automatically temperature compen
sates the gain cell, making it essentially ideal.

Unfortunately, all of the components must be carefully matched to
obtain such good performance, normally a difficult task with discrete cir
cuitry. Recently, however, a linear IC having two of these circuits along with
3080-style differential-to-single-ended converters has been introduced by a
company appropriately named Solid State Music. Unlike the 3080, this IC
was designed specifically for audio VCA applications. Figure 6-19 shows a
simplified schematic of the IC, which at the time of writing is known by the
type number SSM 2020. The inputs can accept signals up to 5-V peak
directly, while the output is a current up to 1-mA peak. Note the inclusion
of two pairs of exponential converter transistors and even a temperature
compensating resistor for them.
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veA Using the 2020

Rather than describe the IC itself in detail, let's look instead at a
complete VCA circuit using it in Fig. 6-20. The lO-V signal input is first
attenuated to 5 V by R1 and R2. In a 5-V system, R1 may be omitted and
R2 increased to lOOK. The input impedance of the 2020 itself is tens of
megohms with a bias current requirement of about 500 nA. The current
output, which at 5 V signal input will have a peak value roughly one-third of
the control current, is converted into a lO-V peak output by AI, which is
connected as a current to voltage converter. R3 should be adjusted for unity
gain through the circuit with 1 rnA of control current. The offset trim circuit
at the 2020 noninverring signal input is necessary to cancel the device's offset
voltage and minimize control feedthrough.

The control circuitry shown provides simultaneous linear and exponen
tial gain control. Study of the configuration of A2 and the transistor pair in
the 2020 should reveal that it is exactly the same exponential conversion
structure as used in the VCO circuit. In normal operation, one control input
would be at zero, while the other is exercised over the full control range.
With both inputs at zero, a reference current of 0.1 fJ.-A flows into the 2020.
This gives a gain of 0.0001 (-80 dB) relative to the I-rnA value which,

V+

'---------.,.---o6~~~5~TL-_-+- ---,

SIGNAL
IN+

EXP CONV
COLLECTOR

V-
HALF OF DUAL UNIT SHOWN

EXP CONV
EMITTERS

Fig. 6-19. Simplified schematic of SSM 2020 VCA IC
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Fig. 6-20. Practical VeA using the SSM 2020

although not precisely zero, is sufficient to audibly silence the unit. Raising
the linear control input to + 10 V while maintaining the exponential input at
zero will increase the control current to I rnA and provide unity gain. The
expression for gain, therefore, is G = O.IEI, where G is the gain and EI is
the voltage applied to the linear input.

With the values shown, the exponential input has a sensitivity of 8
dEN. Thus, + 10 at this input would raise the gain 80 dE above the zero
input value and give unity gain. RE can be adjusted to provide exactly 8
dEN, which incidently is quite close to the increase in amplitude necessary
for a doubling of perceived loudness. The nonstandard impedances of the
control inputs may be easily corrected with additional" op-amp buffers. Note
that a TL-82 dual FET amplifier was used for A I and A2. The high slew rate
is necessary at high audio frequencies and the low bias current is needed for
predictable operation with the extremely low reference current used in the
exponential converter transistors.
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Voltage-Controlled Filter

Of the basic three modules, filters have historically been the most
difficult to voltage control. Traditional L-C filters were tuned by changing
reactive components, either the capacitor or the inductor. Later, with the
widespread use of operational amplifiers and R-C active filters, the resistor
was varied for fine tuning purposes and the capacitor was changed for dif
ferent ranges. With careful design, however, the tuning range available
through variable resistance alone can be made wide enough for electronic
music applications. Thus, the requirement for a wide-range voltage-variable
resistance similar to that needed for a VCA is seen. As a result the FETs,
photocells, and biased diodes that were used in early VCAs were also used in
VCFs along with all of their attendant drawbacks.

Unfortunately, the final solution of the VCA problem, the transcon
ductance variable-gain stage, does not directly involve a variable resistance.
Therefore, application to tuning a VCF is not at all obvious. Before giving up
and resuming the search for a wide-range accurate voltage-variable resistor,
let's see if a variable-gain function can be used to tune a filter.

Variable Gain Tunes a Filter

The single-pole passive R-C low-pass filter shown in Fig. 6-21A will
be used as an example. With a high-impedance load, the circuit has unity
gain at very low frequencies and a 6 dB/octave attenuation slope at high
frequencies. The cutoff frequency (frequency for a gain of 0.707) is
l/6.283RC. If the circuit is driven from a low-impedance source, the cutoff
frequency can be tuned over a wide range by varying R alone without
affecting the passband gain or attenuation slope.

The active circuit shown in Fig. 6-21B has exactly the same charac
teristic if R 1 = R2 except that its output is capable of driving a finite
impedance. For other cases, Fc = 1/6.283R2C and Ao = R2/Rl, where Fc
is the cutoff frequency and Ao is the dc or passband gain. As before, tuning
can be accomplished by varying R2 alone. Although this also affects Ao, we
will ignore that for a moment.

The point of this discussion is that the effect of changing R2 can be
exactly simulated with a variable-gain amplifier and a fixed R2 as in Fig.
6-21C. Since the inverting input of the op-amp is at virtual ground, only the
feedback current through R2 is important. Thus, the effect of doubling R2 in
circuit B can be obtained by setting the VCA gain to one-half and leaving R2
alone in circuit C. Generalizing, Ref! = RactlG, where Ref! is the effective
value of the feedback resistor, Raet is its actual value, and G is the VCA gain.
Substituting into the cutoff frequency equation, Fc = GI6.283R2C, it is
seen that the cutoff frequency is directly proportional to the VCA gain.

The last step is to eliminate variation of passband gain with cutoff
frequency. With the present setup, Ao = R2ef!IRl = R2/RIG and therefore
as the cutoff frequency goes up, Ao decreases. Actually, the ourput of the



BASIC ANALOG MODULES 211

INPUT~OUTPUT~ -~t------..L C z -10 ~!,
I ~-20 : ~
-= -30 ..

FC = 2"IRC
LOG FREOUENCY

(A)

R2

RI
INPUT o-~VV'v--+-i

R2

C

RI
INPUTo-J\M~"""-I

C

lBI

(C)

FC= 2"~2C
PASSBAND GAIN = ~

>--+--0 OUTPUT

'----------~OUTPUT

~
c

~A -
INPUTO>---- t OUTPUT

TUNE +

(D)

Fig. 6-21. Steps toward a voltage-controlled low-pass filter. (A) Single-pole
R-C low-pass filter. (8) Active version of A. (C) Tunable version of 8
using a VCA. (D) Improved version of C with constant gain.

VCA in Fig. 6-21C has a constant passband gain because the previous
expression is multiplied by G, which then cancels the G in the denominator,
leaving Ao = R2/Rl. It would seem that the problem is solved, but closer
analysis reveals that at low cutoff frequencies the input signal level to the
VCA may become extremely large to offset its corresponding low gain and
therefore will be subject to severe distortion.

In Fig. 6-21D, the same elements have been rearranged to overcome
the signal level problem. Essentially, both the input signal and the feedback
signal go through the VCA. The tendency for the op-amp output amplitude
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to rise at low cutoff frequencies is therefore eliminated by a proportionate
decrease in signal amplitude reaching the op-amp. It is interesting to note
that the circuit has degenerated into an integrator and a two-signal input
VCA; an observation that will be very useful later. A similar configuration
can be derived for a voltage-controlled high-pass R-C filter although not as
easily.
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Fig. 6-22. Four fundamental R-L-C filters. (A) Bandpass. (B) Low-pass.
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Voltage-Tunable Bandpass Filter

The most dramatic uses of filters in electronic music require a high Q
(hopefully voltage-controlled as well) bandpass function. Cascading low-pass
and high-pass sections together and having them track a common control
voltage is not a practical solution mainly because guite a few would be
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Fig. 6-22. Four fundamental R-L-C filters (cont.). (C) High-pass, (D) Band
reject.
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required for any degree of sharpness. There exists, however, a very versatile
filter structure that not only simulates exactly an R-L-C filter in the resonant
(bandpass) mode but simultaneously simulates the other three possible filtering
functions that could be built with one resistor, one inductor, and one
capacitor as shownin Fig. 6-22. The family of amplitude response curves
represents low, medium, and high Q cases corresponding to high, medium,
and low values of RQ.

The circuit configuration in Fig. 6-23, which requires two integrators
and a summing amplifier, is well known to analog computer users but only
fairly recently has gained popularity as a cost-effective active filter circuit. This
is called a "two-pole filter" because two energy storage elements (capacitors)
are present in the signal path. The basic circuit is called a "state-variable" or
"integrator-loop" filter and provides simultaneous high-pass, bandpass, and
low-pass filtering functions of the same input. A band-reject output is ob
tained by summing (they are 1800 out of phase at resonance) the high-pass
and low-pass outputs with an additional op-amp. Figure 6-24 shows the
amplitude responses of each of the outputs for both low Q (1.5) and moder
ately high Q (15). Note that the low-pass and high-pass functions have
cutoffs that are twice as sharp as the single-pole filters discussed earlier and
that they develop a prominent peak just before the cutoff point for high Q
settings.

Besides simultaneous filtering functions, the circuit has the advantage
that frequency and Qfactor (or bandwidth in hertz with a different configura
tion) are independently variable. In other words, RQ only affects the Q factor
and RF only affects the center or cutoff frequency. Note that two resistors
affect frequency. Actually, the frequency is inversely proportional to the
square root of their product. If they are equal and varied together, however,
the square root drops out al}d the frequency-resistance relationship is linear.

HIGH-PASS BANDPASS
OUTPUT C OUTPUT CR

R
INPUT RF RF LOW-PASS

R OUTPUT

R
R

R
R

F=_I
2rrRFC

0= RO+R
R

BAND-REJECT
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Fig. 6-23. Two-pole tunable active filter
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Fig. 6-24. Amplitude response of circuit in Fig. 6-23. (A) Q = 1.5. (8) Q = 15.

Although the relation between RQ and Q is nonlinear in the circuit shown,
the addition of another Op-amp can make it perfectly linear.

Tuning the filter with voltage-controlled amplifiers should now be
almost self-evident but for convenience is shown in Fig. 6-25. Essentially
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each variable resistor in the circuit has been replaced with a fixed resistor
driven by a VCA. The feedback path from the bandpass output that controls
Q has also been simplified and the relation between VCA gain and l/Q has
been made linear.

Note that a "voltage-controlled integrator" is used in two places. If the
variable-gain element is a 3080, 3280, or other current output transconduc
tance device, the voltage-controlled integrator can be simplified as in Fig.
6-26. The extremely high output impedance of the 3080 makes it possible
to perform integration directly with a capacitor to ground. The unity gain
buffer can often be a simple FET source follower, since its dc offset is
cancelled when the voltage-controlled integrator is used in a closed-loop
configuration. Note that positive as well as negative voltage-controlled
integrators are easily constructed by interchanging inputs to the 3080.

Practical State Variable Filter

Figure 6-27 shows a simplified but practical voltage-controlled filter
based on the state-variable principle. The circuitry to generate the frequency
control currents to the 3080s is not shown but may be the same as that used
earlier in VCA circuits. Note that the two integrators should ideally receive
the same magnitude of control current at all times. Use of the simple
resistive current sharer is generally adequate and even preferable to two
independent pairs of exponential converter transistors. The actual value of
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Fig. 6-25. Voltage-controlled version of Fig. 6-23.
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Fig. 6-26. Voltage-controlled integrator using 3080
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these resistors is not critical as long as they are matched (1% is fine) and not
so large that the compliance range of the control current source is exceeded.
The 3080s may, however, have to be matched somewhat by hand and held in
good thermal contact for optimum results. The two halves of a 3280 would
be an ideal solution in this case. Another alternative is the use of a matched
trio of transistors for exponential conversion. The third transistor is
connected in parallel with the usual exponential output transistor except for
the collector, which becomes a second output terminal. The harmonic
distortion introduced by the 3080 gain elements is much less than in the
VeA application, since the filter is a dosed-loop, negative-feedback network.

Controlling Q

Proper control of Q is an interesting problem. First, it is desirable that
Q be an exponential function of control voltage, since it has a useful range
from 0.5 to over 500. This 1,000-to-l range is best handled by having a I-V
change in Qcontrol voltage correspond to doubling or halving ofQ. Also, it
is probably desirable that high Q correspond to a high control voltage. Since
high Q corresponds to low control currents in this circuit, the polarity of the
Q control voltage will have to be inverted somewhere in the exponential
converter circuit. Finally, there may be occasions when constant bandwidth is
desired as the filter is tuned rather than constant Q. If the Q control is
exponential at "1 V per double" and two Q control inputs are provided,
constant bandwidth operation is achieved by feeding the frequency control
voltage into one of the Q control inputs as well as a frequency input. This
causes the Q to increase in direct proportion to center frequency and thereby
provide constant bandwidth.
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Fig. 6-28. Q .control for VCF in Fig. 6-27

Figure 6-28 shows a suitable Q control circuit. Note that it is similar
to the VCO frequency control circuit except that a pnp matched pair is
needed to satisfy the control current needs of the 3080. The reversal in
transistor polariry also reverses the control sense as required for Q control.

Quad Voltage-Controlled Integrator IC

Besides use in the state-variable filter, voltage-controlled integrators
can actually be used in any kind of active filter circuit, even the simple
one-pole low-pass discussed earlier. Since any filter function that can be done
with resistors, capacitors, and inductors can also be done with combinations
of one- and two-pole RC active filters, it follows that voltage-controlled
integrators cart be used to make any of those filters voltage controlled. As a
result, a quad voltage-controlled integrator IC has been developed, also by
Solid State Music, for use in voltage-controlled filters.

Figure 6-29 shows a block diagram of the type 2040 voltage-controlled
filter Ie. Basically, four transconductance gain cells driving four high-

5 MATCHED TRANSISTORS

TRANSCONDUCTANCE
GAIN CELL

IN I CAP lOUT I IN 2 CAP 2 OUT 2 IN 3 CAP 3 OUT 3

Fig. 6-29. Block diagram of SSM 2040 quad voltage-controlled integrator IC
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Fig. 6--30. Voltage-controlled four-pole low-pass filter with corner peaking

impedance buffers are provided. The gain cells have a predistortion circuit
and therefore can accept input signals as large as 80 mV and still generate less
than 1% distortion. The four gain cells are fed equal control currents from a
built-in multioutput exponential converter. The integrating capacitors are
supplied by the user, however, and should be 1,000 pF or larger. One
limitation to keep in mind is that the buffer amplifiers are only capable of a
I-V peak output swing and can only supply 500 !LA of load current.

Figure 6-30 shows a voltage-controlled filter circuit using the 2040.
This is properly termed a "four-pole low-pass filter with corner peaking" and
is quite popular, although not as much so as the state-variable type described
earlier. The main difference is that the low-pass cutoff of 24 dB/octave is
much sharper than the state-variable cutoff of 12 dB/octave. A bandpass
function is obtained by feeding a portion of the filter's output back to its
input to create a resonance. Enough of this feedback will cause a pure sine
wave oscillation at the center frequency. Note that a true bandpass response
is not produced by the feedback because there is appreciable very-Iow
frequency gain. This resonance technique is often called corner peaking to
distinguish it from true bandpass filtering, which has zero response at both
frequency extremes. At moderate to high Q settings, however, the audible
difference can be quite subtle.

The filter is really four identical single-pole low-pass sections in cascade
all tracking the same control voltage. Each low-pass section is functionally
equivalent to the VCF in Fig. 6-21D discussed earlier. When cascaded as
shown, each section contributes a cutoff slope of 6 dB/octave; thus, simulta
neous outputs of 6, 12, 18, and 24 dB/octave are available. When the
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feedback panel control is advanced far enough for oscillation, one will find
that each stage contributes 45° of phase shift to the resulting sine wave and
that the shift is independent of center frequency. Although voltage control of
the corner-peaking feedback is possible, its effect is very nonlinear and
essentially unsuitable for a precalibrated computer-controlled system.

The circuit itself lS very straightforward, requiring relatively few com
ponents. Active circuits are limited to input, control, and output amplifiers
and the 2040 itself. Temperature-compensating resistors for the exponential
converter and the voltage-controlled integrators themselves are required for
good frequency stability. The output of each low-pass stage must be at
tenuated by the 10K to 200 ohm combination to avoid overloading the
transconductance amplifier of the next stage.



Digital-to-Analog and
tlnalog-to-Digital Converters

The primary interface element between the digital logic found in a mi
crocomputer system and the analog modules of a voltase-controlled system are
digi tal-to-analog converters (DACs) and analog-to-digi tal converters
(ADCs). For synthesizer control, only DACs are needed to convert numbers
from the computer into control voltages. However, ADCs are used in some of
the human interface techniques to be described later. Fortunately, the two
devices are very closely related, and, in fact, most ADC circuits utilize a
DAC as a key element.

The purpose of these "data-conversion" devices is to translate between
the electrical quantities of current or voltage and digital quantities. For
analog synthesizer control with a microprocessor, voltage is the preferred
analog representation and twos-complement fixed-point binary is the pre
ferred numerical representation. We can further specify that analog voltages
in the range of - 10 V to + 10 V, and logic voltages compatible with TTL
should be acceptable to the converter.

A number of terms are used to describe and specify data-conversion
devices. Most all of them are equally applicable to DACs and ADCs so the
discussion will focus on DACs. Although converters that work with binary
coded decimal numbers are available, their variety is extremely limited.
Also, since BCD arithmetic is inconsistent with maximum utilization of
microprocessor speed, the discussion will be restricted to binary converters.

Data Conversion Terminology

Resolution

The most important and most quoted converter specification is its
resolution measured in terms of bits. Resolution is essentially a measure of the
number of different voltage levels that a DAC can produce. A 3-bit DAC, for
example, accepts 3-bit binary numbers as input and can produce no more
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than eight different voltage levels as its output. With an ideal DAC, these
eight levels would be equally spaced across the range of output voltages. If
the output is to span the range of - 10 V to + 10 V, for example, these eight
levels might be assigned as:

Binary Analog Binary Analog

000 -10.00 100 + 1.42
001 - 7.14 101 + 4.29
010 - 4.29 110 + 7.14
011 - 1.42 111 +10.00

Actually, since twos-complement binary inputs are usually desirable, the
eight levels should probably be assigned instead as:

000
001
010
011

+ 0.00
+ 2.50
+ 5.00
+ 7.50

100
101
110
111

-10.00
- 7.50
- 5.00
- 2.50

Unfortunately, neither assignment is ideal. The first has no code for
a zero output and puts out rather odd voltages anyway. The second has a zero
point and nice round levels but falls short of the full ± 1O-V range desired.
Actually, practical DACs have considerably more resolution than this exam
ple so that last missing level on the positive side is generally of no conse
quence. Using the twos-complement assignment, the resolution of this 3-bit
DAC would be a very coarse 2.5 V. The maximum error in converting an
arbitrary number (with rounding) to a voltage would be only half of this or
1.25 V.

Moving up to an 8-bit DAC improves things considerably. The
resolution now would be 20/(2""-1) or 0.078 V. The largest negative output
would still be - 10 V, but the positive limit would be one step short of
+ 10.0 or +9.922 V. Even with 8 bits, the step size of 0.078 V controlling a
voltage-controlled oscillator with a sensitivity of one octave per volt would
yield a pitch step size of about one semitone. A 12-bit DAC would have a
step size of 0.00488 V, which would give a nearly inaudible 1/17 semitone
increment. Even higher resolutions are available, but the expense would
limit extensive use.

Usually it is convenient to consider the binary input to a DAC as being
a signed binary fraction between -1.000 ... and +0.9999 .... The
output voltage of the DAC then is the binary fraction (rounded or truncated
to the DAC's resolution) times 10 V. This representation has the advantage
that calculations leading up to the value to be converted are not affected by
the actual resolution of the DAC used. For example, if a 16-bit computer is
being used, it would be convenient to perform all calculations using 16-bit
fractional arithmetic. (Fractional arithmetic is really the same as integer
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/

INPUT CODE

Fig. 7-1. DAC linearity errors

arithmetic and is just as fast on microcomputers. This topic will be discussed
in Chapter 18.) When a number is sent to the DAC to be converted, all 16
bits are sent out. The DAC in turn is interfaced so that it sees the most
significant N bits of the word, N being the DAC's resolution. An ADC
likewise would connect to the most significant bits of the word and supply
zeroes for the unused low order bits. The ultimate resolution implied by 16
bits is an astounding 305 JLV. An 8-bit microcomputer would probably
handle things in a similar manner unless converter resolutions of8 bits or less
are being used.

Linearity

Another term used in specifying DACs is /inearity. Linearity is related
to accuracy but is definitely not the same thing. Although the voltage levels
of an ideal DAC are perfectly equally spaced, real DACs have severe difficulty
even approaching the ideal for reasonably high resolutions. The most com
mon linearity error is called differentia/linearity error. Although the physical
reason for this will become clear later, Fig. 7-1 illustrates this error. The
stepped plot shown represents the output that would occur if the DAC were
driven by a binary counter. Differential linearity refers to the actual dif
ference in step position between any two adjacent steps compared to the ideal
difference. When a differential linearity error occurs, it is because one step is
either higher or lower than it should be. The diagram shows a differential
linearity error of one-half of the ideal step size, which is equivalent to
one-half of the least significant bit (LSB) of the digital input. If the error
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exceeds a full step in size, the staircase can actually reverse resulting in a
nonmonotonic (not constantly rising) DAC output, a very undesirable error.

Another, less severe linearity error is integral nonlinearity. Unlike the
previous error, it is usually caused by the converter's output amplifier rather
than the conversion circuit itself. In the diagram, it is represented by a
gradual bending of the staircase away from the ideal straight line connecting
the first and last steps. Usually this error is negligible compared to the
differential error.

Often both errors are lumped together and simply called nonlinearity.
This is defined as the maximum deviation of a step from its ideal position.
For linearity measurement, the ideal positions are calculated by dividing the
analog range between the actual minimum and maximum analog outputs
into N - I equal intervals, where N is the total number of steps. N on
linearities less than one-half of the least significant bit will guarantee
monotonic performance.

Accuracy

Accuracy is very similar to lumped linearity but uses the ideal end
points instead of the actual endpoints of the converter's range. Thus, for a
- 10 V to + 10 V 12-bit converter, the ideal endpoints would be - 10 V and
+9.99512 V (+ 10 less one LSB). Accuracy may be specified as either
petcent of full scale or in terms of the least significant bit. A converter with
accuracy better than one-half LSB would not only be monotonic but also as
accurate as the resolution and linearity characteristics allow.

Assuming perfect linearity, inaccuracy can be due to gain and offset
errors as illustrated in Fig. 7-2. A 5% pure gain error would cause the
converter output to range between, for example, -9.5 V and +9.495 V
rather than the intended -lO-V to +9.995-V endpoints. A O.5-V pure
offset error might result in an output between -10.5 V and +9.495 V.
Fortunately, both of these errors are easily trimmed out, leaving ultimate
accuracy a function of the linearity. Some applications of converters, such as
direct audio signal conversion, are little affected by inaccuracy as long as the
linearity is adequate. When purchasing a converter, one can usually expect
the accuracy, after trimming, as. well as the linearity to be better than
one-half LSB unless it is an unusually high resolution (16 bits) unit or it is
clearly marked as being a gradeout from a more expensive line.

Settling Time

When the digital input to a DAC changes, the analog output does not
instantly move to the new value but instead wanders toward it and oscillates
around it for awhile. The time required from when the digital input changes
until the output has stabilized within a specified tolerance of the new value is
called the settling time. The specified tolerance is usually one-half LSB, which is
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the only tolerance that really makes sense. The settling time is nearly always
much longer for a big change in output voltage than for a small one. Typical
values are 30p.sec for a full scale (-10 V to +10 V) change and 2 to 5 f.Lsec
for a 0.1 V or less change, which is quite adequate for any synthesizer control
application. Five to ten times greater speed is available without a great price
increase for direct conversion of audio.

Unfortunately, the DAC output does not always make the transition
smoothly from one level to another. Even when counting up one level at a
time, the output can be seen to glitch by a large fraction of a volt between
certain adjacent levels. Besides extending the settling time between these
particular levels, the momentary incorrect output may create an improper
response or excessive noise in the controlled circuit. Although some
specialized DACs may be designed for minimum glitch energy (voltage spike
height squared times its duration), in most cases the user must suppress the
glitches if they cause problems. This is generally accomplished with a low
pass filter when speed is unimportant or with a sample-and-hold circuit.

DAC Techniques
Over the years, dozens of methods of digital-to-analog conversion have

been conceived and utilized. What we are interested in for synthesizer con
trol are methods suitable for 8 to 16 bits of resolution having good inherent
accuracy and stability and a speed in the low millisecond range. Actually,
higher speed can be a great benefit because it allows multiplexing of one
converter among several tasks.
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Duty-Cycle Modulation

Probably the simplest and inherently most accurate conversion method
is based on pulse-width or duty-cycle modulation. The fundamental concept
is to generate a rectangular waveform with very precisely controlled voltage
levels and transition points. This waveform is then sent through a low-pass
filter, which effectively takes the long-term average voltage level of the wave
and outputs it as a dc voltage level. Actually, the beauty of the technique is
that the voltage levels are fixed so the on-off times are the only variable.
Thus, the scheme is really one of digital-to-time conversion followed by
time-to-analog conversion.

Figure 7-3 illustrates the operation of a duty-cycle DAC. At integral
multiples of T, the analog switch is flipped upward, which connects the
low-pass filter to the reference voltage source. A variable time (less than T)
later, the switch is flipped back down, which sends zero to the filter. In the
example, the filter sees Vre/ for 25% of the time and zero for the remaining
75%. The time average then is 0.25 Vref, which is output by the filter and
load isolating unity gain buffer. This method (and most of the others that
will be studied) gives a multiplying DAC because the output voltage is pro
portional to the product of a reference voltage and the digital input expressed
as a binary fraction.

A simple digital counter can be used to control the analog switch in
response to a digital input. At the beginning of a T interval, the counter
would be preset to the digital value to be converted. A stable, high
frequency clock causes the counter to count down toward zero. As long as the
counter is nonzero, the switch would be up, but as soon as it reaches zero, the
switch would be thrown down until the next cycle.

For high conversion speed, the frequency of the clock should be as high
as possible but not so high that analog switching time becomes a major
portion of a clock cycle. A realistic figure might be 10 MHz. The frequency
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Fig. 7-3. Digital-to-analog conversion via pulse-width modulation
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of the rectangular wave into the filter is the clock frequency divided by the
number of counter states, which is equivalent to the resolution of the DAC.
Thus, a 4096 level (12-bit) resolution would give a frequency of 10 MHzI
4096 or 2,441 Hz, which is a period of about 410 f.1-sec.

The output of the low-pass filter will have some ripple superimposed on
top of the average dc level, since its cutoff is not infinitely sharp. It would be
reasonable to desire a ripple amplitude of less than one-half the least
significant bit. With the· simple RC filter shown, the cutoff frequency would
have to be roughly 1/8,000 of the rectangular wave input frequency to have
an acceptable ripple. The cutoff frequency in this example then would have to
be around 0.3 Hz, which is equivalent to an RC time constant of over 0.5
sec. Even though this sounds slow, the worst-case settling time of the filter to
one-half LSB would be roughly nine times the time constant or nearly 5 sec!
Adding a bit of resolution to this DAC would multiply the settling time by
slightly greater than four. Although more complex filters and switching
sequences may reduce the response time to tens of milliseconds, this clearly is
not a high-speed technique. Differential linearity, however, is essentially
perfect regardless of resolution, and integral linearity is limited only by the
regulation of the reference voltage under a varying load. Accuracy can also be
excellent, limited primarily by the reference and the difference between
switch turn-on and turn-off times.

Resistor String DAC

Another approach to D-to-A conversion that is inherently much faster
is to use various combinations of resistors and switches along with a stable
reference voltage. The idea is to use the digital code to operate the switches
such that the resistors are connected in various configurations to produce the
desired fraction of the reference voltage at the output.

Conceptually, the simplest arrangement of switches and resistors is
shown in Fig. 7-4. This 3-bit example uses seven equal-value resistors
connected in series between the reference voltage source and ground. Eight
analog switches, only one of which is on at a time, select the desired fraction
of the reference voltage according to the 3-bit digital input to the 3-to-8
decoder and connects it to the analog output. One drawback to the circuit
should be immediately clear; for every added bit of resolution, the number of
resistors and switches doubles. An 8-bit converter, therefore, would require
255 resistors and 256 switches! In the past, such a circuit was completely
impractical beyond 4 or 5 bits. Its advantages, however, actually make it
attractive in integrated form where the repeated resistor-switch chain
structure can be laid out inexpensively on a chip. National Semiconductor,
for example, has a line of D-to-A and A-to-D converters that use this
structure at the 8-bit level. Another drawback is that the output must be
buffered by an op-amp voltage follower. Connecting a finite load resistance to

the output will greatly affect the circuit's linearity because its output
impedance changes with the digital code.
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Fig. 7-4. Resistor string DAC

The most significant advantage is that all of the resistors are of the same
value, and each resistor corresponds to one and only one step in the input
code-output voltage graph in Fig. 7-1. Differential linearity can be made
very good even with fairly inaccurate resistors. For example, if 5%-tolerance
resistors were used, the worst differential linearity error would be only one
tenth of the step size-very good performance indeed. Better yet, this level of
differential linearity can be maintained even at very high resolutions of 12
bits and more using the same 5%-tolerance resistors, just a whole lot more of
them.

Integral linearity can be a problem, however. Imagine building one of
these DACs at the 8-bit level. For the 255 resistors required, you would buy
three bags of 100 5% resistors and connect them in the series string using all
of the resistors from one bag before going to the next. Although all of the
resistors are within 5% of their marked value and will be fairly randomly
distributed throughout this range, it is entirely possible that bag 1 might
average a couple of percent lower than bags 2 and 3 because they were made
on a Monday. When the DAC is complete and tested, it will be found that
the first 100 steps will be a couple of percent smaller than the others on the
average, which makes the overall stair-step curve bow down and to the right
very significantly. Of course, in a real manufacturing situation or on a chip,
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the errors are likely to be more evenly distributed, but, when they are not,
the unit will have to be rejected. The point is that, with any DAC circuit
using resistors and switches, overall linearity and accuracy cannot be better
than the accuracy of the components.

Resistive Divider

The most common technique and the one on which nearly all commer
cial DACs are based is the resistive divider technique. Figure 7-5 shows a
simple 2-bit resistive divider type of DAC. Each switch is controlled by a bit
of the digital input. If a bit is a one, the switch is up connecting its resistor
to the reference voltage; for zero bits it is down and the resistor is grounded.
It is instructive to calculate the output voltage for each of the four possible
combinations of 2 bits. Clearly, 00 would give zero output and 11 would
give Vre/. The case of 10 gives an R-2R voltage divider, which results in
2/3 Vrif output, while 01 gives a 2R-R divider and 1/3 Vre/. Once again the
circuit is a multiplying DAC with an output proportional to the product of a
reference voltage and a binary fraction input.

The scheme is readily expanded to more bits by adding one switch and
resistor for each new bit. The third bit, for example, would use a resistor
value of 4R and the new voltage levels would be from 017 Vref to 717 Vre/ in
steps of 1I7Vre/. Each new bit would use a resistor twice as large as the
previous bit. Note that the output range stays the same (0 to Vrej) but that
each added bit halves the size of the steps.

This network is often called a weighted resistor voltage output network
because the value of each resistor is weighted in inverse proportion to the
significance of the bit controlling it, and the output IS inherently a voltage
level. The performance of the circuit is, in general, good. Differential linear
ity is determined largely by the accuracy of the resistors used. If the resistors
are not in the proper ratio and the resolution is high, grossly unequal step
sizes or even nonmonotonic behavior is possible. As an example, assume an
8-bit converter with perfect lR, 2R, ... 128R resistors but the lR resistor
is 1% too large, that is, 1.01R. The table below shows the voltage output of
the network for some possible digital inputs:

I

t R MSB LSB OUTPUT
! MSB

)00""'
0 0 00

v,ef 0 1/3 V,ef
I

t 2R 0 2/3 V,ef

I LSB 1 V,ef
0

Fig. 7-5. Weighted resistor DAC
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Digital Analog x Vref
00000000 0.000000
00000001 0.003941
00000010 0.007882

01111110 0.496586
01111111 0.500527
10000000 0.499473
10000001 0.503414

11111110 0.996059
11111111 1.000000

As can be seen, an increase in the digital input from 01111111 to
10000000 results in a slight decrease in analog output, a classic manifestation
of nonmonoionicity. Except for this step, the rest are 0.003941 Vre! high.
Some additional calculation will reveal that the maximum allowable value of
1R for monotonic performance is (1+ 1/128)R, at which point the voltage
levels for 01111111 and 10000000 are the same. If 1R were too small by the
same amount, this step would be twice the size of the others, which still
gives a lLSB differential linearity error but preserves monotonicity. It can
also be easily determined that the allowable percentage error for less signifi
cant resistors doubles for each bit toward the least significant end. In general,
though, all of the resistors will have some error, so individual resistors will
have to be more precise to guarantee differential linearity better than lLSB.
A rule of thumb that will always work is that the resistor corresponding to
bit N should have a tolerance better than 1/2N +1. Thus, the most significant
resistor of a 12-bit DAC should have a tolerance of ±0.024% or better.

•
Even if the resistors were perfect, the analog switches used have a finite

on resistance, which adds to the effective resistance of each bit. If all switches
have the same internal resistance, proper ratios are destroyed and linearity
suffers again. The effect of switch resistance can be minimized by making the
weighted resistors very large but then speed suffers. Also, stable, tight
tolerance resistors in the megohm range are difficult to find. Sometimes the
switches are scaled in size, and therefore resistance in proportion to the bit
significance to maintain proper ratios in spite of high switch resistance.
Generally, this is practical only for the most significant few bits because of
the wide range in resistor values. In any case, it is usually necessary to trim
the most significant few bits with a potentiometer or high-value parallel
"trimming" resistors.

Note that a finite output load has no effect on the linearity of the
circuit. If a load of value R was connected from the output to ground in the
example in Fig. 7-5, the four voltage levels would be altered to 0, 0.2Vre!,
0.4 Vre!, and 0.6Vref. Even a short circuit load would provide output currents
of 0, 0.5Vre!/R, 1.0Vref/R, and 1.5Vre!/R. Thus, the equivalent circuit of the
converter can be represented as a variable-voltage generator in series with a
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resistor equal to the parallel combination of all of the weighted resistors. For
reasonably high-resolution converters, this equivalent resistance is essentially
R/2.

Speed

Unlike the previous scheme, the speed of this circuit is quite good. The
only limitation on speed is the switching time of the switches and the load
capacitance at the output node where all of the resistors are tied together.
Even with a slow switching time of 1 f.Lsec, a node capacitance of 10 pF, and
an R value of 50K, the settling time for 12 bits of resolution would be 1
f.Lsec + 9 (25K X 10 pF) = 3.25 f.Lsec. With this kind of speed, the limit
ing factor is often the buffer amplifier usually connected to the output. For
even higher speeds, the current output configuration (output "shorted" to
the input of a current-to-voltage converter op-amp circuit) can be used to
eliminate the 2.25-f.Lsec contribution of output capacitance.

Although the speed is high, this circuit (in fact all resistive divider
networks) is subject to glitches when moving from one level to another. The
root cause of large glitches is nonsymmetrical switching time of the analog
switches. Assume for the moment that a 3-bit DAC is moving up one step
from 011 to 100 and that the switches go from 1 to 0 faster than from 0 to 1.
The resistor network will actually see a switch state of 000 during the time
between 1-0 switching and 0-1 switching. This momentary zero state creates
a large negative glitch until the most significant switch turns on. Even if
switching times are identical, the less significant bits may be slower than the
more significant ones because they handle much lower signal currents. Un
equal switching may be largely overcome in some circuit configurations, but
small glitches can still be generated during finite switching times when a
fraction of the reference voltage is still passing through a partially off switch.
Thus, although some DAC glitching is a fact of life, a simple low-pass filter
that may even be above the audio range is usually sufficient to eliminate the
effect of glitches in synthesizer control applications.

R-2R Ladder

Figure 7-6 shows a different resistance divider network that is the basis
for most modern DACs. Although somewhat more difficult to analyze than
the weighted resistor network, the output voltages are 0.0,0.25,0.5, and
0.75 times Vre(corresponding to codes of 00, 01,10, and 11. Bits are added
by inserting a switch, series 2R resistor, and lR resistor to the next lower bit
between the MSB and LSB. Note that the resistor to ground from the LSB is
2R rather than lR. This is called a terminating resistor because it simulates
the equivalent impedance of an infinite string of less significant bits all in the
zero state.

The advantages of this configuration are numerous. One is that only
two different values of precision resistors are needed. Although about twice
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I
t 2R MSB

o
o

LSB

o
1

o
1

OUTPUT

o
1/4 Vref

1/2 Vref

3/4 Vref

Fig. 7-6. Resistor ladder DAC

as many resistors are used, the ease of matching their characteristics (re
member only the ratio accuracy is important) leads to better DAC perfor
mance with varying temperature. In fact, all resistors could be of the same
value if 2R is actually two lR resistors in series. Another advantage is that
the load impedance of all of the switches is about the same. This eliminates
the need for scaling switch size; instead the switch resistance can simply be
subtracted from the 2R series resistor (or a large resistor placed in parallel
with 2R). Speed can be better because the node capacitances are spread out
rather than concentrated into one node as with the weighted resistor circuit.
Analysis of the effect of an error in a single resistor is considerably more
complicated, although the same resistor accuracy rule for guaranteed
monotonic performance still holds. Also, the linearity of this circuit is not
affected by load resistance or a direct short either. The equivalent output
impedance is essentially R.

Other variations of the resistance ladder are also used. The most
popular is the current-switching structure shown in Fig. 7-7. Essentially the
circuit has been turned upside down with Vre/ driving the ladder at what was
the output point and an op-amp current to voltage converter connected to
what was Vre/. Speedwise, this circuit is probably the best. The reason is that
voltage levels on the resistor network nodes do not change, since the ladder
current is simply switched between true ground and "virtual ground" at the
op-amp summing junction. Likewise, voltage levels at the switches do not
change. When voltage levels are constant, stray capacitances are not charged
so there is no RC time constant slowdown. The result is inherently high
overall speed nearly equivalent to the individual switch speed. Settling times
of less than 0.5 J.Lsec (neglecting the effect of the output amplifier) are
routine, and 20 nsec is possible in low-resolution designs.

Segmented DAC

One recently discovered circuit essentially combines the resistor string
method described earlier with the resistor ladder method to get the major
advantages of each. In order to understand how it works, refer back to Fig.
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I
2R t

MSB LSB lout
MSB ! 0 0 0 0

R
0

0 0 1 1/8 Vre/lr
2R vou! 0 1 0 1/4 Vre/r

0 1 1 3/8 Vre/lr

Vref
1 0 0 1/2 Vrer/r

R
1 0 1 5/8 Vre1/r

2R 1 1 0 3/4 Vre1/r

LSB 1 1 1 718 Vre1/r
2R

Fig. 7-7. Inverted current ladder DAC

7-6 and note that, as drawn, the digital code essentially interpolates between
ground and the reference voltage according to the binary fraction operating
the switches. In fact, the circuit will interpolate between any two voltages if
the ground terminal is freed and connected insread to the second voltage.
Figure 7-8 shows a 3-bit example, in which the lower ladder terminal is
connected to + 1 V and the upper terminal is connected to + 2 V. The 3-bit
digital code then selects eight voltage levels YSV apart starting at and
including the voltage at the lower ladder terminal (+ I V) and ending one step
short of the voltage at the upper ladder terminal (+ 2 - Ys V).

To form a segmented DAC, a modified resistor string DAC is first
constructed using two sets of switches so that two output voltages are
produced, the second always one step higher than the first (Fig. 7-9). These
voltages are then buffered by op-amps and applied to the ends of a resistor
ladder DAC, which in turn interpolates the large step into much smaller
ones. The most significant bits of the digital code drive the resistor string
DAC, while the remaining less significant bits drive the resistor ladder DAC.

Vrefh =+2.0 V.

1

t MSB 2R Vout

R MSB LSB Vout

2R I I I I.B75
1 I 0 I. 750
I 0 I 1.625

2R I 0 0 1.500
0 I 1 1.375

+LSB 2R 0 I 0 1.250

0 o 0 I 1.125
o 0 0 1.000

Vrefl = +1.0 V.

Fig. 7-8. Ladder DAC interpolating between +1 and +2 V
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Fig. 7-9. Segmented DAC

The split can be made anywhere, but the incentive is to apply most of the
bits to the ladder. Commercial units typically apply the most significant 3 or
4 bits to the resistor string DAC. Other circuit structures using current
division and interpolation are also possible.

The main advantage of this circuit is much improved differential
linearity for a given level of resistor accuracy. For example, a 16-bit
segmented DAC using 16 segments can be guaranteed monotonic using
resistors in the ladder section that would otherwise only be precise enough for
a 12-bit unit. This is a 16-fold relaxation in accuracy requirement that much
more than pays for the increased circuit complexity over what a straight 16
bit ladder-type DAC would need. However, as with the original resistor
string DAC, the integral linearity is no better than the resistor accuracy in the
string section, so such a DAC might only have 12-bit equivalent accuracy. In
applications in which step-to-step uniformity is more important than slight
curvature of the overall transfer function, segmented DACs can be very
valuable. The need for good differential and/or integral linearity will be
discussed in the DAC applications described in succeeding chapters.
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Exponential DAC Circuits

The preceding DAC circuits were all linear , that is, the output voltage
was a linear function of the input digital word. Nonlinear DACs are also
possible using only resistors, switches, and op-amps. In sound synthesis, an
exponential DAC would be of particular interest. Using such a device, an
exponential response to a digital word could be obtained from a linear analog
circuit without a separate analog exponential converter. Figure 7-10 shows a
conceptual circuit for an exponential DAC. Essentially the circuit is a chain
of swirchable attenuators that may have a gain of either 1.0 (switch on,
bit = 0) or a specific gain of less than 1.0. The output voltage is equal to the
product of the individual stage gains rather than the sum as with linear
converters. The buffer amplifiers prevent switching of succeeding stages from
affecting the attenuation ratios. For the values shown, the output is
VrefX 2 -N/4, where N is the input expressed as a binary integer. Thus, the
I/O table would be as follows:

Binary

000
001
010
011
100
101
110
111

N

o
1
2
3
4
5
6
7

Output x V,ef

1.000
0.841
0.707
0.594
0.500
0.421
0.353
0.296

Bits may be added at the left end of the circuit for increased range
(toward zero) or at the right end for increased resolution. The accuracy of
exponential conversion is limited only by resistor accuracy and the charac
teristics of the op-amps. Other circuit configurations are possible using an
amplifier per 2 bits or even fewer at the expense of more switches. Since the

GAIN= 1.0, 2-2 GAIN = 1.0, 2- 1 GAIN = 1.0, 2 -1/2 GAIN= 1.0,2- 1/4

ADD BITS
-- FOR GREATER

RANGE

ADD BITS
FOR GREATER_
RESOLUTION

Fig. 7-10. Exponential DAC
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network is a multiplying DAC, one obvious application is an audio at
tenuator with response directly in decibels, where the audio signal replaces
the reference voltage source. Or with some rescaling of resistor values, the
transfer function, YOU! = V"j X 2-N !12, can be realized, which would give
the 12-tone equally tempered musical scale directly with a linear VCO.

While the circuit in Fig. 7-10 gives a perfect exponential transfer
function (assuming perfectly accurate resistor values and op-amps), one can
also construct a circuit that gives a straight-line approximation to an exponen
tial curve. This may be done by modifying the resistor string section of the
segmented DAC described earlier. The lower resistors are reduced in value,
while the upper resistors are increased such that the segments follow a true
exponential curve. The ladder section then linearly interpolates between the
segment endpoints. The DAC-86 is a commercial example that uses 8
segments and 16 steps per segment to convert a 7-bit code. The primary
application for this type ofDAC is in telephone quality speech reconstruction
from a digital signal. This will be described more fully in Chapter 12.

Analog Switches for DACs
Several different kinds of semiconductor switches are typically used in

DACs as well as general analog signal switching. The latter application will
be of great interest later when computer-controlled patching of synthesizer
modules is considered. The ideal switch, of course, would act like a relay
with nearly zero contact resistance, complete isolation between control and
signal circuits, and high-signal-voltage capability but with submicrosecond
switching times and essentially unlimited life. Practical semiconductor
switches fall rather short on the first three points but are still quite usable if
the limitations are understood.

Switch "on" resistance, for example, is certainly more than ideal. De
pending on the switch type, it may range from just a few ohms to well over a
thousand ohms with typical values in the 50-ohm to 500-ohm range. Some
switch types have an on resistance that varies with the signal amplitude,
which can create signal distortion'. Off resistance or leakage current, how
ever, is usually small enough to be completely ignored. This combination of
characteristics makes current switching a commonly used circuit technique for
reducing or eliminating the effects of finite on resistance.

Inherent isolation of the control signal from the switched signal is not
possible in a fast, precision analog switch. Bipolar transistor switches, for
example, generally require the analog signal source to absorb a control Cut

rent. Field-effect-transistor switches use a control voltage that must be of the
correct polarity and magnitude with respect to the signal voltage. Although
little or no control current mixes with the signal, the control is affected by
the signal. Internal capacitances often cause significant spikes to be coupled
from the control circuit into the signal circuit. Feedthrough capacitance also
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Fig. 7-11. Basic bipolar transistor analog switch

reduces the off isolation of high-frequency signals or lets input spikes that are
intended to be gated off by the switch through to the output anyway. Limits
on signal amplitude that can be switched are imposed by breakdown voltages
of the switch itself and, in the case of FET switches, the power supply
voltages available for switch control. These limitations are such that ± lO-V
analog signals are not always easily handled.

Bipolar Transistor Switch

The bipolar transistor is one of the oldest analog switches in use.
Presently it is used in discrete form whenever low-voltage, moderatelyaccu
rate, very inexpensive switching is to be performed. Bipolar transistors are
also used extensively in monolithic DACs, where their errors are easily
cancelled through the use of matched transistors.

The basic bipolar transistor switch is shown in Fig. 7-11. Note that the
role of the collector and the emitter have been reversed. This reduces greatly
the inherent offset voltage of the transistor switch. For small signal currents
(less than 1 mA), the inverted connection provides saturation voltages in the
low-millivolt range as opposed to 60 mV or more for the normal common
emitter connection. The required conrrol current is the same order of
magnitude as the signal current due to the very low current gain of the
inverted connection.

Note that the control current flows through the signal source. This
need not cause much of a problem if the source has a low impedance such as
an op-amp output. Note also that, although the switch can actually pass
small amounts of negative current when on, it cannot block a signal voltage
more negative than half a volt when off. Positive signal voltage blocking is
limited to about 5 V because of the 6-v base-to-emitter breakdown of nearly
all silicon transistors. Greater breakdowns up to 25 V are available in transis
tors designed for analog switching, however.

One advantage of this switch is low control glitch feedthrough to the
output. All analog switches have capacitance between the control element
and the signal elements. Charging and discharging of these capacitances
during switching can create sizable glitches at the load. Since a bipolar
transistor switch is current activated, the voltage swing at the base is very
small and therefore the glitch is small.
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Fig.7-12. Bipolar transistor switches for DACs. (A) Voltage switch. (B) Current
switch.

Figure 7-12 shows two possible configurations of transistor switches in
DACs. The first circuit is a double-throw voltage switch that switches its
output between Vrif and ground with very little error. With the simple
resistive-voltage-to-control-current converter shown, the control logic swing
for this switch must be from a negative voltage to a positive voltage greater
than Vrif. An inherently bipolar (+ and - output voltages) DAC may be
made if the bottom transistor is connected to - Vre/instead of ground and the
control swing is increased. Note that the Vre./S can change over a wide range
as long as the drive is sufficiently greater than either and that they do not
cross (Vre/ on npn more negative than Vre/ on pnp). Total voltages (Vre/+
- Vrej-) up to the collector breakdown can be accommodated with this circuit.

The second circuit is often used in monolithic DACs. Weighted resis
tors are used to establish binary-weighted currents. The current either flows
through the common-base-connected switching transistor into the output
line or through the steering diode into the switch driver. If the current gain
of the transistors is high, very little signal current is lost through the base.
Note that this is strictly a current output DAC and that the current must be
sunk at ground or negative potentials. The temperature dependence of out-
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put current caused by changing emitter-base drop in the switching transis
tors may be cancelled by a matched transistor in the Vre/ source.

Junction FET Switch

The field effect transistor is the most commonly used analog switch for
general-purpose applications. FETs have the desirable characteristic that lit
tle or no control current flows in the signal circuit. They are also blessed with
a zero offset voltage (for zero load current), which contributes greatly to
accuracy with low-level signals. The on resistance is higher than bipolar
transistors, but proper circuit design can generally overcome that difficulty.

Junction field-effect transistors OFET) are well suited for general
switching in music synthesis systems because their on resistance is constant
regardless of signal level. An N-channel FET, for example, behaves essen
tially as a pure resistance between source and drain when the gate-to-source
voltage is zero. The switch is off when the gate is more negative with respect
to the source than the pinchoff voltage. Most JFETs are symmetrical (source
and drain interchangable), so if there is a voltage drop across the switch when
it is off, the gate must be more negative than the most negative source/drain
terminal. The gate must never be allowed to become positive with tespect to
the source or drain because the gate-channel diode will become forward
biased and control current will flow into the signal path. P-channel JFETs
work similarly, but all voltage polarities are reversed.

Figure 7-13 shows a basic JFET analog switching circuit. A large
resistor (WOK to 1M in practice) between the gate and source keeps the JFET
normally on. The control voltage is applied to the gate through a blocking
diode. When the control is more positive than the positive peaks of the
signal, this diode is reverse biased (preventing positive gate-channel poten
tial) and the conducting JFET is essentially isolated from the contrpl. To
turn the )FET off, the control voltage must be made Vpinchoff more negative
than the negative peaks of the signal. The signal voltage range thus is
determined by the control voltage swing and the pinchoff voltage. With
± 15-V power supplies and ± lO-V signals, the pinchoff cannot exceed 5 V.
Note that a small current flows through the now forward-biased blocking
diode and the gate-source resistor into the signal source. Fortunately, this
current can usually be ignored if the signal source is a low impedance.

The P-channel switch is essentially the same except that the positive
swing of the control voltage must exceed the positive signal peak by the
pinchoff potential. P-channel FETs are generally slower and have higher on
resistance than N-channel FETs by a factor of two to three. One fact of life is
that really low on resistance is incompatible with low pinchoff voltages. The
best switching JFETs have on resistances in the range of 20 ohms and
pinchoff voltages dose to 10 V. Thus, standard ± 15-V power supplies
would not be able to switch ± 10-V signals when using such high
performance devices.
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MOSFET Switch

Metal-oxide gate FETs (MOSFET) are also frequently used for switch
ing. The MOSFET is the most nearly perfect switching transistor available
from the standpoint of control-to-signal isolation. Basic operation is the same
as with a JFET except that the gate is insulated from the channel and all
voltages are shifted up somewhat. An N-channel MOSFET, for example, is
normally off with a zero gate-to-source voltage. The gate must become more
positive than a threshold voltage before the switch turns on. The gate may also
swing negative with no effect other than driving the device deeper into
cutoff. In fact, the gate voltage swing is limited only by internal breakdown
voltages; it is otherwise isolated (except for a small capacitance) from the
channel.

One difficulty with MOSFETs is that the on resistance is indefinite; the
more positive the gate the lower the resistance. If the MOSFET is carrying an
audio signal into a finite load resistance, the channel resistance will be
modulated by the signal itself, causing nonlinear distortion. This happens
because the gate- (fixed drive voltage) to-source (varying audio signal) vol
tage will be changing. Since there is a saturation effect at large gate-to-source
voltages, distortion will be minimized by suitable control overdrive. Distor
tion is also reduced by using larger load resistances. A typical switching
N-channel MOSFET might have a nominal on resistance of 100 ohms that
may vary from 75 ohms to 150 ohms with ± 15-V drive and ± lO-V signals.
Newer MOS technologies such as DMOS and VMOS can actually attain on
resistances as low as 1 ohm and carry ampere level currents!

A very nice analog switch may be constructed from two MOSFETs of
opposite polarity connected in parallel. To turn on, both switches must be
driven on by opposite polarity control voltages, which can reverse to drive
both switches off. The major advantage of this circuit is that signal voltage
levels as large as the drive voltages may be handled. Although each indi
vidual switch is highly nonlinear and even cuts off for part of the signal cycle,
the parallel combination is always on. In fact, when the on resistance of the
N-channel unit is increasing with positive-going signals, the P-channel resis
tance is decreasing to compensate. The result is considerably less signal
distortion. This structure is called a CMOS (complementary MOS) transmis
sion gate and is available in integrated form as quad switches and eight
channel analog multiplexors at very low cost. The disadvantage of most
integrated transmission gates is a ±7. 5-V signal and drive-voltage limita
tion. Recently, "B-series" CMOS has become available and can handle up to
±9-V signals, adequate for an 8-V standard system, although some care in
use will have to be exercised. Specialized units with even higher voltage
ratings are available but at a much higher cost.

Figure 7-14 shows a good general-purpose driver for both JFETs and
MOSFETs that can in turn be driven by TTL logic. The driver output swings
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Fig. 7-14. FET switch driver

between whatever positive and negative supply voltages are connected. The
output is negative for a logic high input, which would drive N-channel FET
switches off. In operation, Ql performs as a level shifter by feeding the
approximately 3-mA logic input current through to the base of Q2. The
220-pF capacitor speeds up the turnoff of Q2 (turnon of N-channel FETs) by
removing its stored base charge. As shown, the circuit will provide switching
times of around 200 nsee. Without Cl this deteriorates to around 1 f.Lsee.
Much faster operation (down to 20 nsec or less) can be obtained by changing
Cl to 100 pF, Q2 to a 2N3646, and reducing its collector load resistor to the
1-2.2K n range.

Recently, completely integrated analog switches have appeared on the
market. These "BIFET" devices accept normal logic levels and analog supply
voltages of ± 15 V and provide several NFET switching functions per pack
age. Each switch in a typi,cal array of four can handle ± lO-V analog signals
and switching time is about 0.5 f.Lsee. These are perfect for most applications
not requiring really high speed or exceptionally low on resistances.

Current-to-Voltage Conversion

Returning to DACs, it is often the case that the output amplifier limits
many performance parameters, particularly settling time. The purpose of the
amplifier, of course, is to isolate the DAC resistor network from load varia
tions so that accuracy is maintained. By far the simplest output buffer is
simply a voltage follower op-amp connected to a voltage output DAC net
work. Although simple, it is relatively slow when general-purpose op-amps
are connected as voltage followers because of the heavy frequency compensa
tion required. Specialized voltage-follower amplifiers such as the LM310 are
so fast, however, that overall speed may be dominated by the DAC output
capacitance.

Nearly all commercial DACs are inherently current-output devices.
Many of these can actually generate small voltages across small load resistors
with no loss of linearity. A non-inverting amplifier with gain can amplify the
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Fig. 7-15. Fast, inexpensive current-to-voltage converter

resulting fractional volt signal to standard levels with good speed, since less
frequency compensation is needed. Noise pickup could be a problem,
though, if this technique is used with high-resolution DACs.

The current-to-voltage converter configuration shown in Fig. 7-15 is
probably the best, really inexpensive circuit available for most applications of
current-output DACs. The "three-for-a-dollar" LM301 op-amp using feed
forward compensation easily gives under 3-f-tsec settling times, normally
obtainable only with more costly "high-speed" op-amps. Although the effec
tive zero impedance of the amplifier summing node eliminates output capaci
tance slowdown, in practice C1 is usually needed to keep the DAC output
capacitance from making the op-amp unstable. Gain and offset errors are also
easily trimmed out in this circuit because the adjustments do not interact.
Some types of CMOS DACs are affected by output amplifier bias current,
which is approximately 100 nA for the LM301. FET-type op-amps, such as
the LF356, are then required and C1 is mandatory with a value in the 10-30
pF range. These also require that the amplifier's own offset be trimmed to
zero in order to minimize differential linearity errors.

Number Coding

Several different binary codes are in common use with DACs. All of the
example circuits given previously were unipolar, that is, gave output vol
tages between zero and a Vref or output currents between zero and Iref. One
way to obtain a bipolar voltage output would be to use the dual emitter
follower bipolar transistor switch shown in Fig.7-12 with a bipolar reference
supply. The result would be a voltage output DAC that would swing be
tween - Vref and + Vref- 1LSB (switches connected to R-2R ladder). For
example, all zeroes would give - Vref, 10000 ... would give zero volts, and
11111 . . . would give one step less than + Vref. Such a code is called offset
binary because it is equivalent to a plain unsigned binary (positive output
only) DAC output between zero and +2Vre!shifted down by Vrefas in Fig.
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o -1.0 Vref 000

Fig. 7-16. Offset binary coding.

7-16. In fact, inherently bipolar output DAC networks are not usually built.
Instead, a unpiolar DAC is used and half of the reference voltage is subtracted
from the DAC output in the output amplifier. With a current output DAC
connected to a current-to-voltage converter, the offset can be accomplished
by drawing a current equal to one-half the full-scale DAC current out of the
amplifier summing node.

Most computers use twos-complement representation for bipolar num
bers, however. Fortunately, conversion of twos-complement binary to offset
binary is very simple; the most significant bit (the "sign" bit) is simply
inverted! No other logic or corrections are needed. This, of course, is
extremely simple to do in the computer program, the DAC interface, or the
most significant DAC switch itself.

There is a practical disadvantage to offset binary coding for bipolar
output. Recall that the effect of a slight error in the weight of the most
significant bit showed up as an odd-sized step in the exact middle of the
output range and nowhere else. Also, since the most significant bit has the
most stringent accuracy requirement, this type of error would be the most
difficult to avoid. With offset binary, this midscale errot would show up at
the zero output level, precisely where it would be most noticed.

Sign magnitude is another coding scheme that eliminates this error. An
N-bit sign-magnitude number has a sign bit and N - 1 magnitude bits,
which form an unsigned binary fraction. A sign-magnitude DAC would send
the magnitude value to a conventional unipolar DAC and then use the sign
bit to control the output amplifier. When the sign bit is zero, the amplifier
would pass the DAC output unaltered. When it is one, the amplifier would
become an inverter and give negative outputs for positive inputs. Such a
"sign-bit amplifier" is shown in Fig. 7-17. Although this circuit can have a
gain error if the two resistors are not equal, any error around zero is small and
can be easily trimmed out by zeroing the op-amp's offset voltage. Another
advantage is that this circuit effectively adds a bit of resoluton to the overall
DAC without doubling the resistor network accuracy requirement.
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Fig. 7-17. Sign-bit amplifier

Conversion of twos complement, which would still be the preferred
internal computer code, to sign magnitude is fairly simple. The function
needed would pass the twos-complement value bits unaltered if the sign bit
were zero and invert them if it were one. The conditional inversion is easily
accomplished with exclusive-or gates in the interface or can be done by
software.

Some Commercial DACs
For most applications requiring resolutions greater than 5 or 6 bits, the

expense and difficulty of finding precision resistors outweighs the cost of a
commercial prepackaged DAC. Most modern 8- and lO-bit units are
monolithic and packaged in standard 16-pin IC packages. Twelve-bit and
higher resolutions until recently were invariably hybrid devices usually
packaged in small epoxy modules. Now several 12-bit monolithic units are
on the market at prices under $20 for the commercial temperature grade.
Segmented DACs up to 16 bits are also available as monolithic ICs, but none
have true 16-bit integral linearity and accuracy. In this section, the most
widely used inexpensive devices in the 8-, 10-, and 12-bit resolution range
will be briefly described. There are, of course, a large number of similar
devices on the market that will perform just as well in computer-controlled
synthesizer applications.

1408 and DAC-08 Type for 8 Bits

One of the earliest 8-bit monolithic DACs was developed by Motorola
and bears the generic type number 1408/1508. The 1508 is an expensive
military temperature range device, but the 1408 performs nearly as well in
room temperature environments and costs less than $5. The 1408 is offered
in 6-,7-, and 8-bit linearity grades, although all have 8 bits of resolution.
The linearity grade is indicated by an "-X" following the type number. For
this discussion, use of the 8-bit grade is assumed.
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Fig. 7-H3. Application of 1408~type IC DAC

Like most inexpensive monolithic DACs, the 1408 is a bare-bones
device incorporating little more than the analog switches and R-2R ladder
network. An external reference source and output amplifier are required for a
complete DAC. The 1408 is basically a current-activated device; the refer
ence is a current and the output is a current. It is also a multiplying DAC.
The output current, Iottt, is equal to the reference current, Iref, times the
binary input expressed as an unsigned binary fraction between 0 and 0.994.
The reference current may range from 0 to about 4 mA, although below 0.5
mA linearity errors increase such that monotonicity cannot be guaranteed.
The reference current must always be positive and the output current is
actually negative, meaning that the DAC output sinks current. Standard
power supply voltages of +5 V and -15 V are used.

Figure 7-18 shows a typical hookup for the 1408. Although other
methods of supplying the reference current exist, the one shown is the
simplest. The Ire/+ input sinks the reference current at a voltage equal to the
voltage at I ref-. For a reference voltage of + 10 V with respect to ground, I re/
is tied to ground and Iref+ receives a reference current of 2 mA (the optimum
value) through a 5K resistor (R 1) tied to the reference voltage. A compensa
tion capacitor of 100 pF is required to frequency compensate the internal
reference current circuitry.

An output voltage range of - 10 to + 10 is developed from the 0 to - 2
mA output current with a current-to-voltage converter. A + 1.0 mA current
from the reference voltage source through R2 offsets -1.0 mA of the DAC
output, giving a net current swing into the amplifier of -1.0 to + 1.0 mAo
This current is then converted into a -10-V to + 10-V swing as a
function ofR3. The current output settling time is about 0.3 JLsec, which is
extended to approximately 3 JLsec by the amplifier. R2 and R3 may be made
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adjustable over a small range (low value trim pot in series with a slightly
reduced resistor) to precisely calibrate the scale factor and offset.

The digital input is offset binaty coded but may be converted to twos
complement by placing an inverter in the path to B7. Standard TTI logic
levels are acceptable and the loading is less than one-half unit load.

A similar type of device is the DAC-08, invented by Precision
Monolithics but made by several companies. Besides a much higher speed
than the 1408 (85 nsec current settling time), it has two current output
terminals. Both outputs sink current, but one is the complement of the
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Fig. 7-19. (A) Application of DAC-08 IC DAC. (6) Use of simple resistor
current-to-voltage converter with DAC-08.
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other. For example, for a digital input of 01000000, IoutI will be one-quarter
of the reference current and IOllt2 will the three-quarters of the reference
current. Thus, the full reference current magnitude is effectively divided
between the two outputs according to the digital code. Availability of the
two outputs is an advantage in a bipolar output DAC as shown in Fig.
7-~9A. Here the Iout1 output is connected to the op-amp summing junction
as before, but the Iollt2 output is connected to the noninverting input of the
same amplifier. The op-amp thus effectively subtracts IOllt1 from IOllt2 and
converts the difference into a voltage. The parts values given produce an
output range of - 10 to +10 V and a settling time under 2 fLsec. Note that
all of the resistors are the same value and if matched to within 0.2%, no
adjustments are needed.

Another advantage of the DAC-08 is that the outputs have a large
voltage compliance between about +18 and - 10 V, which permits use of a
simple resistor current-to-voltage converter in some applications. Figure
7-19B shows such a circuit, which also produces a - 10 to + 10 V output
swing into an open circuit. Note that the unused outpur terminal is
connected to ground. The output impedance is 10K ohms and can drive
finite load resistances with no loss in linearity, although the voltage swing, of
course, will be reduced.

7530 Type for 10 Bits

For several years, 8-bit linearity was the best that could be done with
bipolar monolithic circuitry. However, ion implantation coupled with CMOS
switch technology has made possible an inexpensive ($10) 1O-bit DAC with
an unusual but very flexible structure. The generic number is 7530 and the
originator is Analog Devices, although it is available from other manufac
turers. Like the 1408, reduced linearity devices are available so check
carefully that the grade being ordered is rated for lO-bit linearity.

As can be seen in Fig. 7-20, the 7530 consists of nothing except
precision resistors and CMOS analog switches! The reference is a voltage that
can range anywhere between - 10 V and + 10 V. The reference is applied
directly to the R-2R ladder network, which provides an equivalent 10K pure
resistive load to ground. The analog switches steer weighted current from the
ladder into the two output buses, which must be held at near ground poten
tial. A single supply voltage is required, which may range between + 5 V
and + 15 V. Since the power supply operates only the switches, its value and
regulation has virtually no effect on the analog output. A clever feature of
this design is that all parts of the analog switches are always at ground
potential considerably simplifying the internal switch drivers and allowing
the single low-voltage power supply. The logic inputs are TTl level compat
ible regardless of supply voltage and draw essentially zero input current. A
precision feedback resistor is provided for an external current-to-voltage
converter.
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Fig. 7-20. 7530-type 10-bit IC DAC

By far the most important feature of this circuit is its ability to handle
bipolar reference inputs. In fact, there is nothing to prevent audio signals up
to 10 V in amplitude from being applied to the reference input. The two
output buses are complements of each other. With all switches in the zero
state (shown), the entire reference current (less lLSB) is directed to the lout2

bus and none goes to loutl. The converse is true for all switches in the one
state. In the intermediate states, the sum of the two currents equals the
reference current less lLSB. Thus, if the input, D, is considered to be an

>- -<>OUTPUT

OUTPUT

'MATCHED TO 0.1%

(B)

Fig. 7-21. Applications of the 7530 10-bit DAC IC. (A) Digital potentiometer.
(8) Four-quadrant multiplying DAC.
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unsigned binary fraction, then [ollt1 = (Vref/ 10 ,OOO)D and [ollt2 =
(Vrej/lO,OOO) (0.999 - D).

Figure 7-21 shows two typical connections of the 7530. The first is a
digital potentiometer, whkh is useful as an audio gain control as well as a
general-purpose fixed-reference DAC. The output is simply the digital input
expressed as an unsigned binary fraction times the reference. If the reference
is an audio signal, then the circuit acts as a standard audio potentiometer with
a gain between zero and very nearly unity. Distortion should be zero, since
the CMOS analog switches are operating at a constant ground potential. Such
a circuit has obvious application in the computer-controlled synthesizer.

The second circuit is a full/our-quadrant multiplying DAC. Four quad
rant means that the final output voltage is the correct algebraic product of a
signed reference voltage and a signed digital input. This normally highly
complex function is obtained with the addition of nothing more than one
op-amp and two matched resistors. The extra op-amp negates the current
from [ollt2 and combines it with the current from [01111 in the output amplifier.
The effect is that the two currents are subtracted, giving a result that can be
either positive or negative. An inherent offset of 1/2LSB exists, however,
which can be cancelled by connecting a 10M resistor between the reference
input and the [ollt2 terminal of the 7530. The digital input is offset binary,
which can be converted to twos complement with a logic inverter.

Two details often overlooked in using CMOS DACs such as the 7530 is
that the outputs must be very near ground potential and that amplifier bias
current must be minimized. Ignoring either requirement will cause the
differential linearity to suffer. Although the circuits in Fig. 7-21 keep the
outputs at virtual ground (an op-amp summing junction), they will in reality
be at a voltage level equal to the op-amp's input offset voltage. For lO-bit
DACs, more than 2 mV of offset can cause a noticeable loss of linearity.
Amplifier bias current causes linearity errors because the effective impedance
of the converter output changes with the digital code. The easiest way to
avoid such bias current errors is to use an FET input type of op-amp 'as
shown.

Higher-Resolution Units

At the 12-bit level and beyond, a variety of technologies and packaging
techniques are available. Twelve-bit DACs have only recently become
available as monolithic ICs. The AD7541, for example, is a CMOS switch
and resistor type just like the 7530 described earlier except that it has two
more switches and ladder sections. It is packaged in an IS-pin DIP Ie
package and typically costs under $20. It is applied just like the 7530 except
that the power supply voltage must be + 15 V and the output amplifier's
offset voltage must be trimmed to under 0.5 mV in order to achieve 12-bit
linearity. FET-type amplifiers are mandatory to avoid bias current errors. One
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pitfall in the device's application is that its output capacitance is nearly 200
pF as the result of large junction analog switches needed for 12-bit
performance. Although the current settling time is specified at 1.°J-Lsec, and
most FET amplifiers have a 2-J-Lsec settling time, it is difficult in practice to
get an overall voltage output settling time under 6 J-Lsec because of the
output capacitance.

The DAC-312 is another 12-bit device that uses the segmentation
technique to provide low cost (under $12) and 12-bit differential (lO-bit
integral) linearity in a monolithic Ie. It uses current segmentation with a 3
bit segment generator (eight segments) and a 9-bit interpolator. It is
connected just like the DAC-OS described earlier, but the output current (up
to 4 rnA) is four times the reference current. Being a bipolar transistor
device, its current settling time is very fast at 250 nsec. Figure 7-22 shows a
circuit using a DAC-312 and an LM31S high-speed op-amp to produce a
voltage outpur settling time in the I-J-Lsec range.

Hybrid modules are also common at the 12-bit level, and, while they
tend to cost more than the monolithic ICs do, they are usually complete
voltage output units that require no additional components. The Hybrid
Systems DAC349 is an example that is packaged in a standard 24-pin
ceramic DIP and looks like any other Ie. For under $30, it includes a
precision-regulated voltage reference and an output amplifier. Varying
connection patterns among several of its pins select unipolar or bipolar
output and 5- or lO-V output ranges. Perhaps the only disadvantage of this
unit is the slow internal amplifier, which can take as long as 20 J-Lsec to settle
after a full-scale output change.

Even higher resolution is available at a proportionate increase in cost.
Fourteen-bit linearity (16-bit resolution) costs about $50, true 16-bit
linearity is around $200, and an unbelievable IS-bit (1 part in a quarter
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million) unit goes for nearly $1,000. With this kind of precision, one no
longer casually connects ordinary op-amps with solder on ordinary circuit
boards. The various gain and offset errors of the amplifiers and thermocouple
voltages in the wiring can easily wipe out the advantage of 16- and IS-bit
accuracy. Fortunately, 12-bit accuracy is generally sufficient for producing
control voltages in a computer-controlled analog synthesizer system.

Many DACs are now available with input registers to hold the binary
value being converted. These are often promoted as being "microprocessor
compatible," since they can be connected right across the system's data bus
and strobed when the DAC is addressed by the program. Unfortunately, their
extra cost is often much more than equivalent external latches would be.
Also, at the 12-bit level, it can be very difficult to keep noise from the data
bus, which is flipping about wildly all the time, out of the analog circuitry
connected to the same Ie. Noise isolation is much easier with external
latches.

Multiplexing DACs
Even though DACs have decreased dramatically in size and cost from

earlier units, it is still far too expensive to use a 12-bit DAC every time a
computer-generated control voltage is needed. Fortunately, it is possible to
multiplex the output of a single fast converter and make it look like several
identical but slower converters.

Figure 7-23 shows the fundamental concept of DAC multiplexing.
Each multiplexed output consists of an analog switch, storage capacitor, and
a voltage-follower op-amp. The idea is to store the output voltage for each
channel in the capacitor rather than a separate register-DAC combination.
For example, when output 1 must be updated the single DAC is given the
corresponding digital input, a delay for DAC settling is taken, and SI is
closed momentarily to update the charge on C1. Following this, other chan
nels could be updated with no effect on output 1. If the switch, capacitor,
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Fig. 7-23. DAC multiplexing
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and voltage follower have no leakage, the new voltage level would persist
indefinitely until a further update was required. Thus, one could visualize a
multiple-channel DAC board for a microcomputer in which the program
would supply a channel number and corresponding voltage level whenever an
output voltage needs to be changed. The board would have only one DAC
and numerous sample-and-hold (SAH) channels of the type just described,
but it would look like a board with possibly dozens of individual 12-bit
DACs.

Of course, in the real world several factors combine to give less than
ideal performance. Since there are finite leakages, it is necessary to refresh the
storage capacitors periodically to prevent output drift, not unlike refreshing a
dynamic microcomputer memory. The main limitation of the number of
channels that can be driven from one DAC is the ratio of channel-drift time
to channel-update time. With constant-leakage currents, the holding
capacitor should be large to minimize the drift rate. However, it should be
small to minimize the update time. In a practical music application, update
times beyond 50 JLsec could limit the speed with which the channels could
be manipulated. As a result, the requirement for adequate speed places an
upper limit on the capacitor size and consequently refresh interval.

When developing a practical circuit for DAC multiplexing, several
factors must be considered. The main DAC is an important contributor to
overall performance and, of course, determines the resolution of the system.
Since this one DAC will control a large number of channels, its cost will be
divided N ways. A good-quality, stable unit carefully trimmed for minimum
error should be used, since any errors here will affect all channels. High speed
is definitely a benefit so a couple of extra bucks spent on a high-speed output
amplifier for the DAC would be worthwhile.

Several analog switch characteristics are important in DAC output
multiplexing applications. "On" resistance, for example, greatly affects the
time necessary for updating but does not contribute to inaccuracy. This is
because the capacitive load acts as an infinite load resistance after it has
charged to the DAC voltage through the switch. Likewise, signal-dependent
on resistance would not be expected to distort the signal. A very important
parameter is the "feedthrough glitch" from the switch when it turns off. This
glitch will cause an output error because it slightly alters the capacitor
voltage at the moment of turnoff. This error may be made as small as desired
by increasing the hold capacitor but then update time is increased. A good
switch then would have low on resistance and low glitch energy, normally
conflicting requirements.

Since a large number of analog switches will be used, the required drive
circuitry becomes important. With individual FET switches, the digital
decoding and level-shifting circuits would probably dominate a board with
more than a few channels. A 16-channel unit using individual ]FETs, for
example, would require a 1-of-16 Tn decoder and 16 driver circuits like the
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one in Fig. 7-14. Integrated switch-driver circuits would still require the
decoder.

Analog Multiplexors

Integrated circuit analog multiplexors, however, are ideal for the applica
tion. An eight-channel multiplexor, for example, contains a 1-of-8 decoder,
eight switch drivers, and eight analog switches. One side of each switch is
connected to eight individual package pins and the other sides all connect to

a ninth pin. Three address inputs select the desired switch and a fourth chip
enable input controls operation of the selected switch. Although these circuits
were intended to seIect one of eight inputs and connect it to a single output,
they work just as well in reverse for output multiplexing a DAC. Two eight
channel multiplexors are easily combined into a 16-channel equivalent as
shown in Fig. 7-24. The scheme can be readily expanded to additional
channels not unlike expanding a microcomputer memory.

The 4051 is a very inexpensive CMOS eight-channel analog multiplex
or that can be had for less than $1. 50. Its main limitation, as with all
low-cost CMOS, is a restricted signal-voltage capability of 15 V peak to
peak. One application that could use the 4051 directly is a multichannel 0 to

+ 10 DAC for generating unipolar control voltages. Since the voltages being
switched are between 0 V and + 10 V, the 4051 could be powered from the
+ 15-V system supply. Logic inputs to the 4051 must swing between Vss
(connected to ground along with Vee in this case) and Vdd (+ 15), which is
easily accomplished with high-voltage open-collector TTL drivers such as
7406, 7407, 7426, 7445, etc., and a pullup resistor to + 15. The 4051
could also be used to switch ± 5-V analog levels if it were connected to + 5-V
and - 5-V power supplies. An internal level shifter allows the digital inputs
to retain a positive only swing of 0 V to + 5 V. The resulting ± 5-V signal on
the hold capacitor could be boosted to ± lO-V standard levels in the buffer
amplifier or used directly in a 5-V system.

A "B-series" 4051 (405IB) can be used in the bipolar configuration to
switch ±8-V signals and thus directly handle the full voltage range of an
8-V system. In order to do this, well-regulated supply voltages of +8 V and
-~ V (buffered system reference voltage is ideal) must be u$ed to power the
CMOS. Logic swings between ground and +8 V are required. Although
often no more expensive, the 4051B is likely to be harder to purchase than
the standard 4051.

BIFET analog multiplexors handling a ± lO-V signal range without
strain are also available. These are easier to use, require standard ± 15-V
power, utilize TTL logic levels but have a higher on resistance (350 ohms as
compared to 100 ohms for the 4051), and are much more expensive. Another
advantage of these circuits is their immunity to static discharge, since JFETs
rather than MOSFETs are used internally.
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Fig. 7-24. 16-channel multiplexed DAC using CD4051

Hold Capacitors

The hold capacitor also influences performance greatly. Not only does
its value determine the update speed and required refresh interval, its dielec
tric material determines the accuracy of the held voltage. All capacitors have
a "memory" effect to some degree, which becomes apparent when the
voltage on the capacitor is suddenly changed after having been constant for a
long time. The result is that the new voltage level gradually creeps toward
the old level with a time constant on the order of 20 msec. The final amount
of creep may range from over 1% for ceramic disk capacitors to less than
0.01% for polystyrene or polypropylene capacitors. Although a decreased
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refresh interval can minimize the effect, polystyrene should always be used
for the hold capacitor dielectric.

The capacitor size is largely determined by the required update time
and the on resistance of the analog switch. Note that some switches with an
otherwise low resistance may require external series resistance to limit the
current when large changes in output voltage occur such as from -10 to
+ 10 V. Without limiting resistance, a 50-ohm switch would try to conduct
nearly half an amp (if the DAC output amplifier could deliver it) when
switched on. For purposes of calculation, a total switch and limiting resis
tance of 400 ohms will be assumed.

Part of the update time is spent waiting for the DAC to settle. With a
decent output amplifier on the DAC, this can be around 5 p.sec. Thus, if the
total update time is to be 50 p.sec, then 45 are available for capacitor
charging. Assuming a worst-case transition of the full 20-V range, a worst
case error of one-half the resolution of a 12-bit main DAC would require the
capacitor to charge within 2.4 mV or about 0.012% of its final value. With a
normal negative exponential charging curve, at least 9RC time constants will
be tequired to update the capacitor that accurately. The RC time constant
therefore should be 5 p.sec or less, meaning that C can be no larget than
0.016 p.F. Unfortunately, this is not always large enOllgh to swamp out the
effect of feedthrough glitch in the analog switch. Larger capacitors up to
perhaps 0.1 p.F (about the largest polystyrene value available) may be usable,
however, if large voltage steps are avoided or several refresh periods for final
channel settling is acceptable.

Channel Output Amplifier

The channel output amplifier to a large degree determines the refresh
period, since its input bias current is normally the largest contribution to

leakage from the storage capacitor. This problem may be easily circumvented
by using one of the newer FET input op-amps that have vanishingly small
bias currents. However, these tend to have larget offset voltages than bipolar
input stage devices and cost more. So, as an exercise, let us determine just
how bad the situation would be with a standard bipolar op-amp.

The LM324A is a popular quad op-amp with an unusually low bias
current of 45 nA and a typical offset voltage of 2 mV, a little less than
one-half the step size of a 12-bit, ± lO-V DAC. With a hold capacitor of
0.016 p.F calculated previously, the drift rate due to bias current will be 2.8
V/sec. Thus, if drift is to be held to less than one-half the DAC step size (2.5
mY) between refreshes, the refresh interval should be less than 880 p.sec. A
refresh operation could be expected to take considerably less time than a full
update operation, since the capacitor voltage change is normally very small.
A 20-p.sec reftesh time, for example, would allow 5 p.sec for DAC settling
and a liberal three time constants for capacitor recharge. With these num-
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bers, it should be possible to keep 880 JLsecl20 JLsec=44 channels refreshed,
and it would be realistic to support as many as 64 with a 2-time constant
recharge period. Larger capacitors (to minimize switch glitch error) yield a
slightly increased channel capacity because, although the longer drift time is
cancelled by longer recharge time, the DAC settling time becomes less of a
factor. Thus, it would be worth considering the LM324 as the channel
output amplifier in a system with 64 or fewer channels.

Refresh Logic

As with dynamic memory in a microcomputer system, refreshing the
multiplexed DAC presents some problems that partially offset the lower cost.
One method of handling the refresh requirement would use the mi
crocomputer system's interval timer to interrupt the program periodically.
The interrupt service routine would then update all of the DAC channels
from a table in memory and return. Whenever the main program actually
wanted to change a DAC channel output, it would directly update both the
output and the corresponding table location.

Although easily implemented, this scheme has two serious difficulties.
One is the time stolen from the main program for the refresh operation.
With 64 channels and bipolar channel amplifiers, all available time would be
used to refresh the DAC. Even with FET amplifiers, a substantial amount of
time may be stolen. Also, if the microcomputer is stopped or a nonmusic
playing program is executed, such as the system monitor, the DAC refresh
ing stops and the channel output voltages drift away to undefined levels. If
the synthesizer were not shut down, the drifting voltages could produce a
really raucous racket! Thus, it is advantageous to perform the refresh au
tomatically with some scanning logic-or a logic replacement mi
croprocessor dedicated to the refreshing operation.

An Intelligent DAC?

A 6502 and three additional support chips would make a superb
multiplexed DAC controller. Figure 7-25 outlines such a unit that could
support up to 128 channels. The 6532 interface chips simultaneously provide
two 8-bit liD ports, 128 bytes of readlwrite memory, and one interval timer
each. These provide all of the interfacing needed between the control
processor and the using system, DAC, and analog multiplexor. The 2716
PROM provides nonvolatile program storage for up to 2048 bytes, ample for
a very sophisticated refresh routine indeed. These four ICs could be expected
to cost less than $50 total, which is less than 40 cents per channel.

Using a microprocessor for refresh control offers a lot more advantages
than a low package count, however. The using system, for example, can
communicate the 12 bits of data and 7-bit channel address on a byte basis
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with full request/acknowledge handshaking. After the data is transferred, it
can go on about its business, while the DAC micro goes through the gyra
tions of updating the channel. With proper programming of the DAC micro,
burst rate updating much faster than is directly possible could be accommo
dated by storing the data away for later action. The micro could be cognizant
of the magnitude of voitage change on the storage capacitors and decrease the
"wait for settle" delays when the change was small. Average throughput
could be further increased by shorting out the 300-ohm protective resistor
except when a large voltage step occurred. With the timers available on the
6532 chips, some higher-level commands such as "linearly ramp channel 43
from -2.5 V to + 1.6 V over the next 700 msec" could be implemented
right in the DAC, relieving the host system of that sort of task.

Analog-to-Digital Converters
In a computer-controlled analog synthesis system, ADCs are used

mostly for the input of manual data. Control knobs, slide pots, joysticks, and
existing synthesizer keyboards are all sources of voltage that need to be
converted into numbers for use by the system. In some cases, the output of
analysis devices such as envelope followers, pitch trackers, filter banks, or
even a raw audio signal must also be converted into digital form at medium
(100 samples/sec) to high (10K to 50K samples/sec) speeds.
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Fig. 7- 26. Single-shot method of analog-to-digital conversion

Single-Shot Method

The simplest ADC method, which is often used in microprocessor
based games, utilizes a single-shot or monostable multivibrator. Effectively,
the quantity to be digitized, which must usually be a resistance but can be a
dc voltage, is made to vary the pulse duration of a single-shot circuit. The
variable to be digitized is now time, which can be easily measured by a
counting loop in the microprocessor or an external hardware counter.

Figure 7-26 shows how a variable resistance such as a rotary or slide pot
can be digitized directly by the microcomputer. To perform a measurement,
the digitizing routine would first pulse an output bit connected to the
trigger input of the single-shot Ie. Following application of the trigger, the
microcomputer would enter a routine that looks at the state of the single-shot
via an input-port bit and counts a register up from zero every loop that it
remains on. When the single-shot times out, an exit is taken from the loop
and the content of the register is the converted value.

The shortest loop possible in 6502 machine code is 8 J.Lsec and is in the
same range for most other 8-bit micros. An 8-MHz 68000 can do such a test
loop in 2.25 J.Lsec. For 8-bit equivalent resolution (1 part in 256) using a
6502, the single-shot time would have to be 256 times 8 J.Lsec or 2.05 msec
for maximum resistance. In a 68000-based system, this time is reduced to
0.58 msec. Unfortunately, the time cannot go to zero for minimum
resistance so before the converted value is used, the time corresponding to
minimum resistance (one-tenth the maximum time in the example) will have
to be subtracted out. This method is capable of higher resolutions by further
extending the maximum single-shot period; however, 8 bits is usually quire
sufficient for digitizing single-turn or short travel slide porentiometers.

This technique is also readily extended to measuring voltages with the
circuit in Fig. 7-27. Normally, the analog switch is closed and the
integrator output voltage is therefore zero. To make a measurement, the
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CONTROLLED BY
OUTPUT PORT BIT

C

VOLTAGE
TO

MEASURE

Fig. 7-27. Single-slope integration method

microcomputer opens the switch and monitors the output of the comparator
as before. The integrator output now starts going positive at a constant rate
determined by the reference voltage magnitude. When it finally becomes
more positive than the unknown voltage, the comparator switches low and
the accumulated count is the converted value. As before, the resolution
attainable is dependent on the speed of the microcomputer and the time
available for conversion.

Dual-Slope Method

One problem with both of the preceding circuits is that accuracy and
stability depend on the quality of a capacitor. The circuit in Fig. 7-28
overcomes this difficulty by comparing the input voltage with a reference
voltage, using the capacitor only as a comparison medium. A measurement
cycle consists of two phases. Normally S2 is on, forcing the integrator output
to zero. During phase 1, 51 selects the unknown voltage for the integrator
input, and S2 is opened to allow the integrator to charge negative at a rate
dependent on the unknown voltage. The amount of time spent in phase 1 is
constant and carefully controlled by a counting loop similar to that used for
measurement. At the beginning of phase 2, Sl is flipped so that the negative

S2

VOLTAGE TO 0--0 SI
MEASURE

I
Fig. 7-28. Dual-slope integration method

TO INPUT
PORT BIT
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reference voltage is connected to the integrator. Being of opposite polarity,
the integrator starts to recharge toward zero again. The time necessary to
reach and cross zero is monitored by the microcomputer as before. If a similar
loop is used in each phase, the converted value will be in fractional terms of
the reference voltage and the value of the capacitor is no longer critical.

Accuracy in excess of 12 bits is readily obtained with this dual-slope
circuit, although long conversion times would still be necessary with the
microcomputer doing the timing and control. Every additional bit of resolu
tion would double the time required for conversion. Dual slope takes about
twice as long as the single-slope or single-shot method because both the
reference and the unknown are, in effect, digitized. A hardware counter
could be used instead to increase the speed, but these techniques still remain
relatively slow.

Integrated circuit dual-slope ADCs are available with resolutions as
high as 20,000 steps. Unfortunately, most of these are intended for digital
panel meters and therefore have decimal outputs. The MM5863 from Na
tional Semiconductor, however, provides 12-bit binary output and conver
sion times as short as 20 msec when used with an LF11300 "analog front
end" circuit. This is adequately fast for digitizing most slowly changing
voltages.

Linear Search and Tracking ADC

The better techniques for analog-to-digital conversion work by compar
ing the unknown analog voltage with the output of a DAC using the basic
configuration in Fig. 7-29. In practice, the DAC output is systematically
varied until it matches the unknown as closely as possible as determined by
the comparator. When this is accomplished, the input to the DAC is the
digital equivalent of the unknown voltage. The key to high speed is an
efficient search algorithm and a fast DAC and comparator.

The simplest search method is the linear search. The DAC is set to zero
(or negative full scale if it is bipolar) and then incremented one step at a time

UNKNOWN
INPUT VOLTAGE

OAC

tf:ltt===t>---- CONVERTED'f VALUE

Fig. 7-29. Analog-to-digital conversion using a DAC
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until the comparator switches from high to low, indicating that the un
known input voltage has just been crossed. Of course, this is not likely to be
any faster than the voltage-to-time methods described earlier. However, if
the unknown voltage has not changed much since the last reading, the search
could be started at the last value rather than zero.

A refinement of the linear search is the tracking ADC. In operation, the
comparator output is constantly monitored. If the comparator output is
high, the DAC output is increased one step. If it is low, the DAC is backed
off one step. The result is that the DAC always contains the digital equiva
lent of the input voltage within one step, provided the unknown voltage
changes slowly. The inherent one-step oscillation around the correct value
may be suppressed by use of a window comparator, which has an "equals"
output as well as a greater-than and less-than output. If the equals window is
set to be a little over one step wide, the oscillation is stopped. A window
comparator is simply two ordinary comparators with different reference
voltages-the difference being the window width.

The control circuit for a tracking ADC is exceptionally simple, just a
high-frequency oscillator and an up--down counter. The comparator output is
connected to the direction control input of the counter and the clock makes
the counter count in the indicated direction. The clock period must be longer
than the settling time of the DAC. Usually in a microcomputer system, the
clock can be a microprocessor clock phase chosen such that the counter never
changes when it might be read by the microprocessor. As long as the rate of
input voltage change does not exceed the counting speed, the tracking ADC
has a "zero" conversion time. The slew rate limitation can be very real,
however. For example, a 12-bit tracking ADC with I-MHz clock would
require over 4 msec to slew from one end of the range to the other. If used for
direct digitizing of audio, such a converter could not handle full-scale sine
waves higher than 77 Hz without serious errors.

Successive Approximation Search

The most efficient search algorithm and the one used by all high-speed
ADCs is termed successive approximation. The same algorithm is called a binary
search by computer scientists. It works by progressively narrowing in on the
unknown voltage level by testing a series of carefully chosen "trial" voltages
and looking at the comparator output for a high-low indication. (This same
problem is the basis of a popular computer game in which the computer
"thinks" of a random number and responds to the player's guesses with a "too
high" or "too low" verdict.) It is easily proven that no more efficient search
algorithm exists when only a high-low comparison decision is available for
each trial.

Referring to Fig. 7-30, it is easy to see how the algorithm works. The
example is one of homing in on an unknown voltage of + 3.253 V using a
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Fig. 7-30. Successive approximation search method

DAC with a range of -10 V to + 10 V in the ADC system. The first trial is
used to determine the polarity of the unknown voltage. The DAC is set to 0
V output and the comparator is read after sufficient delay for settling. In this
case, the comparator output would be high, indicating that the unknown is
higher than the trial, which is indeed the case. The next trial value should be
+5 V. This time the comparator output would be low, indicating that the
trial was too high.

At this point it is known that the unknown is somewhere between 0 V
and +5 V. The rule is that the next trial value should always be set midway
in the range that the unknown is known to occupy. The result of the trial
will be a new range, half the size of the previous one, that is also known to
surround the unknown. Proceeding, the next trial would be midway between
oand +5, namely +2.5. The sequence would continue: low, try 3 .75; high,
try 3.125; low, try 3.437; high, try 3.281; high, etc. Note that after only
seven trials the unknown has been pinned down to within 30 mY, better
than 0.15% of full-scale accuracy. Eventually the voltage range surrounding
the unknown becomes as small as the step size of the DAC used to generate
the trial voltages, and the conversion is declared to be complete. The last
trial value is the converted result.

Now if the reader is observant he may have noted that the trial values
are nice round numbers-in the binary sense. Assuming the use of an 8-bit
offset binary DAC, the sequence of trials expressed in binary would be:
10000000 (0), 11000000 (5), 10100000 (2.5), 10 110000 (3.75), 10101000
(3.125), 10101100 (3.437), 10101010 (3.281), etc.

It turns out that computation of the next trial value is really no compu
tation at all. It is simply a bit manipulation that any microprocessor is quite
adept at. If the binary input to the DAC is treated as a register, the manipu
lation is as follows:
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1. Start by clearing the DAC to all zero bits and begin the procedure at
the leftmost (most significant) bit.

2. Set the current bit to a one to generate the next trial value.
3. Wait for settling of the DAC (not usually necessary as a separate step

unless the DAC is slow or the microprocessor is exceptionally fast).
4. Look at the comparator output: if the unknown is higher than the trial,

go to step 6, otherwise continue to step 5.
5. Reset the current bit back to a zero.
6. Move one bit position right and go to step 2 for the next trial. If all of

the bits have been exhausted, the conversion is finished, and the DAC
register contains the converted value.

Note that the number of trials will be constant and exactly equal to the
resolution of the DAC being used. This means that doubling the resolution
by adding a bit will only lengthen the conversion time slightly, unlike
previous methods in which conversion time would also be doubled.

"DAC" IS DAC OUTPUT PORT ADDRESS
MOST SIGNIFICANT BIT OF "CMP" IS COMPARATOR, 1 IF INPUT IS
GREATER THAN DAC OUTPUT, 0 OTHERWISE
RETURNS WITH CONVERTED VALUE IN A, TWO'S COMPLEMENT NOTATION
USES IN[);:X REGISTER XAND ONE TEMPORARY MEMORY LOCATION
25 BYTES, AVERAGE OF 199 MICROSECONDS EXECUTION TIME

0000 A980
0002 8580
0004 A900
0006 0580
0008 800017
OOOB AE0217
OOOE 3002
0010 4580
0012 4680
0014 90FO
0016 4980
0018 60

ADC: LDA #X'BO
STA TRLB IT
LDA #0

ADC1: ORA TRLB IT
STA DAC
LDX CMP
BMI ADC2
EOR TRLB IT

ADC2: LSR TRLBIT
BCC ADCl
EOR #X'80
RTS

INITIALIZE TRIAL BIT REGISTER
LOCATION TRLBIT ASSUMED TO BE IN PAGE 0
INITIALIZE TRIAl VALUE
SET TRIAL BIT IN A
SEND TRIAL VALUE TO DAC
TEST COMPARATOR OUTPUT
LEAVE TRIAL BIT ON IF INPUT .GT. DAC
TURN TRIAL BIT OFF IUF INPUT .LT. DAC
SHIFT TRIAL BIT RIGHT ONE POSITION
LOOP IF BIT NOT SHIFTED OUT OF TRLBIT
FLIP SIGN BIT TO GET TWO'S COMPLEMENT
RETURN

Fig. 7-31. Successive approximation analog-to-digital conversion routine for
the 6502

Successive Approximation Logic

Just to show how efficient this algorithm is and how practical it is to
execute in software on a microprocessor, it has been coded into assembly
language for the 6502 microprocessor in Fig. 7-31. In this subroutine, the
DAC is considered to be an 8-bit offset-binary-coded unit at the symbolic
address DAC, and the comparator is assumed to be connected to the most
significant bit (sign bit) of the input port addressed symbolically by CMP. A
one from the comparator indicates that the unknown is higher than the trial.
The outpur from the subroutine is an 8-bit signed twos-complement
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number; however, removing one instruction will preserve the natural binary
coding when a unipolar ADC is being implemented.

First, the program is exceptionally short: only 25 bytes long. It is also
very fast (199 J.Lsec for a I-MHz clock rate) compared to the figures that were
discussed earlier. With this kind of inherent speed, the microcomputer
system could easily digitize several manual controls 100 times/sec with little
impact on the time available for other tasks.

Resolutions beyond 8 bits are readily handled by 8-bit microprocessors,
but the program size and conversion time increase substantially because of
the double precision operations now required. A 12-bit subroutine coded for
the 68000 (Fig. 7-32) reveals the power and speed of this processor. The
routine is 46 bytes long (assuming that the DAC and CMP registers can be
reached with a 16-bit address) and requires only 107 J.Lsec at 8 MHz. Note
that the sequence of operations has been rearranged somewhat to maximize
the amount of time allowed for the DAC and comparator to settle. If this
were not done, the comparator would be tested just 1 J.Lsec after the trial
value was written into the DAC register. Also, the DAC register can be write
only, an advantage when the hardware is built.

A hardware successive approximation controller is also easy to build
and, in fact, now can be purchased as a single IC good for up to 12 bits.
With a hardware controller, the final limit on conversion speed is the settling
time of the DAC and the delay of the comparator. Since even a mediocre
75-cent comparator responds in 200 nsec (lM311 type), the challenge IS

"DAC" IS DAC OUTPUT PORT ADDRESS, 12 BITS LEFT JUSTIFIEn
"DAC" MAY BE A WRITE-ONLY REGISTER.
BIT 7 OF "CMP" (8-BIT REGISTER) IS COMPARATOR OUTPUT, 1 IF
INPUT IS GREATER THAN DAC OUTPUT, 0 OTHERWISE.
RETURNS WITH CONVERTED 12 BIT VALUE LEFT JUSTIFIED IN [m.w,
TWOS COMPLEMENT. USES ONLY DO (SAVES OTHERS).
46 BYTES, AVERAGE OF 107uS EXECUTION TIME @8MHZ.

000000 *
000000 *
000000 *
000000 *
000000 *
000000 *
000000 *
000000
000000 48E740CO ADC
000004 307CFFOO
000008 327CFF02
OOOOOC 4240
OOOOOE 720F
000010 6008
000012 4A11 ADC1
000014 6B02
000016 0380
000018 5341 ADC2
00001A 03CO AOC3
00001C 3080
00001E OC410003
000022 6CEE
000024 OM0800il
000028
000028 4CDF0302
00002C 4E75

MOVEM.L D1/AO/A1,-(SP)
MOVE.W HDAC,AO
MOVE.W HCMP,AI
CLR.W DO
MOVEQ #15,01
BRA.S ADC3
TSLA (AI)
BMLS ADC2
RCLR 01,00
SUBO.W #1,01
BSET 01,00
MOVE.W DO,{AO)
CMP.W H3,Ol
BGE. S ADCI
EOR.W #$8008,00

MOVEM.L {SP)+,D1/AO/A1
RTS

SAVE WORK REGISTERS USED
KEEP ADDRESS OF DAC IN AO AND ADDRESS
OF CMP IN Al FOR FAST ACCESS
CLEAR THE TRIAL VALUE REGISTER
SET INITIAL TRIAL BIT NUMAER
,J1JMP INTO SUCCESSIVE APPROXIMATION LOOP
LOOK AT THE COMPARATOR OUTPUT
SKIP IF INPUT IS GREATER THAN DAC OUTPUT
CLEAR THE CURRENT TRIAL BIT NUMBER IF LESS
DECREMENT THE TRIAL BIT NUMBER
SET THE CURRENT TRIAL AIT
SEND CURRENT TRIAL VALUE TO DAC
TEST IF 12 AITS DONE
LOOP UNTIL AIT NUMBER BECOMES 3
CONVERT RESULT TO TWOS COMPLEMENT ~ KILL
* LAST SPURIOUS TRIAL BIT
RESTORE REGISTERS USED
AND RETURN

Fig. 7-32. Successive approximation analog-ta-digital conversion routine for
the 68000
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presented by the DAC. Because the speed of most DACs is determined by the
output amplifier, it would be nice if it could be eliminated. This, in fact, can
be done easily if the connection to the comparator is slightly altered. Rather
than using a voltage comparator with a voltage output DAC and an unknown
input voltage, what is desired is a current comparator that can be connected
directly to a current-output DAC. The unknown voltage can be converted to
a current by use of an accurate series resistor.

True current comparators with sufficient accuracy are not generally
available but the configuration shown in Fig. 7-33 is virtually as good and
uses the same LM31l-type voltage comparator. A mismatch between the
DAC current output and the unknown current will tend to pull the 311
inverting input away from ground, thus switching the comparator according
to the direerion of the mismatch. The two diodes across the comparator
inputs limit the voltage swing for large mismatches, thereby maintaining
high speed (small voltage swing minimizes effect of stray capacitances) and
keeping the current output DAC happy.

Figure 7-34 shows a complete 12-bit ADC circuit that is easy and
inexpensive to build and is very fast. A DAC-312 current output OAC is
combined with a DM2504 successive approximation register (made by
National Semiconductor and others) and the comparator circuit just de
scribed to yield a conversion time of only 6 f-Lsec. The 2-MHz clock
sequences the successive approximation at the rate of one trial per clock cycle.
A conversion is started by a negative-going pulse at the START input and
completion is signaled by EOC going low. The analog input impedance is
5K but varies somewhat during the conversion and should be driven by a
high-speed op-amp output. If a 12 f-Lsec conversion time is acceptable, a
74C905 CMOS successive approximation register can be used in place of the
DM2504 and the clock slowed to 1 MHz.

Complete Hybrid module ADC circuits using the successive approx
imation technique have been available for many years, but their cost has
always been much higher than an equivalent circuit constructed from a DAC,
a comparator, and a successive approximation register. Until recently, all
monolithic IC ADCs were of the much slower dual-slope type. Even now, 8
bits is the highest resolution offered in an integrated circuit AOC.

UNKNOWN
INPUT
VOLTAGE

R +5V

I kfi
TO

>----.. ~~~~~S~~iTION
LOGIC

Fig. 7-33. Analog circuitry for a high-speed ADC
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Fig. 7-34. 6-tLsec 12-bit ADC using DAC-312

One very reasonably priced (under $5 for Y2 LSB linearity) unit is the
ADC0801 series from National Semiconductor. It uses a resistor string DAC
internally along with CMOS circuitry and is capable of conversion times in
the 60-100-J.Lsec range. It operates entirely from a +5 V power supply and
accepts analog input voltages from 0 to + 5 Vas well. The 8-bit output value
goes through an internal tri-state buffer and thus can be connected directly to
the microprocessor data bus in a small dedicated system. Figure 7-35 shows
a typical hookup for the ADC0803, which is the Y2 LSB grade unit.
Although the analog input is a very high impedance when the unit is idle, it
becomes finite and variable during conversion and therefore should be driven
from an op-amp output. Internally, a 2-to-1 voltage divider provides a
+ 2. 5-V reference from the + 5-V power input, but an external reference can
be connected to the Vrefpin if desired. The analog input range is twice the
reference voltage but must not be larger than the supply voltage or negative.

The sequencing clock is generated by a built-in RC oscillator and a
conversion requires from 66 to 73 clock cycles to complete. The components
shown will produce approximately 1 MHz or an external clock can be
connected to pin 4. A negative pulse on the start input while chip select is
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low will initiate the conversion and make end of conversion (EOC) go high if
it is not already high. After conversion, EOC goes low, and the converted
value may be read by driving read low while chip select is low to enable the
internal tti-state buffer. Reading the register will also force EOC high.

Sample and Hold

There is one practical difficulty, however, with the successive approxi
mation algorithm; it assumes that the unknown voltage input does not
change during the course of the conversion. If it does change, significant
conversion errors can occur, although their magnitude will not exceed the
total amount of change over the conversion interval. Even though successive
approximation ADCs are quite fast, signals one might think are slow moving
can still change enough in a few microseconds to create an error of several
resolution steps in a high-resolution converter. A 20-Hz full-scale sine wave
"moves" at rates above one step (12-bit ADC) every 4 /-Lsec. If the conversion
time was a speedy 16 /-Lsec, random errors as large as four steps would result,
giving an effective resolution of only 10 bits. Such a "raw" ADC would be
worthless for converting audio signals.

The same sample-and-hold setup that was used to multiplex a DAC can
also be used to sample a fast-moving signal and then hold its instantaneous
value at a predictable point in time for accurate conversion. The performance
requirements of the sample and hold can be substantially greater than for
DAC multiplexing, however. When in the sample mode (switch closed), the
on resistance and holding capacitor size must be small enough so that a large
difference between input voltage and capacitor voltage does not develop due
to the rapidly changing input. Ideally, this difference amounts to a slight
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low-pass filtering of the signal, but if the multiplexor on resistance is non
linear, it can also introduce distortion. Of course, low on resistance and small
hold capacitors contribute to larger switching transient errors. With a good
sample and hold, full-range audio signals can be converted with ADCs as
slow as 25 f-Lsec. This topic will be discussed more fully in Chapter 12.

Multiplexing ADCs

Like DACs, ADCs are generally too expensive to use for each signal to
be digitized. Again, however, multiplexing can be used to make one fast ADC
look like several slower ones. Even the speed tradeoff is not really necessary
with techniques such as the single-slope integrator in Fig. 7-27. To add
more channels, one simply adds more comparators (type 339 quad com
parators work well) with the plus inputs all connected to the single integrator
and the minus inputs connecting to individual unknown voltages. The com
parator outputs go to individual input-poft bits of the microcomputer. The
microprocessor counting loop can be modified to actually perform eight
analog-to-digital conversions simultaneously! Although the simultaneous
conversion loop will be slower than a single-channel loop, it will not be eight

times slower, which results in increased per channel conversion speed as well
as hardware savings. A similar parallel conversion approach could also be
used with the linear-search ADC method in which a DAC replaces the
integrator.

Although simultaneous conversion is not possible with the successive
approximation search method, multiplexing by adding comparators is a very
simple and effective method. A digital multiplexor such as a 74150 16
channel unit can accept a binary channel number and effectively connecr the
addressed comparator to the successive approximation logic or input-port
bit. Thus, duplication of the expensive trial DAC is avoided. Note that this
is restricted to slowly moving signals unless a sample-and-hold circuit is
added to each channel.

Analog multiplexing several inputs into one sample-and-holdiADC
combination is probably the most used ADC multiplexing technique. The
same analog multiplexors that were suitable for DACs are equally good for
ADCs; the roles of input and output are simply interchanged. Two members
of the ADC0801 series described earlier have built-in analog multiplexors.
The ADC0808, for example, has an 8-input multiplexor, whereas the
ADC0816 has a 16-input multiplexor. These are still quite reasonably priced,
with the ADC016 being in the $10 range. A dedicated microprocessor makes
an excellent ADC multiplex controller as well. For continuous sampling of
several changing signals, the dedicated micro allows each channel to have its
own sample rate matched to the signal to be digitized. Even compensation
for known errors in the signal source could be handled on a per-channel basis
by the micro.
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Signal Bouting

In the previous two chapters, the sound-synthesizing elements that are part
of a computer-controlled analog synthesizer were studied in detail. First,
voltage-controlled circuits such as oscillators, amplifiers, and filters that do
the actual sound waveform generation and modification were discussed. This
was followed in Chapter 7 by a discussion of interface elements such as DACs
and analog switches that allow the computer to control the analog synthesis
circuits. The final step in the synthesis portion of the system is interconnec
tion of these synthesis and interface elements into a useful system. Of course,
there are almost as many ways to do this as there are system designers, but an
attempt will be made to group these into three different organizational
philosophies, all of which have been hinted at in previous discussion.

The first organization, which we shall call "Type 1," is really no
organization at all. The analog elements are simply mounted in rows on a
front panel, each independent of the others except for power. The computer
interface elements are likewise grouped together and are also logically inde
pendent. Interconnection is done manually by means of patch cords or pin
boards, just as on a conventional synthesizer. In fact, most systems of this
typ~ incorporate a standard analog synthesizer or a collection of standard
synthesizer modules. Interface elements may be standard multichannel DACs
with nothing more added than a jack panel to accept standard patch cords. In
such a system, the computer automates such tasks as sequencing, generation
of arbitrary envelope shapes, smooth manipulation of several parameters
simultaneously, and controlling polyphony. Note that these are the fllost
difficult tasks to perform on a classic manual synthesizer system. Since
off-the-shelf components can be utilized and the overall organization does not
differ greatly from conventional systems, this approach would be expected to
be the most popular, at least for the near future.

The Type 2 organization is like Type 1 except that the computer is in
complete control of the interconnections among elements as well. In its most
elementary form, it is a Type 1 system with a computer-controlled switching
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matrix added to replace the manual patch cords. A completely general
switching matrix very quickly becomes prohibitive in size, but fortunately
there are ways to reduce it without undue sacrifice in flexibility. If the analog
modules are precalibrated, the synthesizer may be packaged as a black box
with perhaps four signal outputs representing final quadraphonic sound.
Essentially, such a system is a low-cost analog approach to the capabili ties of
totally digital synthesizers, which will be described in Section III. The
advantage of this organization, of course, is that every aspect of sound
production can be specified, edited, stored, and retrieved automatically by
the computer. A side benefit is more efficient module use because the inter
connection patterns can be dynamically changed.

The Type 3 approach is a "voice-oriented" or "instrument-oriented"
organization. The fundamental idea here is that extreme interconnection
flexibility is not required because most synthesis work utilizes a small
number of standard patches for most sounds. Thus, these standard configura
tions can be prepatched as part of the design of an instrument module. Several
different kinds of instrument modules would be used in a typical setup, each
corresponding, more or less, to a ttaditional orchestral instrument. All in
puts to the modules would be digital from the control computer's I/O bus,
while the module's output is mixed onto an analog "channel bus" corre
sponding to a channel in the final sound. Such a setup is extremely modular
because of the parallel buses. To add a voice module, one simply plugs it in.
When all sockets are filled, additional ones are simply connected in parallel
with the same buses. Another advantage is that this organization is concep
tually simple, since interconnection is not a variable to be considered. The
user composes for and controls the system much like a typical orchestra but
with a wider range of timbres to choose from and freedom from human player
limitations.

Of course, any real system is unlikely to be a pure case of any of these
three organizations. A fundamentally Type 1 system, for example, is quite
likely to have some kind of rudimentary interconnection control. One
technique is the use of additional yeAs in some signal paths to enable and
disable control signals at various times. In addition, Type 3 concepts may be
used to reduce the number of computer control channels needed. A pure Type
2 system can become too large to be practical unless some Type 1 and Type 3
concepts are incorporated as well. A Type 3 system might have a small
portion devoted to uncommitted elementary modules for special effects use,
or the voice modules may have several selectable interconnection patterns
available. Thus, an actual system is likely to incorporate some aspects of all
three organizational types. Nevertheless, it is seldom difficult to classify a
computer-controlled analog system into one of these three categories.

The remainder of this chapter will be devoted to a more detailed look at
some of the techniques that can be used in each organizational philosophy.
An understanding of this material should enable the reader to evaluate the
various approaches and develop his own personal bias.
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COMPUTER

Fig. 8-1. Type 1 manually patched system

Manually Patched Computer-Controlled System

As mentioned previously, the manually patched system is really noth
ing more than a box of DACs added to an otherwise conventional synthesizer
as shown in Fig. 8-1. Since use of standard off-the-shelf components (includ
ing the computer system) is one of the attractions of this organization, most
comments will be made with this in mind. This, of course, should not
discourage home construction of the needed modules (which can easily cost
one-quarter as much as purchased modules), but most hobbyists would prob
ably be interested in one of the more sophisticated organizations.

The synthesizer is obviously an important part of the system. In many
cases, one must make do with an existing available sy~thesizer. If a synthe
sizer or a collection of modules is being purchased for the system, however,
attention to a few key characteristics will insure success with a minimum of
effort.

Synthesizer Requirements

Overall quality of the modules should be moderate to high. One should
not accept poorer performance from a synthesizer that is to be computer
controlled than would be acceptable for manual control. In fact, the com
puter is usually much less able to correct for deficiencies in the analog
modules than a human player is. For example, a person using a ribbon
controller or other proportional control device hears the sounds as they are



274 MUSICAL ApPLICATIONS OF MICROPROCESSORS

produced and can instantly (and unconsciously) correct for tuning errors. The
computer, on the other hand, would typically run through a stored or
preprogrammed control sequence with no knowledge of the sound coming
out. If the tuning drifted, it would be necessary to reject the recording and
either retune the module (usually with a slight twist of a panel control) or
edit the computer's control sequence to compensate. Predictable response to
control voltages is also desirable particularly with preprogrammed computer
control (as opposed to storage and retrieval of manually generated control
functions). Without clearly predictable response, many of the advantages of
programmed performance are lost. Clearly, a stable and predictable synthe
sizer is desirable.

Another important feature is total voltage control of all parameters that
are variable. Every panel control that performs a function that cannot also be
voltage controlled is a function over which the computer has no control.
Consequently, that function must remain static throughout a computer
controlled sequence. For example, many voltage-controlled filters have panel
controls for Q (bandpass sharpness) and no other provision for varying Q.
Thus, Q must be initially set and left alone during the performance or a
cueing system devised whereby the computer can signal the operator to twist
the control! Another example would be the duty-cycle control for the
rectangular-wave output on many voltage-controlled oscillators. Rotary
switches used to select one of several operating modes rather than simulta
neous output of all modes such as with state-variable filters is another "fea
rure" of some modules that limits their usefulness in a computer-controlled
system.

A final requirement is consistent control characteristics. This is not
normally a problem with prepackaged synthesizers or modules from a single
manufacturer but can become a real problem in a mixed system. For exam
ple, if some modules work on a 10-V standard and others work with 5 V, it is
necessary to keep track of which modules are patched to what computer
interface channels. This is normally a greater problem than mixing modules
in a purely manual system, since in the latter case panel controls can often be
set for acceptable performance and the operator can adapt to the somewhat
changed characteristics. Likewise, signal level differences may cause gross
errors in tonal balance unless the computer is informed or the necessary
adjustments are made when the patch is set up.

Control Computer Requirements

The control computer, of course, is the heart of the system and should
also be selected with some care. Again, however, one may be forced to use an
existing computer. Fortunately, virtually any computer can be made to work
well given sufficient programming effort, but a couple of computer charac
teristics greatly simplify the implementation of a Type 1 system, particularly
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if all subsystems are purchased. The first question to ask is: What digital/
analog interface boards are available to plug into my computer and are they
cost effective? Probably the best system from this standpoint is the S-lOO
type closely followed by the Apple- and IBM PC-compatible computers.
Unfortunately, many analog interface boards emphasize analog-to-digital
conversion more than the digital-to-analog, which is needed for synthesis
work. At the time of writing, there was at least one cost effective 16-channel
DAC board available for S-lOO systems. As microcomputer-controlled
synthesis gains momentum, boards with more channels at a much lower cost
per channel are sure to become available.

Another feature that is virtually mandatory in a control computer is a
so-called real-time clock or interval timer. This hardware feature allows the
computer to be cognizant of the passage of time without regard for the
execution time of the software. This capability is necessary for accurate and,
above all, repeatable timing of the music performance. If multitrack
recordings of the music are being made, it may be desirable to have a real
time clock that can be externally driven or synchronized. Since many systems
use the ac power line as the timing reference, it is not difficult to record
power line hum when the first music track is recorded and then use playback
of that track to synchronize subsequent recordings. The 6522 type of parallel
I/O interface IC found on most 6502- and some 68000-based computers can
easily be programmed to generate a timing reference signal output and later
accept it as input to drive one of the two timers on the chip.

As anybody who has done real-time control programming knows, it is
not possible to have too much speed. An adequately fast computer simplifies
programming and allows many otherwise important time factors to be
ignored. An amply fast machine allows normally inefficient but convenient
programming techniques such as high-level languages to be used for many of
the control functions. Use of a 16-bit computer would certainly be desirable.

Computer Inteiface Box

The biggest varIable in the system, however, is the computer interface
box itself. This would be expected to consist of a number of DAC channels,
each connected to a standard jack.

The first question that arises naturally is: How many DAC channels are
required? A maximum number is easily arrived at by totaling the control
inputs on all of the modules in the synthesizer. Thus, it would be possible for
the computer to manipulate every control input in the system, which would
be the ultimate in flexibility. Of course, many modules have two or more
control inputs connected essentially in parallel so computer control of multi
ple parallel inputs would be redundant. For example, many VCOs have three
control inputs: a primary frequency control input, a secondary one for injec
tion of vibrato, and a third normally used for a constant transposition vol
tage. Typically, the computer would supply the primary and transposition
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controls and another oscillator would supply the vibrato signal. However,
rather than using two DAC channels and doing the combining (addition) in
the VCO, one channel can be used and the addition done in the computer.
Thus, a practical maximum channel count would be the total number of
voltage-controlled functions available in the synthesizer.

Next, it is necessary to decide what the resolution and accuracy of the
DACs should be. If 16-bit DACs were cheap, they would probably be used
exclusively and the question of resolution could be ignored. However, the
cost of the DAC is important in nearly all cases except very large multiplexed
systems where one DAC (and its cost) might serve over 100 output channels.
As was mentioned many times in the previous chapter, 12 bits for a DAC is a
good compromise between resolution and cost. The 4096 output levels of
such a DAC are close enough together so that any stepping effect, such as
when the DAC is controlling the frequency of a VCO, is virtually inaudible.

Although 12-bitters are relatively cheap ($30), output multiplexing is
still necessary to obtain an acceptable per-channel cost figure. Commercial
analog output subsystems seldom multiplex more than 16 outputs from a
single DAC and therefore cost in the neighborhood of $10 to $25 per
channel. The main reason for small multiplex factors in these units is the
manufacturer's desire to retain high update speeds, much higher than neces
sary to control a synthesizer. Sticking with off-the-shelf modules, it may be
possible to purchase collections of sample-and-hold amplifiers at less cost and
further expand a 16-channel board. The home builder, on the other hand,
can utilize the techniques already discussed and add over 100 channels to a
single inexpensive DAC at a parts cost of little more than a dollar per
channel.

Another factor to consider is the update (sample) rates to be used in
controlling the synthesizer. Required update rates are highly application
dependent. For example, in synthesizing speech, 100 updates of the
parameters per second are usually ample for producing speech of high qual
ity. In music synthesis, one of the key questions is whether the computer will
generate envelope shapes through the analog interface or whether envelope
generator modules will be used with the computer controlling just the
parameters of the envelopes. If the computer generates envelopes directly,
update rates up to 500/sec may be necessary for accurate rendition of fast
envelopes. Most other control functions get along nicely on 100 updates/sec.

Finally, it may be desirable to incorporate a low-pass filter in the DAC
outputs, particularly if a dedicated DAC is used for each channel. The filter
prevents the control voltages from changing at an excessively high rate when
an update is performed. This can be important because fast transients on
control inputs may couple audibly into the controlled signal path as clicks.
The cutoff frequency of the filter is best determined by experiment but a
good starting value is the reciprocal of the shortest update interval to be
used. This is usually low enough to be effective, yet high enough to avoid
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Fig. 8-2. Type 2 automatically patched system

distortion of the control voltage contours. Most multiplexed DACs, how
ever, provide sufficient filtering in the channel sample-and-holds themselves.

Automatically Patched
Computer-Controlled System

An automatically patched system in its elementary form is a Type 1
system with the jacks and patch cords replaced by an electronic switching
matrix that is under the computer's control. Such a system is represented in
Fig. 8-2 but in practice the switching matrix may be organized differently
from the two-dimensional matrix shown. Comments about the synthesizer
and the computer made earlier are just as valid in a-Type 2 system. There
fore, let us proceed directly to a discussion of the switching matrix.

The simplest type of patching matrix, at least conceptually, is the
straight rectangular array of single-pole switches as in the drawing. All
subsystem outputs, including the DACs, drive the columns, and all of the
subsystem inputs are connected to rows. The final synthesizer output is
considered as an input to a speaker subsystem. The number of switches in the
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matrix then is simply the product of the rows and columns. This number
increases approximately as the square of system size and can obviously become
very large. The flexibility, however, is perfect, since any output can be
connected to any input. Note though the restriction that two outputs cannot
be tied together (to the same input); in this case, only one switch on any
given row can be closed. This may lead to simplification of the switching
arrangement.

Matrix Reduction by Point Elimination

Since the pure matrix approach is impractical for all but the smallest
systems, ways of reducing its size must be found if Type 2 systems are to be
practical at all. One obvious saving results from the realization that some
output-to-input connections are not useful or just plain illogical. For exam
ple, a voltage-controlled filter signal output driving a control input on th'e
same filter is not likely to be a useful or even predictable connection. In fact,
virtually all self-driving connections can be eliminated. The one case in
which self-driving might be useful is a VCO driving its own frequency
control input. This is really a case of frequency modulation, in which the
modulating and modulated signal frequencies are the same and has the effect
of distorting the waveforms in strange ways.

Since the multichannel DAC is typically the largest single contributor
of outputs, substantial savings can be made here. For example, the DACs
will normally only drive control inputs, not signal inputs; thus, those
switches can be removed. Actually, a few should be retained in the event that
a signal input does need to be driven. Savings can also be made by dedicating
DAC outputs to narrow ranges of control inputs. This can be done with little
if any flexibility loss because all DAC outputs are normally equal; thus, it
makes no difference which one is used to drive a particular input. If two
widely separated control inputs must be driven by the same DAC, two DAC
channels may be utilized and the computer can be responsible for giving both
the same data.

Other connection restrictions can be built in to further reduce the
switch count. Flexibility may be retained for special cases by adding extra
rows and columns with each added row connected to a column. Then, if a
special case requires a connection for which there is no path because of
omitted switches, the signal may be routed through one of the extra rows and
columns to make the connection. There is a clear tradeoff between intercon
nection restriction and extra circuits to retain flexibility. If too many
switches are omitted, it may require more added circuits to maintain flexibil
ity than were saved by the omissions.

Reduction by Subgroup Organization

One way to organize and formalize interconnection restrictions is to
consider the overall patching matrix as a set of independent submatrices.
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First, the set of modules in the system, including outputs from the interface
DACs, are divided into groups. The modules chosen to form a group should
form a compatible set, that is, in a real patching situation the interconnec
tions among elements of the group would be a maximum and "outside"
connections to other groups would be a minimum. Since the matrix size is
proportional to the square of the number of modules in the group, the size of
the individual submatrices can be dramatically reduced. In fact, it is easy to
show that the theoretical reduction in overall matrix size is proportional to
the number of subgroups it is broken into if the subgroups are equal in size.
For example, if a matrix were broken into five equal-sized subgroups, then
the total number of switches would be one-fifth as large.

Of course, in a practical system one subgroup must be able to connect
to another. Therefore, "communications" input columns and output rows for
the subgroup must be added as in Fig. 8-3. The limit on subdivision is
reached when the quantity of switches devoted to communications exceeds
that saved by the subdivision.

Other methods are available for reducing switch count and are, of
course, widely used in very large switching matrices such as a telephone
central office. The basic idea in all of these is to concentrate the myriad of
inputs into a few "buses" with one set of switches and then distribute the
buses to the desired outputs with another set of switches. If the number of
buses remains constant, then the number of switches increases linearly with
increases in input and output count rather than exponentially. The difficulty
with such schemes in patching a synthesizer is that their fundamental as
sumption, that a small number of inputs are connected to outputs, is not
valid. One will generally find that a large fraction of available inputs, out
puts, and modules are used in a significant number of patches.

SUBGROUP I MODULES, SUBGROUP 2 MODULES,

l~ ~I
-

I I~-LL •
-I-

~ ,-__L-'----;:::::=....-

COMMUNICATION
SUBGROUP I MATRIX CONNECTIONS SUBGROUP 2 MATRIX

Fig. 8-3. SUbgroup organization of switching matrix
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Assuming that a suitable submatrix organization and set of intercon
nection restrictions has been established, it becomes apparent that going
from a block diagram of a patch to a pattern of matrix switch closings is no
longer straightforward. Things can become so complex that a given patch
might not seem possible when in fact it is. Of course, this is an excellent job
for the control computer, which can be programmed to accept the patching
specification directly and then search for an interconnection pattern that
implements it.

Reduction Example

A concrete example should serve to illustrate these points. Let's assume
that a moderately large system is to be automatically patched and that the
maximum practical amount of flexibility is desired. The system to be
patched is as follows:

1. 8 VCO 3 control in, 4 signal out
2. 16 VCA 1 control in, 2 signal in, 1 signal out
3.4 VCF 2 control in, 1 signal in, 3 signal out
4. 4 special modules, 1 signal in, 1 control in, 1 signal out
5. 32-channel DAC

A little arithmetic will reveal that there is a total of 92 inputs and 96
outputs, giving no fewer than 8,832 crosspoints in the matrix.

If the system is to be organized as one large matrix, the first reduction
step is to eliminate self-patching paths, which amounts to a 184-switch
reduction. If DAC outputs are only allowed to drive the 52 control inputs,
then 32(92- 52) = 1,280 more switches are eliminated. Finally, if each
individual DAC is only allowed to drive one of two control inputs, then
30 X 52 = 1,664 switches can be removed. There are now only 5,704
switches in the matrix and virtually no flexibility has been lost. Other
interconnection restrictions can be made to reduce the number even more.

Now let's divide the system into four subsystems with four subma
trices. Each subsystem will be identical and consist simply of one-quarter of
the total for each type of module. Taken straight, each submatrix will have
24 columns of inputs and 23 rows of outputs for a total of 552 switches. This
times four submatrices gives 2,208 swirches, which is one-quarter of the
original total. However, provisions must be made for communication be
tween submatrices. If four submatrix inputs and outputs are added for com
munication, the submatrix grows to 756 switches or a system total of 3 ,024,
still about one-third of the straight full matrix size.

For a final estimate, the interconnections within the submatrix can be
restricted as before. Self-patching removes 46 switches, DAC to control
inputs only eliminates 80 more, and DAC to only two inputs cuts another
104 off. Thus, the final submatrix size is 526 switches and a total system size
of a little over 2,000 switching points. This is obviously large but not
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completely impractical. The only real sacrifice in flexibility so far has been
the limit of four signals connecting one subsystem with the others. Further
reductions can be made by further restricting interconnections, requiring
some manual patching, such as among subsystems, or permanent patching of
those connections that are nearly always made. Properly planned and backed
by an automatic signal routing program, these additional restrictions can
have a minimal effect on the utility of the system.

Mechanical Relays

In actually implementing a switching matrix, a number of switching
methods can be used. The primary split is between mechanical switches,
such as relays, and solid-state analog switches. The main advantage of relay
switching is the essentially zero contact resistance and total immunity to
signal overload conditions. Disadvantages besides· bulk and cost are slow
response times and excessive noise if a circuit is switched live.

One type of relay specifically made for matrix switching is the tele
phone crossbar switch. These consist of contact assemblies arranged into rows
and columns. A relay coil is needed for every row and column rather than
every crosspoint, making the device very cost effective in the larger sizes such
as 50 X 50 or 100 X 100. Unfortunately, they are highly specialized de
vices, generally only available to telephone equipment manufacturers. The
true hobbyist experimenter may be able to occasionally find them in scrap
yards, however.

A related device, also used in telephone switching systems, is the
stepping relay. The simplest type functions as a 10- or 20-posi tion
solenoid-driven rotary switch that may be stepped into any position by
pulsing the coil. Another type has two coils and two-dimensional movement.
With proper pulsing of the coils, the armature may be connected to any of
100 points. One advantage of stepping relays is their inherent memory; they
will stay put until moved to a different position. The disadvantages are very
slow speed (1 to 2 sec to step to the desired position) and extremely noisy
operation.

One type of relay that is practical is the magnetically latched reed relay.
The contacts are sealed in glass, operation takes 1 to 2 msec, and they are
essentially inaudible. A permanent bias magnet (or separate bias winding)
gives a latching action. The bias field is insufficient to cause closure of the
relay but can hold it closed. A current pulse that aids the bias field will close
the relay, while one that opposes it will open the relay. The coils can be
wired in a matrix array just like the contacts. Thus, to establish a connection
between, .say, column 31 and row 17, one would pulse coil column 31
positive and coil row 17 negative for a millisecond to turn that relay on. Reed
relays designed for matrix operation may even have two coils in addition to
the bias coil, which eliminates the need for diodes when connected in a
matrix.
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Semiconductor Analog Switches

Semiconductor switches are likely to be of more interest. The "contact"
resistance of the switch can become a problem, however, because the voltage
drop across this resistance will have an effect on the apparent sensitivity of
control inputs. For example, a 300-ohm switch resistance and WOK control
input impedance will cause an error of 30 mV on a 10-V control signal or
nearly half a semitone. Op-amp buffers at some outputs of the switching
matrix can easily eliminate this error. Signal overload may be a problem with
analog switches. The most inexpensive CMOS switches are limited to 8 V
peak and severely distort any signals beyond that.

Several common analog switch ICs are useful in switching matrix
construction. For maximum flexibility in organizing the matrix, the 4066
type of CMOS analog switch offers four independent switches in a single 16
pin DIP package. The on resistance is in the 50-ohm range, and the "B"
version can handle ± 8-V signal swings with a ± 8-V power supply. The
4051 l-of-8 analog multiplexor mentioned earlier gives eight switches in a
package, of which only one at a time may be on, also with a 50-ohm
resistance. These can be very effective in small matrices such as 4 x 8 or 8 x 8
in which a 4051 is used for each row. Also available is the 4052, which is a
dual l-of-4 multiplexor, and the 4053, which is a triple l-of-2 unit. One
significant advantage of the 405X series is that the control voltage to the
switches need swing only between ground and the positive supply voltage; it
need not go negative as required by the 4066. Although these switches are
inexpensive (less than $1. 50), all will require external latches to keep them in
the desired state and will require logic level shifters to be driven from TTL
logic levels. When a number of them are used in a large switching matrix,
these latches and level shifters can easily constitute half the circuitry.

A more recent IC that is tailor-made for switching matrices is the
MC142100 (Motorola) or CD22100 (RCA). This is an array of 16 CMOS
analog switches that is internally arranged into a 4 x 4 matrix and costs under
$3.00. Besides getting 16 switches from a 16-pin IC package, there is an
internal flip-flop to control each switch. The device interfaces to the driving
logic or computer just like a 16-bit write-only memory. There are four
address inpurs that are used to identify one of the 16 switches and a data and
write pulse input. To turn the addressed switch on, a one would be placed on
the data line and a positive pulse delivered to the write line. To turn a switch
off, the data would be zero instead. Anyon-off combination is possible and a
special internal circuit turns all the switches off when power is first applied.
The on resistance is somewhat higher (100 ohms) than the 405X series, but
the error incurred (Y6 semitone for a WOK load) may be small enough to
ignore. About the only drawback of this device is the need for level shifters
on the address and control inputs than can swing between the negative and
positive supply voltages.
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Figure 8-4 shows an 8 x 8 swirching matrix using the CM142100.
Level shifters on all inputs convert TTL levels ro rhat needed by the switches
and CMOS decoder. The six address inputs select one of the switches (least
significant 3 bits select the column and most significant 3 select the row), the
data input determines the switch state, and the negative-going strobe triggers
the switch's flip-flop. The 4028 decoder is used to select one of the 4 x 4
matrices according to two of the address bits, and the four unused outputs
allow easy expansion to a 16 x 8 array size.

The example system mentioned earlier could be quite effectively
patched using a similar matrix. Each of the four submatrices could fit on a
single board with about 60 pins needed for analog I/O connections and as few
as 16 digital signal pins for control. The 526 switching points would be
handled by approximately 35 of the matrix ICs plus a few packs of
miscellaneous logic and the level shifters for a total parts cost of less than
$200. Note that to take advantage of the matrix reduction discussed earlier
that many crosspoints in the overall matrix will be empty. One of the design
challenges is to organize the row and column assignments so that the empty
positions are combined, thus allowing elimination of full 4 x 4 matrix
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packages. While not a one-evening project, an automatic patching system
can certainly be practical when compared with the rest of the system.

Fixed-Patched Computer-Controlled System
An instrument-oriented synthesizer is really a radical departure from

the function-oriented synthesizer discussed up to this point. The system
"bu;lding blocks" are now entire sounds or "voices" rather than low-level
signal-processing functions. Thus, a typical synthesis setup should require
fewer modules and interconnections as well as being easier to understand.
The price paid for this simplicity is flexibility, since many decisions have
been made by the module designer rather than the user. For clarity we will
refer to the usual voltage-controlled functions such as veos, VCAs, etc., as
"function modules" and the others as "voice modules."

An analogy to logic ICs is easily drawn. The typical function modules
are like fundamental logic elements such as gates, flip-flops, and single
shots. Voice modules, on the other hand, are more like MSI circui ts such as
decoders, counters, multiplexors, and read-only memories. In modern logic
design, one often uses these sophisticated MSI functions to perform mundane
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functions that earlier might have been done with discrete gates merely be
cause the interconnections are simpler. Likewise, since computer-controlled
interconnection between synthesizer function modules can become complex,
a higher-level building block can be used to reduce the complexity.

Figure 8-5 gives an idea of how a fixed-patched system might be put
together. Although a single-voice module configuration is shown, both less
flexible and more flexible modules can be imagined. As in a Type 2 system,
the computer can be in complete control of the system with all user inputs
passing through it. A digital bus connecting all of the module inputs to
gether is driven by the computer. Each module has a unique set of addresses
and each control function in the module is a member of the set. The module
outputs are mixed onto one or more analog channel buses, which correspond
to stereo or quad audio channels. With proper design of the digital and
analog buses, an essentially unlimited number of modules may be added to
form very large systems.

Voice Module Design

Since the user is forced to live with them, the design of the voice
modules is very important. The major design variables are flexibility and
sophistication. At one extreme of flexibility we have very specific modules
that are not unlike a rank of organ pipes. At the other extreme is flexibility
equivalent to a small submatrix of function modules discussed earlier. A
simplistic module may be little more than a simple tone source combined
with a gain control amplifier (an IC sound generator chip for electronic
games would fall into this category), while a sophisticated one may go to
great lengths to duplicate the sound of a particular instrument.

Specific function modules are probably the most difficult to design but
are the easiest to use. Typically, the goal might be to emulate a particular
instrument at least well enough to be convincing when played in combina
tion with other instruments. Figure 8-6 gives a general structure for such a
module. The initial signal is generated by a VCO driven by a DAC. If the
instrument to be emulated has fixed tuning (such as a piano or organ), the

Fig. 8-6. Fixed-instrument voice module
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Fig. 8--7. Basic percussion instrument generators. (A) Resonant percussive
sound generator. (B) Noisy percussive sound generator.

DAC may have as few as 6 bits of resolution. The combination of nonlinear
waveshaper and fixed filter produces the characteristic timbre of the instru
ment. The shaper provides spectral characteristics that track the frequency of
the VCO, whereas the filter provides formants (peaks in the spectrum) that
remain constant. The VCA, its DAC, and envelope generator complete the
sound processing and produce the final output at the desired amplitude.

Additional circuitry may be added to enhance realism. One example
would be the use of a noise generator to introduce small random variations in
frequency and amplitude. Another refinement would be interaction between
amplitude and the waveshaperlfilter to simulate muted and blaring timbres
of the instrument.

A percussive sound module might take the form of Fig. 8-7. The first
case covers resonant sources such as wood blocks and many types of pitched
drums. Basically, a sharp pulse excites one or more high Qbandpass filters to
produce damped sine waves. The second case covers instruments such as
cymbals, which consist largely of enveloped, filtered noise. A snare drum
generator would require both generator types.
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Increasing Flexibility
A synthesizer based on such specific fixed function modules is lirtle

more than a computer-controlled organ with a wider than normal selection of
stops. More flexibility can be had by making the previously fixed elements
variable under computer control. For example, the fixed filter could be made
variable as could the waveshaper. Some or all of the envelope parameters
could also be made variable. With these changes, a single module type could
cover a range of instrument types wi th appropriate control from the com
puter.

An even more generalized module could be imagined. A selector might
be added to the VCO so that any of the standard VCO waveshapes could be
selected. Ultimately, a programmable waveform generator (in which a small
memory loaded by the computer contains the waveform) driven by the VCO
would be used. The filter could be expanded to a full VCF with selection of
the filtering function as well as the cutoff frequency and Q factor. The
envelope generator could also have a programmable envelope shape like the
waveform generator.

Even with voice modules of the type shown in Fig. 8-6 in which every
parameter can be controlled, there are still serious t1exibility limitations. For
example, a sound may require two independently tunable formants, which
requires two bandpass filters. FM synthesis is not possible because only one
VCO is present. In fact, the majority of special effects is just not available
with the example module.

The situation can be improved markedly, however, by expanding the
module somewhat and allowing perhaps a half-dozen different configurations
through a simple switching arrangement. Commercial voice-modular syn
thesizers typically include two independent VCOs, two variable filters,
several VCAs, and several envelope generators, the latter usually imple
mented in software. Available interconnection patterns range from two
parallel voices, to various intertwined combinations of the elements, even to
FM connections where one VCO modulates the other or one of the filters. In
particular, the two VCOs have been found to be very flexible, often
eliminating the need for a generalized waveshaper (the second oscillator can
be tuned to provide a prominent harmonic, for example). A moderately
effective chorus effect can be obtained by having the VCOs almost track each
other. A specific example of a voice modular synthesizer using these
techniques can be found in Chapter 19.

While these measures are typically more than adequate for a perform
ance-oriented synthesizer, t1exibility for special cases is still limited. Thus, a
few independent function modules and processor modules (like frequency
shifters, chorus generators, and reverberation devices) are needed to supple
ment the voice modules if a flexible, comprehensive system is the goal.
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Direct Digital Interface
The interface between digital signals from the computer and control

inputs of the signal-processing components can often be simplified. The
reason is that standard voltage levels and response functions are not needed,
since all control paths are local to the module. Thus, a current output DAC

might feed directly into a current-controlled oscillator without conversion to
standard voltage levels, exponential conversion, etc. A multiplying DAC

could be used to directly control gain without transconductance gain cells
and so forth. The result is that a voice module will cost considerably less than
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the equivalent collection of standard voltage-controlled modules and com
panion multichannel DAC.

As mentioned earlier one strength of the fixed-patched approach is the
possibility of easy, nearly infinite expandability. This is made possible by
totally parallel buses, both digital and analog, connecting the modules to
gether. Proper design of the buses, however, is necessary to realize this
potential.

The usual microcomputer bus is not at all acceptable for the digital
control bus of the synthesizer. For one, its speed requirement severely limits
the length and load allowable on the bus. Also, its high-speed signals, which
flip around wildly all the time, are a source of noise that can easily get into
the audio circuitry. The solution is a bus used only for transmitting data to
the voice modules. Since the microcomputer program that will be sending
data to the modules over the bus cannot go much faster than a word every 10
to 20 /Lsec, the bus can be slowed considerably, thus allowing long lengths
and minimizing noise generation. One technique that works well for control
ling rise times is to use op-amp voltage followers for bus drivers! An LM324
quad op-amp, for example, provides nice dean ramps with a 6- to lO-/Lsec
transition time for TTL levels. Slow switching CMOS logic on the modules
themselves provides virtually no load to the bus and tolerates slow rise times
without oscillation.

Figure 8-8 shows the implementation of an example synthesizer bus.
For simplicity, the bus is capable of output only, that is, data cannot be read
back from the synthesizer modules. For maximum flexibility and expandabil
ity, 16 address lines and 16 data lines are defined. The interface between the
bus and the computer consists simply of four 8-bit output ports, or if a
16-bit processor is used, two 16-bit ports. With up to 65,536 addresses
available, an addressing standard can be defined whereby the most significant
8 bits define a particular module and the least significant 8 bits address a
function within that module allowing up to 256 modules and 256 functions
per module to be addressed.

To perform a data transfer, one merely sets up the address and data
output ports. When the last port has been written into by the mi
crocomputer, a pair of single-shots times out the data transfer to the synthe
sizer over the next 20 p.,sec. A CMOS gate and latches on the module board
decode the register address and latch the data in response to data on the bus.
Series resistors on the CMOS inputs protect against mishaps on the bus.

Because of the slow speed of the bus and inherent noise immunity of
CMOS, several feet of open backplane wiring can be easily driven without
perceptible signal degradation. If the bus must be run some distance in a
cable, the 32 data and address lines can be individual conductors with no
special shielding. The write-enable signal, however, should be run as a
twisted pair with ground to minimize noise pickup from the other signal
lines. Combined with an overall shield, cable lengths up to 50 feet can be
easily accommodated.
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Audio Bus

The audio bus in Fig. 8-9 is a bit unusual. One line is used for each
audio channel in the final synthesizer output; therefore, from one to four
would be typical. Analog switches and/or programmable gain amplifiers
determine which audio channel a particular module drives, thus setting the
voice's position in acoustic space. To minimize noise pickup from the
backplane and allow a virtually unlimited number of modules to combine
their outputs, the audio lines are current sensitive. This means that each audio
bus line is terminated with an amplifier with near-zero input impedance.
The modules pump audio current up to 1 rnA peak into the bus lines either
from a voltage source with series resistor or directly from current output
devices such as transconductance gain cells or multiplying DACs. The zero
impedance amplifier is simply an op-amp current-to-voltage converter. The
capacitor across the feedback resistor is chosen to cancel the bus capacitance.
Even though the digital bus is optimized for minimum noise generation and
the audio bus is relatively immune to noise pickup, it should be kept away
from the digital bus and run as a twisted pair with ground around the
backplane. When outside the backplane area, the audio signals should be run
in low-capacitance (93 ohms) coax cable.
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Organ Keyboard In,terface

After a suitable synthesizer for output and a computer for control have been
found, the final and ultimately most important subsystems are the devices
used to communicate musical ideas to the system. The next three chapters
will discuss devices for original input of musical material as well as equip
ment useful for displaying and editing the material. These input techniques
are equally valid for real-time computer-controlled synthesizers and direct
computer synthesis, which will be discussed at length in Section III. Most of
them are fairly standard and were originally developed for computer applica
tions other than music. One exception is the music keyboard, which is the
subject of this chapter.

Undoubtedly the most popular musical input device will be a standard
organ keyboard. Most new users will prefer it, at least initially, because of
familiarity and because for most reasonably conventional music it is simply
the most efficient method for getting musical data into the computer. Also,
being a mass-produced item, the typical purchase price for a keyboard
mechanism is quite reasonable compared wirh construction from scratch.

Even so, the usual organ keyboard leaves a lot to be desired. For
example, the only "information" avail,tble about a key closure is which key
was struck and for how long. This is just as well, since the typical organ
would not be able to utilize additional information anyway. However, a
music synthesizer, particularly a computer-controlled one, can and should
utilize every bit of information available. To this end, special keyboards that
also sense the speed of key depression, variations in pressure while it is down,
and other variables have been constructed. Fortunately, some of these fea
tures are easily retrofitted to standard keyboards or in some cases may be
merely a function of the interface circuitry used to connect the keyboard to
the system.

One final keyboard characteristic, which piano and organ players usu
ally take for granted, is polyphony, i.e., simultaneous sounds in response to
simultaneous key closures. Whereas in an organ or piano there is one tone
generator per key, such is not the case in a synthesizer. Furthermore, the
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multiple synthesizer voices may be quite different from each other. Thus, the
major tasks for a polyphonic synthesizer keyboard are not only orderly con
nection of a voice to a depressed key but assignment of the "correct" voice to
the key.

Adapting a Standard Synthesizer
Keyboard for Computer Input

Since most standard synthesizers contain one or more keyboards al
ready, it might be useful to consider interfacing such a keyboard to a mi
crocomputer. The standard synthesizer keyboard usually provides three out
puts; digital trigger and gate and an analog control voltage proportional to
the key last depressed. The gate output is high (logic 1) whenever any key is
depressed. The trigger output is a short pulse that signals the exact instant
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that a key is pressed. Typically, these two outputs would go to an envelope
generator, which in turn controls a VCA to shape the amplitude envelope of
the notes.

Figure 9-1 is a simplified schematic diagram of such a keyboard. The
heart of the unit is the keyboard itself. Organ keyboards are usually con
structed with a straight gold-plated spring wire attached to each key. When
a key is pressed, this wire contacts a stationary gold-plated rod running the
length of the keyboard. This rod is called a "keyboard bus" in organ-builder's
terms. For the synthesizer interface, the spring wire on each key connects to a
tap point on a series string of resistors designated R in the diagram. A
current source sends a constant current through rhe string, creating an equal
voltage drop across each resistor. For 100-ohm resistors (a common value)
and 1/12 V/resistor (l2-tone scale and 1 V/octave output) the current would
be 0.83 rnA. Thus, the keyboard bus picks up a definite voltage when a key
is pressed against it. If two or more keys simultaneously contact the bus, the
voltage corresponding to the lowest key pressed appears on rhe bus due to the
action of the constant current source. The remainder of the interface circuit
essentially looks at the bus voltage and produces proper gate, trigger, and
control voltage outputs.

Gate and Trigger

The gate output is the easiest to generate. If no keys are pressed, R 1 (in
the megohm range) tends to pull the bus down toward - 15 V. D 1, however,
limits the fall to about -0.5 V. When any key is pressed, the bus is
immediately pulled up to a positive voltage dependent on the key pressed.
The gate voltage then may be taken from a comparator referenced to ground,
which will produce a logic one for positive bus voltage and a zero for negative
bus voltage. Cl is a noise filter in the range of 200 pF, while Al is a unity
gain buffer, which prevents loading of the keyboard bus.

The trigger circuit must provide a short (1 to 10 msec) pulse at the
beginning of each key closure. In all cases but one, this occurs when there is a
sudden change in keyboard bus voltage. In the circu.it shown, a transition
detector generates a pulse whenever such a sudden change happens. This
pulse would be the trigger output if it were not for the case that occurs when
a single contacting key is lifted. In this case, the trigger pulse should be
suppressed. To solve the problem, the transition detector output is delayed
slightly and logically anded with the gate signal. The result triggers a
one-shot, which provides the actual trigger output. Thus, when the transi
tion to no keys is detected it is blocked from producing a trigger. The delay
need only be long enough for the gate comparator to respond.

The control voltage output from the keyboard normally follows the bus
voltage. However, when no keys are pressed, it should reflect the voltage
level of the last key released. This is necessary because most envelope
generators do not begin their decay until the gate voltage has gone away. In
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effect, a sample-and-hold function is needed. S1 and C2 form the sample
and-hold, which is updated whenever a trigger is generated. C2 should be a
low-leakage low-dielectric absorption type (polystyrene) and A3 should be a
low-bias type so that the control voltage output does not audibly drift during
long decays. R2 and C3 provide adjustable portamento, which is a gliding
effect between notes.

The timing diagram illustrates a typical playing sequence on the
keyboard. For an isolated key closure, the gate goes high during the closure
time and the trigger is coincident with the rising edge of the gate. The
control voltage output goes from whatever it was to the level corresponding
to note G5. The next case is a three-note sequence in which the key closures
overlap somewhat. The first note (A5) starts the gate and trigger as before.
When B5 is initially struck, nothing happens because A5, being lower than
B5, takes precedence and no voltage change occurs on the keyboard bus.
When A5 is finally released, the change in bus voltage is detected and
another trigger is generated and updates the control voltage output. Re
sponse to the following G5 is immediate, however, since it is lower than B5.
At the end of the sequence, when G5 is released, the trigger is suppressed
and the control voltage output remains at the G5 level. Also shown is a
typical ADSR envelope that might be generated in response to the illustrated
gate and trigger sequence.

Computer Interface

Interfacing such a keyboard to a computer is fairly simple. Basically, all
that is needed is an ADC connected to the control voltage output and two
input port bits connected to the trigger and gate signals. Whenever a trigger
occurs, an analog-to-digital conversion would be initiated. If keyboard oper
ation is restricted to the 12-tone equally tempered scale, then the ADC need
only be accurate enough to determine which key is pressed. Thus, a 6-bit
ADC is sufficient for a five-octave keyboard provided that the voltage step
from key to key is matched to the ADC step size.

Once interfaced, it is a simple matter to write a program loop that
looks at these inputs and controls the synthesizer in response to them. If
keyboard activity is to be stored for later editing and recall, a real-time clock
is needed. The program would then note the time and the keyboard vQltage
whenever a trigger occurred or the gate changed. Maximum program flexi
bility is attained if triggers and gate changes are connected to the interrupt
structure on the computer. Then the program may do other tasks and still
respond to the keyboard quickly when necessary.

Figure 9-2 is a simplified diagram of a suitable interface. The gate,
trigger, and ADC output data enter through an input port. The flip-flop is
set whenever a trigger pulse or trailing gate edge occurs, which signifies a
significant keyboard event. When set, this flip-flop may request an interrupt
via the 7405 open-collector inverter. The interrupt service routine can de-
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termine if the keyboard is requesting by examining the trigger and gate
signals. After reading the ADC output, the request flip-flop can be reset
through an output port bit. If a 6-bit ADC is used, the entire interface only
requires 8 input port bits and 1 output port bit. The interface is equally
applicable to software ADC methods. Once the interrupt service routine
determines that the keyboard caused the interrupt, the ADC subroutine can
be entered to read the keyboard voltage.

Polyphonic Keyboards
In spite of its vast audio-processing power, most analog synthesizers are

inherently monophonic (one note at a time) instruments. In fact it is usually
the keyboard that causes this limitation. One can always use multiple
keyboards with a voice for each but an increasingly popular musical applica
tion of microprocessors is as polyphonic keyboard controllers that allow a
synthesizer player to become a real-time one-man band. Before discussing
such a keyboard controller, let's examine a fairly common analog technique
used to obtain two simultaneous independent notes from a single keyboard.

Two-Note Keyboard

Figure 9-3 shows the idea behind a two-note analog keyboard using a
single-keyboard bus. As mentioned in the single-note interface, when more
than one key is pressed, the bus voltage will correspond to the lowest key
pressed. What is needed is an additional circuit to generate a voltage propor
tional to the highest key pressed as well. Examining the siruation with two
keys down, it is seen that all of the resistors between the two keys are shorted
out (three resistors in the example). Since the string is driven by a constant
current source, the voltage at the top of the string, E2, will decrease by an
amount equal to the voltage that would normally appear across the shorted
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resistors. This decrease, when added to the low-note voltage that is already
available, will yield a voltage proportional to the highest key pressed. The
voltage decrease may be determined by subtracting E2 from a reference
voltage, E3, which has been adjusted to be equal to the normal top-of-string
voltage with no keys depressed. Thus, the highest note output is equal to El
+ (E3 - E2), where El is the low-note output. Op-amp A3 in conjunction
with four matched R 1 resistors performs this calculation, while A 1 and A2
buffer the bus and top point from loading.

Before discussing trigger and gate circuitry, let's think a little about
how the keyboard should respond to various playing situations. For conven
ience, the low note will be called Voice 1 and the high note will be called
Voice 2. With no keys pressed, the two gates should be down, and the two
voltage outputs should be held at their previous values. If two keys are
pressed simultaneously, then both gates should rise, both triggers should
fire, and the control voltages should move to their respective values. So far no
problem, but what happens if only one key is pressed? Ideally, only one voice
would respond while the other remains idle. If one does remain idle, which
should it be? Likewise, if two keys are down initially and one is lifted, ideally
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one of the gates would go away and the corresponding voltage output would
not change. Which one should it be? These problems would be particularly
important if the voices were different, such as a rich timbre for the low notes
and a thin timbre for the high notes. If the answer is consistent such that the
high note always takes precedence when only one key is down, the circuitry
can be designed easily enough. But then the question becomes whether that
choice is appropriate for all music that will be played. In a nutshell, this
defines the assignment problem that is difficult for two voices and purely a
matter of compromise for more than two.

Ultimate Limitations

If the trigger and gate circuitry used on the one-voice keyboard is
applied to each channel of the two-voice case, the behavior will be far from
ideal. First, the two gates would be identical because both would be looking
for a positive bus voltage. In addition, if only one key is pressed, both voices
would trigger and both would output the same control voltage. If a second
key is struck, one voice will retrigger and update its output depending on
whether the second note is lower or higher than the first.

So far the problems are not particularly bad if both voices have the same
timbre. The real difficulty occurs when two keys are down and the player
attempts to release them simultaneously, expecting the two-note chord to die
out during the envelope decay. What will almost surely happen instead is
that one of the keys will release first, and the voice that was assigned to that
key will trigger and update itself to the other key. The end result will be that
the two voices will decay while playing the same note and it is not even
predictable which note it will be!

Obviously, logic and delay circuits can be added to obtain performance
closer to the ideal. The most important element would be a circuit to
specifically detect when only one key is down and modify the gate and
trigger action according to the chosen set of rules. Since one set of rules may
not be appropriate for all playing situations, a selector switch might be added
to allow changing the rules. Even with its limitations, the two-voice analog
keyboard is an inexpensive feature often found in prepackaged synthesizers
and used primarily as a selling point.

Beyond two voices, it is necessary to return to the digital domain.
Actually, an all-digital keyboard interface would make the most sense for
musical input to a computer, since a digital-to-analog operation (series resis
tor string and keyswitches) and an analog-to-digital operation can both be
bypassed. It should be intuitively obvious that a suitable digital circuit can
constantly scan all of the keyswitch contacts, track the state of each one, and
report significant events to the computer. Assignment of keys to voices would
then be done in the control computer, where as little or as much intelligence
as necessary can be applied to the task.
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A Microprocessor-Based Keyboard Interface
Not only can digital logic solve the polyphonic keyboard problem and

thereby effect an efficient, completely general interface to a microcomputer,
but also a dedicated microprocessor can replace the logic. In this section, a
five-octave velocity-sensitive keyboard interface will be described, which uses a
6502 microprocessor to perform all of the needed logic functions. Using a
dedicated microprocessor results in an interface that uses a minimum of
parts, is easy to build, is flexible in that the operational characteristics may
be altered by reprogramming, and is actually inexpensive.

Velocity Sensing

Befote delving into the actual circuitry and programming, let's develop
a set of specifications for the unit. First, what is velocity sensing and how is it
implemented? Basically, velocity sensing is a very inexpensive way to obtain
additional information about keystrokes beyond simple duration. The keys
on a piano, for example, are velocity sensitive. The actual speed of key travel
downward at the exact instant of key "bottoming" solely determines the force
with which the hammer strikes the string. In fact, the hammer "coasts" a
finite distance from the point of key bottoming to actual contact with the
string. Thus, variations in velocity or pressure while the key is going down do
not affect the sound! Unfortunately, a velocity-sensitive organ keyboard will
not feel at all like a piano keyboard because the inertia of the hammer is
absent, but the same kind of information will be available. Note that since
we are using a synthesizer the velocity information need not necessarily
control the amplitude of the note. It could just as well control timbre,
vibrato, or the envelope.

The mechanical modification necessary to allow velocity sensing on an
organ keyboard is really quite simple. All that is required is a second
keyboard bus spaced a fixed distance above the standard bus and positioned
such that the keys' spring wires make contact with it when in the up position.
Now, when a key travels down, the wire will first break contact with the
upper bus after a short distance, float freely between the buses for the
majority of the travel, and then finally contact the lower bus just before the
key bottoms. The average downward velocity of the wire and thus the key
may be determined by measuring the time interval between breaking the
upper contact and making the lower one! If desired, the speed of release at
the end of a note may also be determined, which might indeed be used to
vary envelope decay. For monophonic keyboards, it is relatively easy to
design analog timing circuits that will produce a control voltage output
proportional to velocity. For polyphonic keyboards, however, only digital
scanning logic can cope with the problem.

The actual characteristics of standard two-bus commercial keyboards
are not quite ideal but can be lived with. Contact resistance, for example, is
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quite low and perfectly suitable for carrying any kind of logic signal. The
contact time differential used for velocity sensing varies from a minimum of
around 5 msec to a reasonable maximum of 50 msec. Attempting to pound
the key for shorter times results in severe bounce of the key itself as well as
possible damage. Gently easing the key down for longer times requires so
much care that it is unlikely to be done. Variations in the differential from
key to key and even the same key from stroke to stroke are in the range of
20% up or down. The very light touch characteristic of organ keyboards is
probably responsible for much of the variation.

Contact bounce is a problem that must be dealt with if spurious
outputs are to be prevented. Bounce on contact make is generally 1 msec,
although it can be as long as 3 msec. Bounce on break, however, can be as
long as 5 msec which normally occurs for the slower velocities. Thus, to
retain any degree of accuracy in velocity timing the keyboard controller logic
must define the time differential as being between the last bounce of contact
break on one bus to the first bounce of contact make on the other bus. With a
microprocessor doing the work, such sophistication is relatively simple.
Another option sometimes used by synthesizer manufacturers who also make
their own keyboards is to dispense with contacts altogether and use other
types of position sensors such as light source-photocell combinations, which
do not bounce.

Keyboard Events

The real purpose of the keyboard interface is to report all significant
keyboard activity to the using system. With velocity sensing, this requires
five pieces of information about each keystroke:

1. A number defining the key
2. When it was pressed
3. A number defining the depression velocity
4. When it was released
5. A number defining the release velocity

If the time of depression and release are defined as elapsed time from an
arbitrary point such as the beginning of the song, then the time relationship
among all keystrokes is retained and the keyboard activity can be stored and
reproduced exactly or edited.

For a real-time playing situation, each piece of information should be
reported as soon as it is available. It is possible to break each keystroke into
two parts, which will be called events. A depression event would therefore
consist of a key identification, its depression velocity, and the "time of day"
that it was depressed. Similarly, a release event would specify which key, its
release speed, and when it was released. With information in this form, it
becomes easy for the system control computer to operate the synthesizer in
immediate response to the keyboard and/or record the playing sequence.
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For convenience in this design example, each keyboard event will con
sist of four 8-bit bytes. The first byte will be the key identification, which
will be a binary number between 0 and 60 with 0 corresponding to C l-and
60 corresponding to C6 on the five-octave 61-note keyboard. The most
significant bit of this byte will distinguish press events from release events
with a 1 signifying depression. The second byte will be a velocity value in
which small numbers correspond to high velocities (short "float" times). The
third and fourth bytes will be the time of day in I-msec increments. Al
though this only pins down the time to within 65 sec, that should be quite
close enough to avoid confusion. If desired, a fifth byte could extend unique
timing information to over 4 hr.

The keyboard interface will present these four bytes as 32 parallel bits
that can be read by the using system in any way it sees fit. However, it is
extremely important that a handshake protocol be defined so that there is no
risk of an event becoming lost because another event occurred before the
using system could read the first one. This can be accomplished with a
request/response flip-flop similar to the one used with the analog keyboard.
When the keyboard has an event ready, it updates the 32-bit parallel output
and sets the request flip-flop. The using system seeing the request on, reads
the 32 bits and resets the request flip-flop. The keyboard is prevented from
outputting new data while the flip-flop is on. If another event does occur
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Fig. 9--4. Keyboard interface microprocessor
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Fig. 9-5. Keyboard multiplexor

before the using system reads the previous one, the keyboard can save it in a
first-in-first-out queue. In hard-wired logic, such queues are expensive, but
with a microprocessor-based interface, they are virtually free. If the time of
the event is ascertained when it occurs rather than when it is read by the
using system, such queuing has no effect on keystroke timing accuracy. As
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with the analog keyboard, it is best to connect the digital keyboard to the
host computer's interrupt system so that fast response is retained without
tying up the music-synthesis program by constantly looking for keyboard
events.

Hardware Configuration

The hardware configuration of the interface is relatively simple as can
be seen in the simplified schematic of Fig. 9-4. First, of course, is the 6502
microprocessor, which could be easily replaced with a 6503 (28 pins and 4K
addressing range) for absolute minimum space and cost requirements.
Program storage is provided by a single type 2708 erasable programmable
read-only memory (EPROM), which holds lK bytes (2716- or 2732-type 5-V
only EPROMS can be used by simply grounding their additional address
lines). A type 6532 "combination" chip supplies 128 bytes of RAM, 16 bits
of 1/0, and an interval timer that will be used to determine the "time of day"
that keys are pressed. The RAM will be used to hold information about the
state of each key, as a queue for events waiting to be accepted by the host, and
for general temporary storage.

Auxillary logic will be required to decode addresses, latch the 32-bit
output, and to actually connect to the 61 keys on the keyboard. The latter is
accomplished with a 61-input digital multiplexor as in Fig. 9-5. The
keyboard appears to the microprocessor as 128 memory locations at addresses
0400-047F16. The first 64 addresses, 0400-043F, select a key and the upper
keyboard bus, while 0440-047F select the same keys but the lower keyboard
bus. The data read from this pseudomemory have bit 7 (the sign bit) off if the
selected key is contacting the selecwd bus and on otherwise. The other bits are
forced to be zero, which is required for proper operation of the keyboard
program to be described. Addressing the keyboard like memory makes key
scanning much faster than it would otherwise be. A complete memory map is
shown below:

Hex address range

0000-007F
0080-00FF
0100-03FF
0400-043F
0440-047F
0480-07FF
0800-0BFF
OCOO-OFFF
100o-FFFF

Device addressed

128 bytes RAM in 6532
I/O ports and timer in 6532
OOOO-OOFF repeated three times
Music keyboard upper bus
Music keyboard lower bus
0400-047F repeated seven times
Unassigned, available for expansion
1K bytes EPROM 2708 type
OOO-OFFF repeated 15 times

Note that since address decoding is incomplete a variety of addresses
will refer to the same device. In particular, the EPROM can be reached by
addresses between FCOO and FFFF, which include the interrupt vectors. The
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Fig. 9-6. Using system interface

128 bytes of RAM in the 6532 can be reached by both page zero and page
one addresses, which allows both stack usage and convenient page zero
addressing.

The remaining logic is shown in Fig. 9-6. The four-latch les are wired
to 12 of the port bits on the 6532 as a simple output expansion (12 bits to 32
bits). The keyboard program can manipulate the data and clock inputs to the
latches and thus exert complete control over their contents. The four groups
of three-state outputs from the latches allow flexible and convenient interfac
ing to the using system. Two more of the port bits are used to control and
sense the handshake flip-flop. The remaining 2 bits are available for expan
SIOn.
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Software Functions

Of course, with a microprocessor-based interface, hardware is only half
the batde. The fundamental software job is to scan the 61 keys as fast as
possible and handle any that are not contacting the upper bus (i.e., de
pressed) in an appropriate manner. In the fundamental program structure,
time is broken into fixed length segments, and an attempt is made to do
everything necessary in each time period. The most important housekeeping
functions are done first and then the keyboard is scanned starting at the low
end. In the rare event that keyboard activity is such that processing takes
longer than a time segment, an interrupt from the timer will abort scanning
and start the next cycle. Thus, the highest few keys might experience an
occasional one count error in event or velocity timing under very heavy
keyboard activity conditions.

One of the first software design steps (and in fact the first feasibility
study step) is to determine how fast the scanning can be done and therefore
the length of a time segment. If a straightforward scanning loop is not fast
enough for adequate velocity timing resolution, then something less
straightforward will be necessary.

As it turns out, a simple scanning loop can test a key and go to the next
if it is up in 12 f-Lsec, which means that a scan of the entire keyboard would
take 732 f-Lsec. Allowing 70 f-Lsec of additional overhead for handling the
timer and setting up for a scan, it would seem to be possible to complete a
scan every millisecond, which is the desired resolution of key timing. How
ever, if a key is found to be down or was down in the previous scan, then
additional processing is necessary. Further study of key-down processing
reveals that the time used varies from a minimum of 37 f-LSec when the key
is fully depressed and held to a maximum of 100 f-Lsec when an event is
queued. Thus, a time allotment of a millisecond would only cover a
maximum of five fully down keys and less than that when events are queued,
which is not really satisfactory. Although several courses of action are possi
ble (2-MHz version of 6502 or external hardware to make key scanning
faster), for this example the scan period will be increased to 1.28 msec.
Velocity timing will therefore have a resolution of 1.28 msec, which is
adequate when compared with normal variation in the velocity time dif
ferential.

Software Flowchart

An overall program flowchart is given in Fig. 9-7. When power is first
applied or after a reset, all of the important program variables are initialized
and then the main loop is entered. In the loop, the "time of day" is updated
first taking into account the 1. 28-msec update interval and 1.0-msec time of
day units. Next the queue of events is checked. If an event is in the queue,
then a check is made to determine if the previous event is still awaiting
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action by the host system. If so, the event is left in the queue and the
program continues. Otherwise, the event is removed from the queue, put
into the output ports, and deleted from the queue.

Key scanning is next. Each key is tested to determine if it is contacting
the upper bus and had been previously as well. If not, an exit from the
scanning loop is taken to process the active key. Key-down processing looks
at the previous "state" of the key and decides whether to start or continue a
velocity count, queue an event, or just do nothing. After key-down process-
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Fig. 9-8. Keyboard state diagram

ing, the scanning loop is reentered at the point of exit and scanning con
tinues. If the entire keyboard is scanned before the 1.28-msec time slot
elapses, a "do-nothing" loop is entered, which waits for a timer interrupt
signifying the end of the slot.

Let us look more closely at the key-down processing. A key actually
goes through four "phases" as it is pressed and released. These are up, going
down, fully down, and going up, which will be assigned phase or "state"
numbers 0, 1, 2, and 3. If it were not for contact bounce or possible sloppy
playing style, the key would always go through these states in strict se
quence, and velocity timing could be accomplished by noting the number of
scan periods spent in phases 1 and 3. Bounce, however, is quite real, so it is
not uncommon for the state sequence to "backtrack" and complicate matters.
The solution is to simulate a "finite state machine" for each key as in Fig.
9-8. In this diagram, each circle represents the previous state of the key. Each
arrow leaving a circle represents a particular combination of bus contacts for
the key. Every possible combination of previous state and bus contact has
such an arrow, which points to what the next state of the key will be. Some
arrows also specify an action to be performed. For example, State 1 has three
outgoing arrows even though one of them reenters the same state. If the
previous state was 1 and the lower bus is contacted by the key under consid
eration, then the next state is 2 and a press event is generated. Likewise, if
neither bus is contacted, then the next state is also 1 and the velocity count is
incremented.

It is easy to see how contact bounce is taken care of by studying the
diagram. Bounce while the upper contact is opening on the downstroke may
cause the traversal from 0 to 1 and back to 0 several times. Each time contact
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with the upper bus is remade the velocity count is reset. Finally, however,
the bouncing stops and the State 1 looparound increments the velocity
counter on each scan cycle. The very first time contact with the lower bus is
seen, a press event is generated using the accumulated velocity count. Thus,
the desired timing from last upper bounce to first lower bounce is im
plemented. An exactly analogous sequence occurs when the key is released.
Note that simultaneous contact with both upper and lower buses is physi
cally impossible and therefore not accounted for in the diagram.

Program Description

A complete, assembled program listing for the keyboard is given in
Fig. 9-9. Looking at RAM memory allocation first, it is seen that nearly half
of it is devoted to saving information about the state of each key. The low 2
bits of each byte are used to hold the state number, while the upper 6 bits are
used as a velocity counter. The entire state byte is 0 if a key is inactive.
Thirty-two more bytes are used to implement an event queue, which allows
up to seven events to be stacked up before overflow. Five bytes are used to

MUSIC KEYBOARD CONTROL PROGRAM
THIS EXAMPLE PROGRAM SCANS A 61 NOTE VELOCITY SENSITIVE MUSIC
KEYBOARD AND FORMATS THE SIGNIFICANT EVENTS INTO 4 BYTE GROUPS
FOR USE BY A HOST MICROCOMPUTER SYSTEM.

DEVICE AND MEMORY ADDRESSES

0001 0000
0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0080
0010 0081
0011 0082
0012 0083
0013 009C
0014 008C
0015 0100
0016 0000
0017 0400
0018 0440
0019 FCOO
0020 0000
0021 0000
0022 0000
0023 0000
0024 0000
0025 0030
0026 003E
0027 003F
0028 005F
0029 0062
0030 0064
0031 0065
0032 0067
0033 0067
0034 0067
0035 0067

PORAM
PAREG
PAOIR
P8REG
P8DIR
TMWRI
TMRD
P1RAM

MKYBU
MKYBL
ROM

MKYBST
OUIP
QUOP
EVQU
TIME
TIMEF
TIMCNT
VCJPPT

$0000
$0080
$0081
$0082
$0083
$009C
$OoaC
$0100

$0400
$0440
$FCOO

RAM MEMORY ALLOCATION

*= PORAM
*=*+ 61
*=*+ 1
*=*+ 1
*=*+ 32
*=*+ 3
*=*+ 2
*=*+ 1
*=*+ 2

IN ITI ALI ZATI ON

*= ROM

FIRST PAGE 0 RAM LOCATION
6532 I/O PORT A DATA REGISTER
6532 I/O PORT A DIRECTION REGISTER
6532 I/O PORT B DATA REGISTER
6532 I/O PORT B DIRECTION REGISTER
6532 TIMER WRITE, /1, ENABLE TIMER INTERRUPT
6532 TIMER READ, LEAVE INTERRUPT ENABLED
FIRST PAGE 1 RAM LOCATION (IS SAME 128
BYTES AS PORAM
BASE ADDRESS OF MUSIC KEYBOARD UPPER BUS
BASE ADDRESS OF MUSIC KEYBOARD LOWER BUS
FIRST LOCATION IN lK EPROM

SPACE FOR THE CURRENT STATE OF 61 KEYS
EVENT QUEUE INPUT POINTER
EVENT QUEUE OUTPUT POINTER
SPACE TO QUEUE UP TO 7 EVENTS
ELAPSED TIME IN MILLISECONDS SINCE TURNON
FRACTIONAL PART OF ELAPSED TIME
5 COUNTER FOR TIMER INTERRUPTS
INDIRECT POINTER FOR VECTOR JUMP

; START AT BEGINNING OF ROM

Fig. 9-9. Listing of keyboard control program
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0036 FCOO 08 INIT CLD SET BINARY ARITHMETIC MODE
0037 FC01 A280 LOX #$80 INITIALIZE STACK POINTER TO END OF PAGE 1
0038 FC03 9A TXS RAM
0039 FC04 A9FF LOA II$FF SET DATA DIRECTION REGISTERS ON 6532
0040 FC06 8581 STA PADIR PORT A TO ALL OUTPUTS
0041 FC08 A91F LOA II$lF PORT B BITS 0-4 TO OUTPUTS, REMAINDER TO
0042 FCOA 8583 STA PBDIR INPUTS
0043 FCOC A9FF LOA IIVCJPTB/256 INITIALIZE UPPER BYTE OF VECTOR JUMP
0044 FCOE 8566 STA VCJPPT+l POINTER
0045 FCIO A905 LOA 115 INITIALIZE TIMER INTERRUPT COUNT
0046 FC12 8564 STA TIMCNT
0047 FC14 A9FF LOA 11255 START TIMER, SET FOR 255 MICROSECONDS
0048 FC16 859C STA TMWRI AND ENABLE TIMER INTERRUPT
0049 FC18 58 CLI ENABLE INTERRUPT SYSTEM
0050 FC19
0051 FC19 MAIN PROGRAM LOOP
0052 FC19
0053 FC19 A562 MLOOP LOA TIMEF ADD 1+18350/65536 MILLISECONDS TO ELAPSED
0054 FC1B 18 CLC TIME
0055 FC1C 69AE ADC 1118350&$FF FIRST DO FRACTIONAL PART
0056 FCIE 8562 STA TIMEF
0057 FC20 A563 LOA TIMEF+l
0058 FC22 6947 ADC 1118350/256
0059 FC24 8563 STA TI MEF+1
0060 FC26 A55F LOA TIME THEN INTEGER PART
0061 FC28 6901 ADC #l
0062 FC2A 855F STA TIME
0063 FC2C 9006 BCC QUCK
0064 FC2E E660 INC TIME+1 CARRY THROUGH HIGH TWO BYTES
0065 FC30 0002 BNE QUCK
0066 FC32 E661 INC TIME+2
0067 FC34 A63E QUCK LOX QUOP TEST IF ANYTHING IN THE EVENT QUEUE
0068 FC36 E43D CPX QUIP
0069 FC38 F03E BEQ KYSCN ; GO TO KEY SCAN IF NOT
0070 FC3A A582 LOA PBREG ; TEST IF I/O WAITING ON HOST
0071 FC3C 2920 AND 1/$20
0072 FC3E 0038 BNE KYSCN ; GO TO KEY SCAN IF SO
0073 FC40 AOOO LOY 110 ; DEQUEUE AN EVENT AND OUTPUT IT IF NOT
0074 FC42 B53F LOA EVQU,X ; KEY ID
0075 FC44 8580 STA PAREG
0076 FC46 A908 LOA 1$08 STROBE IT INTO I/O REGISTER
0077 FC48 8582 STA PBREG
0078 FC4A 8482 STY PBREG
0079 FC4C B540 LOA EVQU+1,X VELOCITY
0080 FC4E 8580 STA PAREG
0081 FC50 A904 LOA 1$04
0082 FC52 8582 STA PBREG
0083 FC54 8482 STY PBREG
0084 FC56 B541 LOA EVQU+2,X TIME OF EVENT LOW
0085 FC58 8580 STA PAREG
0086 FC5A A902 LOA 11$02
0087 FC5C 8582 STA P8REG
0088 FC5E 8482 STY PBREG
0089 FC60 B542 LOA EVQU+3,X TIME OF EVENT HIGH
0090 FC62 8580 STA PAREG
0091 FC64 A901 LOA 11$01
0092 FC66 8582 STA PBREG
0093 FC68 8482 STY PBREG
0094 FC6A A910 LOA 11$10 SET THE REQUEST FLIP-FLOP
0095 FC6C 8582 STA PBREG
0096 FC6E B482 STY PBREG
0097 FC70 8A TXA MOVE QUEUE OUTPUT POINTER UP 1 NOTCH
0098 FC71 18 CLC
0099 FC72 6904 AOC 114

Fig. ~9. Listing of keyboard control program (cont.)
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KEY STATE PROCESSING ROUTINES

BASED ON PREVIOUS KEY STATE DISPATCH TO CORRECT KEY PROCESSING

RE-ENTER THE SCAN LOOP AT THE PROPER PLACE BASED ON KEY ADDRESS

REPEAT FOR NEXT KEY

SKIP IF NO OVERFLOW
RESTORE MAX VELOCITY COUNT IF OVERFLOW

REPEAT FOR NEXT KEY

SET THE STATE TO 1 AND ZERO THE VELOCITY
COUNT
RE-ENTER SCANNING LOOP

INITIALIZE KEY ADDRESS
ENTER EXPANDED LOOP AT PROPER PLACE
GET UPPER BUS CONTACT INDICATION
COMBINE WITH PREVIOUS KEY STATE
BRANCH IF ACTION REOUIRED
DECREMENT KEY ADDRESS
REPEAT FOR NEXT KEY

DO THE VECTOR JUMP

TEST KEY CONTACT WITH UPPER BUS
JUMP IF NOT CONTACTING IT
CLEAR KEY STATE TO 0 (INACTIVE) IF
CONTACTING IT AND RE-ENTER SCAN LOOP
TEST KEY CONTACT WITH LOWER BUS
JUMP IF CONTACTING IT
IF NOT, GET KEY STATE AND INCREMENT THE
VELOCITY COUNT

DECREMENT KEY ADDRESS AND TEST IF DONE
GO SCAN MORE KEYS IF NOT FINISHED
WAIT FOR TIMER INTERRUPT

ISOLATE STATE NUMBER
SET UP VECTOR JUMP

GET LOW 2 BITS OF KEY ADDRESS IN CARRY
AND SIGN FLAGS

REMAINDER OF (KEY ADDRESS)/4
3
1
2
o

; WITH WRAPAROUND FOR 32 BYTES OF QUEUE

LOA MKYBU,Y
BMI STAnA
STA MKYBST,Y
BEQ SCNREN
LOA MKYBL,Y
BPL STAnC
LOA MKYBST,Y
CLC
ADC 1/4
BCC STAnB
SBC 1/4
STA MKYBST,Y

AND l/$lF
STA QUOP

SCAN THE KEYBOARD. SCAN LOOP IS EXPANDED BY 4 FOR GREATER SPEED

TVA
ROR A
ROR A
BPL SCNRE1
BCS KYSCND
BCC KYSCNB
BCS KYSCNC
BCC KYSCNA

LOY 1/60
BNE KYSCN4
LOA MKYBU,Y
ORA MKYBST,Y
BNE KYPROC
DEY
LOA MKYBU,Y
ORA MKYBST,Y
BNE KYPROC
DEY
LOA MKYBU,Y
ORA MKYBST,Y
BNE KYPROC
DEY
LOA MKYBU,Y
ORA MKYBST,Y
BNE KYPROC
DEY
BPL -KYSCN1
BMI KYSCN5

LOA 1/1
STA MKYBST,Y
BNE SCNREN

AND 1/$03
ASL A
ASL A
STA VCJPPT
JMP (VCJPPT)

0100 FC74 291F
0101 FC76 853E
0102 FC78
0103 FC78
0104 FC78
0105 FC78 A03C KYSCN
0106 FC7A 001B
0107 FC7C B90004 KYSCN1
0108 FC7F 190000
0109 FC82 0020
0110 FC84 88 KYSCNA
0111 FC85 B90004 KYSCN2
0112 FC88 190000
0113 FC8B 0017
0114 FC8D 88 KYSCNB
0115 FC8E B90004 KYSCN3
0116 FC91 190000
0117 FC94 DOOE
0118 FC96 88 KYSCNC
0119 FC97 B90004 KYSCN4
0120 FC9A 190000
0121 FC9D 0005
0122 FC9F 88 KYSCND
0123 FCAO 10DA
0124 FCA2 30FE KYSCN5
0125 FCM
0126 FCM
0127 FCM
0128 FCA4 2903 KYPROC
0129 FCA6 OA
0130 FCA7 OA
0131 FCA8 8565
0132 FCAA 6C6500
0133 FCAD
0134 FCAD
0135 FCAD
0136 FCAD 98 SCNREN
0137 FCAE 6A
0138 FCAF 6A
0139 FCBO 1004
0140 FCB2 BOEB
0141 FCB4 9007
0142 FCB6 BODE SCNREI
0143 FCB8 90CA
0144 FCBA
0145 FCBA
0146 FCBA
0147 FCBA A901 STATO
0148 FCBC 990000
0149 FCBF DOEC
0150 FCC1
0151 FCC1
0152 FCC1 B90004 STAT1
0153 FCC4 3005
0154 FCC6 990000
0155 FCC9 FOE2
0156 FCCB B94004 STATIA
0157 FCCE 100F
0158 FCDO B90000
0159 FCD3 18
0160 FCD4 6904
0161 FCD6 9002
0162 FCD8 E904
0163 FCDA 990000 STAT1B

Fig. 9-9. Listing of keyboard control program (cont.)
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0164 FCDO DOCE BNE SCNREN RE-ENTER SCAN LOOP
0165 FCDF 9B STATIC TVA OUTPUT A KEY PRESS EVENT
0166 FCEO 0980 ORA #$80 FIRST BYTE = KEY 10 NUMBER, DEPRESS
0167 FCE2 78 SEI DISABLE TIMER INTERRUPT WHILE OUEUEING
0168 FCE3 A63D LOX QUIP GET QUEUE INPUT POINTER
0169 FCE5 953F STA EVQU,X STORE FIRST BYTE
0170 FCE7 B90000 LOA MKYBST,Y GET KEY STATE
0171 FCEA 4A LSR A ISOLATE AND RIGHT JUSTIFY VELOCITY COUNT
0172 FCEB 4A LSR A
0173 FCEC 9540 STA EVQU+1,X ; OUTPUT AS SECOND BYTE OF EVENT
0174 FCEE A55F LOA TIME ; GET LOW BYTE OF TIME
0175 FCFO 9541 STA EVQU+2,X ; OUTPUT AS THIRD BYTE
0176 FCF2 A560 LOA TIME+l ; GET HIGH BYTE OF TIME
0177 FCF4 9542 STA EVQU+3,X ; OUTPUT AS FOURTH BYTE
0178 FCF6 8A TXA ; MOVE QUEUE INPUT POINTER UP 1 NOTCH
0179 FCF7 18 CLC
0180 FCF8 6904 ADC #4
0181 FCFA 291F AND #$IF WITH WRAPAROUND
0182 FCFC 8530 STA QUIP
0183 FCFE 58 CLI RE-ENA8LE INTERRUPTS
0184 FCFF A902 LOA #2 SET KEY STATE TO 2
0185 FOOl 990000 STA MKY8ST,Y
0186 FD04 DOA7 BNE SCNREN RESUME SCANNING
0187 FD06
0188 FD06
0189 FD06 B94004 STAT2 I.~A MKY8L,Y TEST KEY CONTACT WITH LOWER BUS
0190 FD09 10A2 8PL SCNREN RESUME SCANNING IF IN CONTACT
0191 FDOB A903 LOA #3 SET THE STATE TO 3 AND ZERO VELOCITY
0192 FOOD 990000 STA MKYBST, Y COUNT IF NO CONTACT
0193 FDI0 D09B BNE SCNREN AND RESUME SCANNING
0194 F012
0195 FD12
0196 F012 B94004 STAT3 LOA MKYBL,Y ; TEST KEY CONTACT WITH LOWER BUS
0197 FD15 3007 BMI STAnA ; JUMP IF NOT CONTACTING IT
0198 F017 A902 LOA #2 ; SET STATE TO 2 AND CLEAR VELOCITY COUNT
0199 F019 990000 STA MKYBST,Y ; IF CONTACTING LOWER BUS
0200 FDIC DD8F BNE SCNREN ; RE-ENTER SCAN LOOP
0201 FDIE B90004 STAT3A LOA MKYBU,Y ; TEST KEY CONTACT WITH UPPER BUS
0202 FD21 1010 BPL STAnc ; JUMP IF CONTACTING IT
0203 FD23 B90000 LOA MKYBST,Y ; IF NOT, GET KEY STATE AND INCREMENT THE
0204 F026 18 CLC ; VELOCITY COUNT
0205 FD27 6904 ADC #4
0206 F029 9002 BCC STAT3B SKIP IF NO OVERFLOW
0207 F02B E904 SBC #4 RESTORE MAX VELOCITY COUNT IF OVERFLOW
0208 FD20 990000 STAT3B STA MKYBST,Y
0209 FD30 4CADFC JMP SCNREN RE-ENTER SCAN LOOP
0210 FD33 78 STAnc SEI DISABLE TIMER INPURRUPT WHILE OUEUEING
0211 FD34 A630 LOX QUIP OUTPUT AN EVENT, GET QUEUE INPUT POINTER
0212 F036 943F STY EVQU,X STORE FIRST BYTE = KEY 10 NUMBER, RELEASE
0213 F038 B9OO00 LOA MKYBST,Y GET KEY STATE
0214 FD3B 4A LSR A ISOLATE AND RIGHT JUSTIFY VELOCITY COUNT
0215 FD3C 4A LSR A
0216 F030 9540 STA EVQU+! ,X OUTPUT AS SECOND BYTE OF EVENT
0217 F03F A55F LOA TIME GET LOW 8YTE OF TIME
0218 FD41 9541 STA EVQU+2,X OUTPUT AS THIRD BYTE
0219 FD43 A560 LOA TIME+! ; GET HIGH BYTE OF TIME
0220 FD45 9542 STA EVQU+3,X ; OUTPUT AS FOURTH BYTE
0221 F047 8A TXA ; MOVE QUEUE INPUT POINTER UP 1 NOTCH
0222 F048 18 CLC
0223 FD49 6904 AOC #4
0224 F04B 291F AND #$IF ; WITH WRAPAROUND
0225 F040 8530 STA QUIP
0226 FD4F 58 CLI ; RE-ENABLE INTERRUPTS
0227 FD50 A900 LOA #0 ; SET KEY STATE TO 0 (INACTIVE)

Fig. ~9. Listing of keyboard control program (cont.)
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PROCESS TIMER INTERRUPT

INDIRECT JUMP TABLE FOR STATE PROCESSING

.END

NON-MASKABLE INTERRUPT. NOT USED
RESET. GO TO INITIALIZATION ROUTINE
MASKABLE INTERRUPT, GO TO TIMER SERVICE
ROUTINE

TABLE MUST START ON A PAGE BOUNDARY
GO TO STATE 0 PROCESSING
1 BYTE PAD SO THAT VECTOR ENTRY ADDRESSES
ARE DIVISIBLE BY 4
GO TO STATE 1

GO TO STATE 2

GO TO STATE 3

; RESUME SCANNING

CMP TMRD CLEAR THE TIMER INTERRUPT REOUEST
DEC TIMCNT TEST IF FIFTH TIMER INTERRUPT
BEQ TIMIN1 SKIP AHEAD IF SO
RTI IF NOT. RETURN FROM INTERRUPT
LDA #5 RESET 5 INTERRUPT COUNTER
STA TIMCNT
PLA CLEAN OFF STACK FROM INTERRUPT SEOUENCE
PLA
PLA
JMP MLOOP GO TO MAIN LOOP FOR ANOTHER TIME PERIOD

STA MKYBST.Y
JMP SCNREN

MACHINE INTERRUPT AND RESET VECTORS

*= $FFFA
.WORD 0
.WORD INIT
.WORD TIMINT

*= $FFOO
JMP STATO
.BYTE 0

JMP STAll
.BYTE 0
JMP STAT2
.BYTE 0
JMP STAn

0228 FD52 990000
0229 FD55 4CADFC
0230 FD58
0231 FD58
0232 FD58
0233 FD58 C58C TIMINT
0234 FD5A C664
0235 FD5C FOOl
0236 FD5E 40
0237 FD5F A905 TIMIN1
0238 FD61 8564
0239 FD63 68
0240 FD64 68
0241 FD65 68
0242 FD66 4C19FC
0243 FD69
0244 FD69
0245 FD69
0246 FD69
0247 FFOO 4CBAFC VCJPTB
0248 FF03 00
0249 FF04
0250 FF04 4CCIFC
0251 FF07 00
0252 FF08 4C06FD
0253 FFOB 00
0254 FFOC 4C12FD
0255 FFOF
0256 FFOF
0257 FFOF
0258 FFOF
0259 FFFA 0000
0260FFFC OOFC
0261 FFFE 58FD
0262 0000
0263 0000

o ERRORS IN PASS 2

Fig. 9-9. Listing of keyboard control program (cont.)

store the time of day in such a format that the most significant three bytes
give it in units of milliseconds. The remainder is used for miscellaneous
temporary storage and the processor stack.

A word should be said about how the timer is actually handled in the
program. The timer in the 6532 is really intended for use as an interval timer
and what is needed for the keyboard program is an interrupting oscillator with
a 1. 28-msec period. Fortunately, the timer can be set up as an oscillator, but
the only period available in that mode is 256 f.Lsec. Thus, the timer service
routine maintains a counter and on every fifth interrupt a new scan starts and
the time of day is updated. In order for the time of day to be in exact
millisecond units when the update interval is 1.28 msec, binary fractional
arithmetic is utilized to add 1.476E16 to the time of day, which is equal to
1.2810 to an accuracy of 0.0005%. Thus, timing is as accurate as the crystal
used to clock the 6502.

The event queue is a classic circular queue, which is quite simple to
handle. An input pointer always points to the first available queue slot, while
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an output pointer designates the first slot that contains valid data. If both
pointers point to the same slot, the queue is empty and no data is available.
After a deposit or withdrawal from the queue, the pointers are incremented
by four, since each event requires four bytes. Wraparound of the circular
queue from end to beginning is implemented by masking the queue pointers
so that they can never contain a value larger than 31. No test is made for a
full queue so if more than seven events are stacked up due to nonresponse
from the host, they will be lost, Timer interrupts are disabled during queue
operations, but since the timer is an oscillator, no timing errors accumulate.

Actual scanning of the keyboard is slightly unconventional due to the
need for high speed. Since the vast majority of keys will be inactive, the scan
loop is made as efficient as possible for that case. Also the scanning loop is
expanded by a factor of four to decrease the time per key from 15 JLsec to an
average of 12.25 JLsec for a total savings of 167 JLsec. Any key that is not
both in State 0 and contacting the upper bus causes a vector jump to the
approptiate processing routine, which is based on the 2-bit state code kept
for each key. Since a vector jump is used to get to the processing routine,
returning to the proper point in the expanded scan loop is a little tricky but
quite fast. The state processing routines themselves simply implement the
state diagram of Fig. 9--8. Note the convenience of indexed addressing where
the key number currently being considered is always kept in the Y register
and can be used to directly access contact status as well as the state byte for the
current key.

MIDI

One of the centtal issues raised by the use of a separate keyboard
microprocessor is the communication of keystroke data between the keyboard
and the synthesizer's processor. The method just described is highly efficient
and cost-effective when both ends of the intetface (the keyboatd and the
synthesizer) are under the builder's control. The same would be the case with
a manufacturer of keyboard-driven, microprocessor-controlled synthesizers
who makes both the keyboard and the synthesizer. Of course, in these cases,
each interface and data format design would probably be different as the
designer attempts to optimize cost and performance to the problem at hand.

Recently, however, users of commercial keyboard synthesizers have
shown increased interest in connecting them together so that keystrokes on
one synthesizer could also trigger sounds in anothet synthesizer ftom a
different manufacturer. Additionally, a demand has developed for keyboards
purchasable separately from the synthesizer and keyboardless "expander"
synthesizers that can increase the numbet of voices available from a stock
synthesizer. Separate digital sequencers capable of recording a sequence
directly from a keyboard and later playing it through a synthesizer have also
become available. Many owners of personal microcomputers would like to
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Fig. 9-10. (A) MIDI electrical interface. (8) Typical MIDI chained network

drive an external commercial synthesizer without designing and building an
interface. Realization of these and other connection possibilities requires
some sort of standard way of communicating keyboard information among
units.

Enter MIDI, which is an acronym for Musical Instrument Digital
Interface. Unlike most computer standards, which are "defacto" (i.e., what
the largest manufacturer does becomes the standard by default), it is a
synthesizer industry-wide cooperative standard that was developed before
there was a pressing need for it. In its basic form, it allows the transmission
of keystroke information from a keyboard, sequencer, or personal computer
("MIDI controller") to a group of synthesizers with relatively few problems.
The standard also provides for transmission of panel control information
(such as slidepot positions for various parameter settings) and even syn
thesizer setup and configuration information, although serious data com
patibility problems are often encountered with these advanced functions due
to synthesizer structural differences.

Electrically, data are transferred as a serial bit stream rather than by
parallel transfer of whole bytes as in the previous example. The standard data
rate is 31.25K bits/sec. which is very fast for serial data but much slower
than parallel transfer. Ten bit times (32 !-Lsec per bit) are required to transmit
a byte including the usual start and stop bits but without parity so the total
byte time is about Y3 msec. Standard serial interface Ies easily handle the
parallel-to-serial and serial-to-parallel conversion required. The signal itself
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is usually sent over a shielded twisted-pair of wires as a switched current with
a one represented by no current and a zero represented by 5 mAo An
optoisolator (a light-emitting diode close-coupled to a photocell in the same
case for electrical noise isolation) is normally used for detecting the current at
the receiver.

Figure 9-lOA shows a typical MIDI transmitter and receiver circuit.
Any serial interface IC can encode/decode the serial bit stream, although a
6850 is typically used with 6502 and 68000 microprocessors. Note that the
31.25 K bits/sec. data rate, which is not a standard serial communication bit
rate, was selected to be 500 KHz divided by 16, which can be accomplished
internally by the 6850. This eliminates the need for a costly "baud rate
generator" IC, since it can usually be generated by dividing the micro
processor clock by a small integer (2 for the 6502 or 16 fot the 68000).

Figure 9-lOB shows a typical connection pattern between a MIDI
controller, such as a keyboard, and several MIDI-equipped synthesizers. The
controller, which may have other panel controls as well, has two-way
communication with the primary synthesizer. Thus, if necessary, the
controller can interrogate the status of the ptimary synthesizer. The "MIDI
thru" connection on each synthesizer simply provides a buffered copy of the
signal received by the "MIDI-in" connector. Thus, data sent from the
controller to the primary synthesizer can also be "heard" by the other
synthesizers. Addressing information in the data bytes (called "channels" in
MIDI terminology) determines which synthesizer acts on the data to produce
sound.

The complete MIDI communication protocol is rather complex and
subject to revision, so only its most basic provisions will be covered here.
Readers desiring the full, current specification should check the Bibliography
at the back of the book.

MIDI-equipped synthesizers operate in one of three communication
modes. In "mono" mode, the 4 address bits associated with commands address
actual oscillators or voices in the synthesizer. If one synthesizer has fewer than
16 voices, then two or more can be used up to a total of 16 voices. This mode
offers the most flexibility because the MIDI controller can refer directly to
voices, which may be patched quite differently, by number. "Poly" mode,
which is most useful for live performance keyboard playing, generally assigns
each synthesizer in the chain to one channel addresses. Each synthesizer will
then only respond to MIDI commands addressed to its channel. If the
synthesizer is indeed polyphonic (has several voices), then it is capable of
receiving several keystrokes at once, which it assigns to internal voices
according to whatever its key assignment algorithm would be if a keyboard
was connected directly. A synthesizer in "omni" mode in effect ignores the
channel address and responds to everything in the MIDI command stream.

The MIDI data format itself is much like an 8-bit microprocessor
instruction; there is an operation or command byte (inexplicably called a
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Table 9-1. MIDI Command Summary

Description
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1001cccc
Okkkkkkk
Owvvwv

1000cccc
Okkkkkkk
Owvvvw

1010cccc
Okkkkkkk
Oppppppp

1101 cccc
Oppppppp

1011cccc
Oddddddd
Ovwvwv

1110ccc
Ohhhhhhh
01111111

1100cccc
Oppppppp

NOTE ON EVENT. cccc = 4-bit channel number. kkkkkkk = 7-bit key
number where 60 (decimal) is middle C. vwvvvv = 7-bit key-down
velocity where 0 is slow and 127 is fast. Use 64 if the keyboard is not
velocity sensitive.

NOTE OFF EVENT. cccc and kkkkkkk fields are as for NOTE On.
vvvvvvv = 7-bit key-up velocity.

NOTE PRESSURE UPDATE. cccc and kkkk fields are as for Note
On. ppppppp = 7-bit pressure value for key kkkkkkk, 0 is light and
127 is heavy. This command is sent every 10-50 msec. It need not
be sent if the keyboard has no pressure sensors.

CHANNEL PRESSURE UPDATE. Used in mono mode. Updates the
pressure parameter in voice cccc. ppppppp is as for Note Pressure
Update.

CONTROL CHANGE. Used to change internal variables of
synthesizer listening to channel cccc. ddddddd is 7-bit device
(control) number as follows:
0-31 wvwvv is most significant 7 bits of value for control numbers

0-31.
32-63 vvvwvv is least significant 7 bits of value for control numbers

0-31.
64-95 vvwwv is state (0 = off, 127=on) of switch numbers 0-31.
96-127 miscellaneous synthesizer commands including mode

(mono/poly/mono) select. wvvvvv is ignored but must be
present.

PITCH WHEEL CHANGE. Used to change internal pitch wheel
variable of synthesizer listening to channel cccc. hhhhhhh is most
significant 7 bits of the new value and 1111111 is least significant 7
bits.

PATCH CHANGE. Specifies that synthesizer listening to channel cccc
should change to "patch" ppppppp. This is of course highly
synthesizer dependent.

"status byte" in the standards document) followed by zero or more data bytes
(Table 9-1). The command byte is always identified by having its most
significant bit set to a one, while data bytes always have a zero there.
Although this convention limits data values to 0-127 or - 64 to + 63, it
completely prevents a permanent "out-of-sync" condition if a byte should be
lost somewhere or an erroneous command code is received. In cases in which
increased resolution is needed, two data bytes can be used to express values
up to 16,383 or - 8,192 to +8, 191. Table 9-1 gives a brief summary of the
commands and data formats useful in a keyboard interfacing situation. Note
that in most cases, the most significant 3 bits of the command give the
command code, while the least significant 4 bits is the channel address. The
F command, which is not listed, provides for the transmission of system
dependent data that vary for different manufacturers.
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Fig. 9-11. Keyboard addition for MIDI

Figure 9-11 shows a circuit that may be added to the music keyboard
interface example to implement a MIDI interface. It uses a 6850 serial I/O
chip, which costs substantially less than $5. Its three internal registers (one
read-only, one write-only, and one read/write) are addressed at 0800 and 0801
hexadecimal, which were previously unused.

Softwarewise, it is relatively easy to modify the keyboard program to
output MIDI keyboard data instead of the parallel format described earlier.
The STATIC routine would be modified to output a MIDI "press" event and
STAT3C would output a "release" event. Since MIDI does not use time of
press and release information, the code at MLOOP for updating the time of
day can be omitted. For maximum speed in outputting MIDI data, the
timer-interrupt service routine, which is entered every 256 jLsec, should
check the serial I/O chip and queue instead of the main loop at QUCK as
before. The affected code has been rewritten in Fig. 9-12.

Improvements

The keyboard just described is not the last word by any means. Another
fairly easily obtainable contact arrangement is called a "second-touch"
keyboard. With normal playing pressure, it behaves just like a conventional
keyboard. However, additional pressure at the end of the stroke causes the
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SERCTL $0800 6850 SERIAL I/O CHIP CONTROL REGISTER
SERSTS $0800 6850 STATUS REGISTER
SEROTA $0801 6850 TRANSMIT AND RECEIVE DATA REGISTER

-- --- - - -- - -- - -- -- -- ----- - -----

INIT LOA #$17 INITIALIZE 6850 SERIAL I/O CHIP
STA SERCTL
LOA #$15
STA SERCTL

----. - -- -- - - - - -- ----- --- -- -- --

STATIC SEI DISABLE INTERRUPTS WHILE STORING EVENT
LOX QUIP OUTPUT AN EVENT, GET QUEUE INPUT POINTER
LOA #$90 KEY DOWN EVENT ON MIDI CHANNEL MIOICH
ORA MIOICH
STA EVQU ,X STORE I N QUEUE
INX INCREMENT QUEUE POINTER
CPX #$20 WRAPAROUND THE POINTER IF NECESSARY
BNE STATIO
LOX #0

STATIO TYA GET KEY NUMBER
CLC ADJUST TO MIDI STANDARD OF 60=MIOOLE C
AOC #60-24 THIS GIVES 2 OCTAVES BELOW AND 3 ABOVE
STA EVQU ,X ; STORE RESULT I N QUEUE
INX ; INCREMENT AND WRAPAROUND QUEUE POINTER
CPX #$20
BNE STATIE
LOX #0

STATIE STX QUIP SAVE QUEUE POINTER TEMPORARILY
LOA MKYBST, Y GET VELOCITY COUNT, RANGE 0-63
LSR A
LSR A
TAX LOOKUP APPROPRIATE MIDI VELOCITY
LOA VELTAB,X IN A TABLE
LOX QUIP RESTORE QUEUE POINTER
STA EVQU ,X STORE THE VELOCITY IN THE QUEUE
INX INCREMENT AND WRAPAROUND QUEUE POINTER
CPX #$20
BNE STATlF
LOX #0

STATIF STA QUIP STORE THE UPDATED QUEUE POINTER
eLI RE-ENABLE INTERRUPTS
LOA #2 SET KEY STATE TO 2
STA MKYBST. Y
JMp· SCNREN RESUME SCANNING

----- - -- - ---- - - -- -- -- ---- - - ---

STAnc SEI ; DISABLE INTERRUPTS WHILE STORING EVENT
LOX QUIP ; OUTPUT AN EVENT, GET QUEUE INPUT POINTER
LOA #$80 KEY UP EVENT ON MIDI CHANNEL MIOICH
ORA MIDICH
STA EVQU,X STORE IN QUEUE
INX INCREMENT QUEUE POINTER
CPX #$20 WRAPAROUND THE POINTER IF NECESSARY
BNE STAnD
LOX #0

STAno TVA GET KEY NUMBER
CLC ADJUST TO MIDI STANDARD
AOC #60-24
STA EVQU ,X ; STORE RESULT IN OUEUE
INX ; INCREMENT AND WRAPAROUND QUEUE POINTER
CPX #$20
BNE STAT3E
LOX #0

STAnE STX QUIP SAVE QUEUE POINTER TEMPORARILY
LOA MKYBST, Y GET VELOCITY COUNT, RANGE 0-63
LSR A
LSR A
TAX LOOKUP APPROPRIATE MIDI VELOCITY
LOA VELTAB,X IN A TABLE
LOX QUIP RESTORE OUEUE POINTER
STA EVQU ,X ; STORE THE VELQCITY IN THE QUEUE
INX ; INCREMENT AND WRAPAROUND OUEUE POINTER
CPX #$20
8NE sTAnF
LOX #0

STAnF STA QUIP STORE THE UPDATED DUEUE POINTfR
CLl RE -ENABLE INTERRUPTS
LOA #0 SET KEY STATE TO 0 (INACTIVE)
STA MKYBST. Y
JMP SCNREN RESUME SCANNING

Fig. 9-12. Modified code segments for MIDI
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-- - - - - - - -- - -- - - - - - --------- ---

TIMINT CMP TMRO ; CLEAR THE TIMER INTERRUPT REOUEST
PHA ; SAVE A ON THE STACK
LOA SERSTS ; CHECK 6850 TRANSMITTER STATUS
AND #102
BEQ TIMI Nl ; JUMP AHEAD IF BUSY
LOA QUOP ; IF FREE, TEST IF ANYTHING TO TRANSMIT
CMP QUIP
BEQ TIMINI ; JUMP AHEAD I F NOT
TXA ; IF SO, SAVE X
PHA
LOX QUOP : AND GET THE QUEUE QUTPUT POINTER
LOA EVQU ,X ; GET NEXT BYTE TO TRANSMIT
STA SEROTA ; ANn TRANSMIT IT
INX ; MOVE QUEUE OUTPUT POINTER
CPX #120 ; AND WRAPAROUND I F NECESSARY
BNE TIMINO
LOX #0

TIMINO STX OUOP ; SAVE UPOATEn OUEUE OUTPUT POINTER
PLA ; RESTORE X FROM THE STACK
TAX ; AND CONTI NUE

TIMINI PLA ; RESTORE A FROM STACK
DEC TIMCNT ; TEST IF FIFTH TIMER INTERRUPT
BEQ TIMINI ; SKIP AHEAD IF SO
RTI ; I F NOT, RETURN FROM INTERRUPT

TIMINI LOA #5 ; RESET 5 INTERRUPT COUNTER
STA TIMCNT
PLA ; CLEAN OFF STACK FROM INTERRUPT SEOUENCE
PLA
PLA
JMP MLonp ; GO TO MAl N LOOP FOR ANOTHER TI ME PER I 00

VELTAB .BYTE 127,127,127,127,I<7,ll7,96,81
.BYTE 69,61,53,48,43,39,35,32
.BYTE 30,27,25,23,22,20,19,18
.BYTE 16,15,14,14 ,13,12,ll,10
.BYTE 10,9,9,8,8,7,7,6
.BYTE 6,5,5,5,4,4,4,4
.BYTE 3,3,3,2,2,2,2,2
.BYTE 1,1,1,1,1,0,0,0

; MIDI VELOCITY TRANSLATE
; TABLE
; PREPARED FROM EOUATION:
; TABLE=(635/Nj-l0
; WILL PROBA8LY NEEn CHANGE
; TO BEST MATCH THE
; VELOCITY CONTROL OF THE
; SYNTHESIZER BEING usEn

Fig. 9-12. Modified code segments for MIDI (cant.)

key to travel a bit more and make contact with a third bus. It should even be
possible to couple the second-touch mechanism with the velocity-sensing
mechanism just discussed and end up with a very versatile keyboard indeed.

Recently, pressure-sensitive keyboards have become available for the more
sophisticated live-performance synthesizers. These typically use the same
dual-contact arrangement to detect key-down and measure velocity but
replace the usual felt bottoming pad with a conductive rubber pad. As key
pressure increases, the area of contact between a ball-shaped metal protrusion
on the key and the pad increases, thus reducing the contact resistance. A
current source and multiplexed A-to-D converter scanned along with the
keys then gives continuous pressure readings for all keys that are down.
Typically, for every key that is down, the keyboard computer will send
pressure reading updates to the host every 10-50 sees. Note that the MIDI
protocol requires 3 byte times or 1 msec to send a single pressure update
command so the impetus is toward longer updare periods.

Most keyboard synthesizers (even if they don't have velocity and/or
pressure sensing) also have a foorpedal, which is usually rigged to control
overall volume plus pitch and modulation "wheels" immediately to the left of
the keybed. The latrer are really just unusually smooth-acting slide pOts that
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Fig. 9-13. The Notebender'· keyboard in action

have a spring return to center feature. The pitch wheel simply detunes the
instrument sharp or flat as it is moved, and the modulation wheel changes
some other sound parameter according to how the synthesizer is set up. These
controls are moderately useful but have the drawback of affecting all of the
notes at once, and the two wheels tie up one of the playing hands.

To the players of nonkeyboard conventional instruments such as the
violin or trumpet, a keyboard seems to be very restrictive in its expressive
capability even when coupled with the most sophisticated synthesizer
available. This problem has, in fact, been recognized for years, probably from
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the time of Bach when keyboard instruments really started to be used
extensively. In the past, all kinds of alternate keyboard arrangements have
been proposed to solve this problem including keys that move in more than
one dimension. Although actually building the mechanics of such keyboards
was not too difficult, only recently has electronic and microprocessor
technology made it possible to. translate each mechanical motion into a
variation of a particular sound parameter. Velocity and pressure sensing are
simple refinements that go a long way toward offering a live-keyboard player
the control over dynamics taken for granted by players of nonkeyboard
instruments.

One recent example of a multidimensional keyboard is design work
being done by Robert Moog, inventor and popularizer of the modular analog
synthesizer. The keyboard "keys" are actually just printed patterns on a
plastic sheet overlay. The keys are pressure sensitive but do not actually
move. The innovation is that the keyboard controller not only knows which
key or keys are being pressed and how hard, but also where on the key surface
in X and Y dimensions. Each key, in effect, becomes a tiny graphic digitizer
pad. These three variables plus the key number can then be patched to
control any three sound parameters desired on an individual, per key basis.
The device is inherently inexpensive and can be extremely effective for those
willing to relearn their keyboard technique. In fact, it is probably most
attractive to instrument players without keyboard experience.

Another group doing similar work is Key Concepts. Their Note
bender™ keyboard looks, acts, and plays like a high-quality conventional
keyboard (Fig. 9-13). However, each key has the ability to independently
slide forward (toward the player) and backward Y4 inch on a frictionless rocker
mechanism with a spring return to center. The only visible clue to this action
is an undercut notch on the black keys to prevent interference with the white
keys. A special friction surface allows the player to move the keys without
finger slippage. Besides this new key "displacement" variable, the keyboard
uses a highly uniform velocity and pressure-sensing technique that does not
rely on switch contacts or conductive rubber pads. As the name implies, the
displacement variable is usually patched to modify the pitch of the note that
key is playing. By means of panel controls right on the keyboard, the bend
direction, range, and programmed nonlinearities in the transfer function (to
aid in bending the pitch by specific amounts such as half-steps) can be
selected and controlled. A 68000 microprocessor is used to control the
keyboard and process information from its sensors. At the current stage of
development, the Notebender keyboard is handmade to very high-quality
standards and is therefore quite expensive. The sensing technology, however,
is inexpensive for the level of precision achieved so costs should come down
when production volume increases.



10
Otherlnput~ethod8

Quite a number of other input methods are useful in the computer-controlled
synthesis system. These can be broken down into four major categories. The
first is manual real-time input such as the keyboard just discussed. This
method is characterized by the user physically manipulating a mechanical
device of some sort that is directly interfaced to the system. The second is
source-signal analysis, which has already been discussed somewhat. Depend
ing on the circumstances, it may be simply an extension of manual input
methods such as using the sound of a conventional musical instrument (which
the user is physically manipulating) as input to the system. In other cases, it
may involve analysis of some signal that the user did not generate and over
which direct control is not exercised. The third method, which may not be
considered to be a valid input method by some, involves the evaluation of
mathematical equations or simple random chance to control some or all
aspects of a piece. Finally, we have music languages, which might be consid
ered as the physical manipulation of a typewriter keyboard. The difference,
however, is that the manipulation is not in real time so the user has an
unlimited amount of time to consider what the input will be.

In this chapter methods one and three will be emphasized. Source
signal analysis will be covered in Chapter 17, while music languages will be
detailed in Chapter 18.

Manual Input Devices

Just about anything that can be moved, bent, twisted, or banged on
and can accommodate contacts or a transducer has probably been used as an
input source to a synthesizer. Of course, if a device can generate a control
voltage for a synthesizer, then an ADC can interface the device to a com
puter.

Ribbon Controller

One of the more unique and interesting devices is the ribbon controller.
In many ways, the ribbon controller resembles the resistor string analog
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CONDUCTIVE
TRACK

VOLTAGE
OUTPUT

Fig. 10-1. Ribbon controller

keyboard described earlier. The device is constructed from a conductive
(resistive) strip of material placed under a length of stretched wire or metal
ribbon as in Fig. 10-1. Typical lengths of the conductive track may be as
much as 3 feet, while the spacing between the wire and the track when not in
use is on the order of 1/4 inch.

In operation, a constant current is passed through the resistive track,
and the output of the device is taken from the ribbon itself. To use, the
player merely presses the ribbon against the track wherever desired and an
output voltage proportional to distance from rhe point of contact to the
ground end of the track is produced. Proper selection of ribbon and track
materials allows the user to easily slide a finger along the ribbon to create
smoothly varying output voltages. An interface circuit similar to that for the
resistor string keyboard can be used to generate trigger and gate signals from
the raw voltage output. Even the dual voice analog keyboard scheme is
applicable for controlling two nearly independent voices (they cannot cross
each other) from a single ribbon controller.

Although most often used as a "free-form" controller, it is easy to add
calibration markings so that the general location of the various notes can be
instantly determined. The player's ear, however, is the final judge of proper
playing position. This brings up an important point about this and most
other manual controllers. Immediate audible feedback is necessary to use
these devices at all even if the application is strictly input to the computer for
later use.

It is also possible to add "frets" to the resistive track simply by affixing
pieces of fairly large wire at desired locations along the track. For a dedicated
fretted controller, the track itself may be replaced with a string of equal
valued resistors with each junction terminating at a fret wire glued to a
nonconductive backing. At this point, the ribbon controller becomes a
keyboard without the keys. It would not be difficult to set up devices with
multiple ribbons that would resemble the fingerboard of a guitar.
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Related direct input devices are rotary and linear slide potentiome
ters. The slide pot, which is a fairly recent development, is of particular
interest, since it is actually a miniature ribbon controller with the ribbon in
constant contact with the track and a handle to simplify the sliding. Their
most common application is in fancy consumer audio equipment and sound
studio control boards but long travel units (3 1/2 inches) also make good
direct input devices. Their low cost (as little as 50 cents each) means that
quite a number can be provided and used simultaneously. Rotary pots,
especially if fitted with a large knob and calibrated scale, have also been
shown to be effective direct input devices.

Joysticks
One limitation of ribbon controllers and various types of potentiome

ters is that essentially only one degree of movement freedom is available,
which in turn implies that only one output from the device is present. The
human hand, on the other hand, is capable of several degrees of freedom in its
movement. Devices for direct hand manipulation are called joysticks, a name
derived from a similar, but much larger, device used as an aircraft control.
Joysticks may have only one or several degrees of freedom but the term
usually applies to a two-axis (two degrees of freedom) device.

A joystick usually takes the form of a handle poking through a hole in
the top of the joystick cover. The handle may be 2 to 5 inches long and can be
moved forward and back or sideways or any combination of these motions
always pivoting about the hole in the cover. The joystick produces two
outputs, one proportional to the X component (sideways) of the handle
position and the other proportional to Y (forward to back). The cheap
"joysticks" often seen on electronic games merely close switch contacts when
the handle is moved. Ideally, the unit should offer the same resistance to
motion in any direction but some inexpensive ones may favor motion along
the principal axes. For some applications it is desirable for the handle to
remain in its last position when released, while for others a spring return to
center (X = 0, Y = 0) is appropriate.

A variety of mechanical arrangements is used to separate lever move
ment into X and Y components, but the most ingenious is shown in Fig.
10-2. The arrangement of brackets does the separation, while two standard
rotary pots are used to convert the motion into output voltages. Note that
only a fraction of the pots' rotary range is utilized so some postprocessing of
the output voltage will probably be necessary.

Joysticks of reasonable quality are commonly available for about $5.00.
Although these may not be quite as smooth acting as one constructed
according to the figure, they are small and convenient. One nice feature is
that each axis often consists of two pots ganged together. Connecting the two
pots differentially can provide a bipolar output voltage that may not require
additional processing to utilize.
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Fig. 10-2. Two-axis joystick construction. Source: Efectronotes Musical En
gineers Handbook, 1975.

Joysticks can be readily extended to three or more degrees of freedom.
The third axis can simply be twisting of the handle as it is moved left and
right, forward and back. To add such a capability to Fig. 10-2, one merely
replaces the handle with a third pot whose shaft becomes the handle. The
fourth axis could be a mechanism for sensing up and down motion of the
handle. One might even conceive of a fifth output that would be proportional
to squeezing pressure on the handle!

Graphic Digitizer

Although not a new input device, graphic digitizers have recently been
reduced in cost sufficiently to suggest their use as a dynamic input device.
The digitizer acts somewhat like a two-dimensional ribbon controller and
typically consists of a flat padlike surface perhaps a foot square and a special
stylus that the user holds like a pen. When near the surface, the device
outputs the X and Y coordinates of the pen tip position to an accuracy of
0.01 inch or better. In one mode of operation, X and Yare sent out 50 or
more times/sec, allowing the host system to determine not only the pen
position but its velocity. In another mode, ouputs are only generated when
the user presses the pen on the pad, thus allowing precise coordinates to be
entered. A sheet of paper may be placed on the pad surface and anything
printed on it entered into the system. Digitizers are also available that simply
respond to finger or pencil pressure. These can be very inexpensive (under
$100) but are generally not as precise as those that use an electromagnetic
pickup stylus. The possibilities in a music system are endless, ranging from a
two-dimensional keyboard to a quick method of inputing sheet music. Even
three-dimensional digitizers are available. The position of a pen point in
three-dimensional space (as large as 36 inches on a side) is output as X, Y, and
Z coordinates!



OTHER INPUT METHODS 325

Another novel input method is the breath control transducer. Essentially
these are nothing more than pressure transducers with a tube that can be
inserted into the user's mouth. Variations in breath pressure, which may be
positive or negative, are converted into output variations. Such devices are
most useful when the user's hands and feet are already tied up manipulating
other input devices.

Modified Musical Instruments

Many potential users of a computer-based synthesis system may have
spent years perfecting playing techniques on various instruments such as the
guitar or clarinet. Accordingly, it has become common to fit contacts and
other sensors to these instruments for easy input into a synthesizer or .com
puter. For example, it is relatively simple to install contacts under the keys of
a clarinet. This coupled with a rough amplitude analysis of the actual clarinet
sound gives the functional equivalent of a keyboard. Translating key closure
patterns into equivalent notes is not so simple because it is the pattern of keys
that are pressed that is important. When going from one pattern to another,
it is unlikely that all of the keys will make or break simultaneously so some
intelligence is required to prevent spurious note outputs. Also many notes
have "alternate fingerings." Thus, even if the clarinet is to be used to control
a synthesizer directly, a microprocessor would be useful as part of the inter
face.

Guitar controllers are another popular item. These are actually an
application of source-signal analysis, but the guitar and associated pickups
are usually modified to simplify the analysis task. For example, since simul
taneous tones are very difficult to separate, an independent magnetic pickup
is provided for each string. Also, since strong harmonics can lead to pitch
errors when the signal is analyzed, the pickups are placed near the center of
the string length. If such a guitar were simply connected to a conventional
amplifier, the sound would be quite dull and lifeless.

Typically, the guitar's audio signal is analyzed into amplitude and
frequency parameters for each of the six strings. Often the amplitude channel
is used merely as a trigger source for an envelope generator; thus, the synthe
sized sound may have any amplitude envelope desired. One of the attractions
of guitar controllers is the fact that they are inherently polyphonic. Not only
can up to six nearly independent tones (each string has a somewhat different
frequency range) be simultaneously controlled, there is no problem in the
assignment of notes to voices; the string corresponds to the voice.

Algorithmic Input

Certainly everyone has been exposed in one way or another to the often
beautiful images created from mathematical equations. The spiragraph,
which is a machine for drawing cycloids, and its output is such an example.
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In fact, much computer art is done by evaluating various equations. Often
"random-number generators" are used to set the parameters of the equations
and then the computer takes off and generates an image. The "artistic" part
of the process is the knowledge of what equations make good "material" and
the judgment to modify or reject unsuitable results.

The same concepts can be applied to sounds and music. In fact, many
purely analog synthesizers have the means for automatically generating se
quences of control voltages that may be highly ordered, totally random, or
anything in between. Likewise, a computer user has at his disposal the ability
to evaluate equations of any complexity for ordered sequences and a
random-number generator for disordered sequences. Algorithms for averag
ing and selecting random data can also be easily set up. Since this whole
discussion crosses the line between music performance and music composi
tion, it will be kept brief and no value judgments will be made about the
various techniques.

A complete electronic music performance involves many sequences of
events and dozens of time-varying parameters. On the othe'r hand, a simple
melody really only requires two parameters, the pitches and durations of the
notes. Since conventional music starts with a melody and adds accompani
ment, algorithmic composition efforts usually concentrate on generating
melodies. Depending on the application, the "melody" may be as simple as a
repeating sequence of notes or a genuine attempt at automatically composing
a true melody.

Sample-and-Hold Module

One very useful device for sequence generation that is present on many
analog synthesizers is a sample-and-hold (SAH) module. Functionally, it is
the same device that was discussed in the section on analog-to-digital conver
sion. For synthesizer use, it has a signal input, a trigger input, and a signal
output. When a trigger occurs, the output is immediately updated to match

"""V~INPUT -

TRIGGER t
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Fig. 10-3. Sampling a low-frequency sawtooth wave
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Fig. 10-4. Sampling a high-frequency sawtooth wave

the input. Between triggers, the output remains constant at its last value.
The trigger input is usually designed so that any kind of waveform can drive
it with perhaps the positive-going zero crossings of the wave being the
trigger points. In essence, the SAH module accepts a continuously varying
input and produces a stepwise output where the trigger initiates each step.
Thus, if the SAH output drives a veo and the trigger also drives an
envelope generator, then a distinct "note" is produced for each trigger.

One of the simplest applications of the SAH module is in producing
arpeggios. If a very-low-frequency (0.2 Hz) sawtooth wave is fed into the
signal input and a 2 Hz pulse is fed into the trigger input, the output will be
a staircase wave as in Fig. 10-3. When controlling a veo, the staircase will
produce an ascending sequence of 10 notes that repeats indefinitely. The
actual notes depend on the amplitude of the sawtooth and the veo settings.

If the pulse and sawtooth frequencies are not in a precise integral ratio,
then each repetition of the sequence will be different. It is not difficult to
adjust things to produce a scale of fifths that increases (or decreases) a
half-step each iteration for six iterations and then repeats. If the sawtooth
frequency is increased so that it is slightly higher than the trigger frequency,
a descending series of notes is produced as illustrated in Fig. 10-4. Note that a
slight change in the relative frequencies of the two waves can have a profound
effect on the output sequence. This sensitivity increases as the sawtooth
frequency increases. In the kilohertz range, interesting patterns of sequence
evolution are produced as the sawtooth frequency drifts slightly due to
imperfections in the veo generating it. One can become completely ab
sorbed in knob twiddling using a such a setup.

For truly random sequences, the SAH module can be set up to sample
white noise. One would feed white noise into the signal input and a constant
frequency into the trigger input. The output then would be a random series
of steps. When using a typical analog white noise generator (diode junction
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Fig. H)-5. Generator for random notes of random duration

noise), the steps are completely random and will never repeat. When this
signal drives a veo (use the sine wave output), the resulting series of
random pitches of identical duration is the typical Hollywood conception of a
computer hard at work.

Two SAH modules set up according to Fig. 10-5 will produce a
random pitch sequence with random durations. Essentially, the first SAH
determines the pitches, while the second determines the durations by con
trolling the veo that provides the trigger pulses. The result is more in
teresting but still completely disordered.

Statistics

Although random sequences are unpredictable, they do have definite
statistical properties. The most important ones are the mean or average
value, the standard deviation, and the probability density function. The
output of virtually any noise generator will have an average value of zero. If a
mean of +5 V is desired, all that is necessary is to add a dc voltage of that
magnitude. The standard deviation is equivalent to the rms voltage of the
noise; thus, it may be changed with a simple gain control. Most noise sources
also have a gaussian (bell-shaped normal curve) density function, which is not
quite as easy to change. Even though a SAH module converts white noise
into a random series of steps, the sampling process does not change any of
these statistical properties.

The probability density function can be changed by using the SAH
module differently. The idea is to randomly sample a periodic waveform. The
resulting probability density function depends only on the shape of the
sampled waveform, not on the properties of the noise source. Figure 1~
shows a setup to do this. If the waveform to be sampled is in the kilohertz
range, then only slight random variations in the sampling interval are
needed. Thus, for practical purposes the step durations can still be controlled
as desired.

Fortunately, the standard synthesizer waveforms give desirable density
functions. Both the sawtooth and the triangular wave give a uniform (flat-
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Fig. 10-6. Altering the probability density function

topped) distribution. A sine wave gives a reasonable likeness of a normal
distribution, which might be useful for cleaning up the output of an other
wise poor noise source. Note that unlike a true normal distribution, there is
an upper limit on peak deviation from the mean. A square wave gives two
spikes, which means that only two different output voltages are possible and
there is a random selection between them. (Acrually this only applies to
perfect square waves and SAHs; in a real situation one would occasionally get
an intermediate output.) A rectangular wave gives similar results, but one
value will be more probable than the other according to the duty cycle of the
wave.

So far the SAH module was assumed to be perfect, that is, the input
was instantly sampled and held. In a real SAH module, each occurrence of
the trigger fires a single shot, which closes the sampling swi tch long enough
for the hold capacitor to charge up to the instantaneous input signal voltage.
Typically, this time is in the low microsecond range and is constant. If a
resistance is inserted in series with the analog switch then the output will
move toward the input during the sample interval but will not reach it. The
effect is sometimes called "slew limiting" of the SAIi.

SIGNAL RINPUT 1-------------+-----

'-------

TRIGGER t
INPUT _

_ --"---------"-_-"--------"----''--------lL-----..J.l_-''--------''-------.J'-------"---_

""~ ~OUTPUT

Fig. 10-7. Slew-limited sampling of square wave
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Figure 10-7 shows rhe effect of sampling a low-frequency square wave
with such a degraded SAH. The output is a series of rising and falling
arpeggios, but the pitch intervals start large and then decrease after each
direction reversal. Altering the series resistor changes the step size and rate of
interval decrease considerably. The effect on sampled white noise is also
interesting. As the resistor is increased, the random output changes from
total disorder toward a more correlated result. Unfortunately, the standard
deviation also decreases, which would have to be counteracted with a VCA in
a practical application. Obviously, voltage control of slew limiting would be
a useful SAH feature.

Controlling Randomness

As was mentioned, a slew-limited SAH module is capable of imparting
a degree of order in random sequences. Actually, it is possible to get exactly
the same results by passing the signal to be sampled through a single-pole
R-C low-pass filter first. If white noise is to be sampled, then this amounts to
filtering the noise. The slew-limited SAH module is actually a discrete-time
low-pass filter, which is the first step toward a digital filter!

A sequence of random numbers is actually sampled white noise. Thus,
one can easily write a program to simulate analog sampling of white noise by
using the RND (random number) function available in the BASIC pro
gramming language. If a synthesizer is interfaced to the computer, then
random numbers can.be fed to an oscillator to produce the same kinds of note
sequences available with analog setups. One point to be aware of is that most
random number generators have a uniform probability distribution, generally
between 0.0 and 1.0. A good approximation to a gaussian distribution may
be had by adding up 12 random numbers (distributed uniformly between 0.0
and 1.0) and subtracting 6.0 from the sum. The mean of the result will be 0
and the standard deviation will be 1.0.

The name "stochastic music" refers to music (melodies) that orginates
from sequences of random numbers. It should be apparent that raw random
numbers, regardless of the probability distribution function, would create
rather uninteresting music. Each note is an independent entity, with no
relation to what came before and no influence on what follows.

A very simple algorithm can be applied to a random sequence, how
ever, to produce a highly correlated sequence that might be more interesting.
The basic idea is to use random numbers to determine the direction and
magnitude of pitch movement rather than the pitches themselves. As a simple
example, let's say that the pitches are to be notes on the chromatic equal
tempered scale and that the maximum allowable interval between successive
notes is an octave. Thus, a sequence of random integers falling between -12
and +12 inclusive is needed. The BASIC expression INT(25*RND(I»
-12 will produce such a sequence. To produce a note sequence, numbers
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would first be assigned to the notes on the scale. Next, a starting point,
such as middle C, must be selected. To determine what the next note should
be, one simply evaluates the above expression and adds the random number
to the numerical equivalent of the previous note.

One undesirable side effect of this process is that the notes can run off
the ends of the scale. One solution is to treat the ends of the keyboard as
"reflecting barriers," which would "bounce" the sequence back toward mid
dle C. For a gentle reflecting action, one might alter the split of up/down
probabilities ro favor down when the current note is high and vice versa.

In any case, the resulting "melody" is highly correlated because the
pitch of the current note depends on all of the preceding notes as well as a
random input. Likewise, the current note will influence all future notes. The
audible effect of such a sequence (particularly if the maximum allowed inter
val is small) can be described as an aimless wandering with few surprises.
Most listeners would say that the sequence is too correlated to be really
interesting.

Various schemes have been tried to produce sequences that are more
correlated than raw random numbers but less correlated than the method just
described provides. Just as white noise has a flat spectrum, the sampled
white noise associated with raw random numbers also has a flat spectrum.
The algorithm just discussed is actually a simple digital filter; an integrator
to be exact. An integrator is simply a low-pass filter with a 6-dB/octave
cutoff slope. Unlike the typical low-pass filter, however, the response curve
continues to increase as frequency decreases without limit. The random
numbers emerging from the process then have a filtered spectrum that in
creases by 6 dB for each octave of frequency decrease. Thus, it would seem
that other digital filters would be useful for modifying random sequences.

More Sophisticated Techniques

One such filter that has been studied is a so-called "pink noise" or
"l/F" filter, which has a slope that rises 3 dB/octave as frequency decreases.
The l/F designation is used because the spectral powi!f' per hertz of bandwidth
is inversely proportional to frequency. Since this is midway between 0 dB
and 6 dB, the degree of correlation should also be intermediate. Listening
tests bear this out; most people rate IfF sequences as more pleasing than raw
or integrated sequences. Unfortunately, a good l/F digital filter is quite
complex.

Another idea is to provide a mechanism whereby the influence of past
events either ceases or diminishes as the sequence continues. For example,
one might specify that the next note will depend on the previous three notes
and a random input. One implementation method involves a large table that
listS every possible combination of the three previous notes. Each entry in the
table specifies a percentage probability for the next note. The random-
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number generator is used to select the next note based on the specified
probabilities. The character of the music generated thus depends on the table
entries and the number of prior notes considered.

One method for filling the table is analysis of existing music. For
example, one might perform a statistical analysis of all four note sequences in
the most popular Bach organ fugues. The data obtained could be compiled
into a table like the one just described. There would probably be numerous
combinations that did not occur in the music analyzed, so one might have to
add a "back-tracking" capability to the program. One problem with extend
ing the technique to consider longer sequences of notes is the tremendous
increase in table size. The analysis of most conventional music, however,
would result in a large proportion of empty (zero probability) table entries.
Thus, it may be more compact to formulate the data into a set of rules.
Besides memory savings, it is usually easier to experiment with the rules than
thousands of probability table entries.

The results of such efforts have been mildly successful in producing
interesting sequences. Pieces produced by analyzing Bach's music, for exam
ple, may sound Bach-like for a shorr run of a few notes. However, after
listening for awhile, it becomes apparent that the music is just drifting
aimlessly and getting nowhere. Overanalysis is likely to result in whole
phrases from the analyzed material appearing in the output.

Analog Feedback Techniques

Another method of producing sequences is to use the principle of
feedback. The sequences produced, while definitely not random, are complex
and often unpredictable. The basic idea is to set up a collection of devices or
modules, each of which has an input, an output, and performs some process
ing function. The modules are strung together and the output of the last
module is fed back into the input of the first. Multiple-feedback paths can
also exist. A simple sequence, even a single event, is then fed into the chain
and gets processed over and over changing some on each trip. With multiple
feedback paths, the sequence may be split and duplicated on each evolution.

One of the simplest setups is a series ofSAH modules, all driven by the
same trigger as in Fig. 10-8. A multiple-input VeA is used to selectively
mix an input from outside and one or more feedback loops. With only the
input enabled, the final output from the system is simply a delayed, sampled
version of the input. Outputs taken from intermediate states would be
identical but with differing delays. This might be useful in creating sequence
echo effects or even have a sequence playa "round" with itself.

With the end-around feedback path enabled, many possibilities exist.
One could, for example, fill the SAH chain with a short sequence of notes
(five SAHs could hold a five-note sequence), disable the input, and recircu-
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Fig. 10-8. SAH module feedback sequence generator
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late the same sequence. If the SAH modules were perfect, the sequence
would repeat indefinitely, but in reality analog errors would accumulate and
the sequence would evolve in perhaps interesting ways. If, instead of remov
ing the external input, it were fed a constant 1/12 V, the sequence would
shift upward a half step on each interaction. If the feedback gain were greater
or lesser than unity, the pitch intervals in the sequence would progressively
increase or decrease, respectively. Enabling a second feedback path would
create such complex patterns that they may be difficult to predict beyond the
first repetition. The use of slew-limited SAH modules adds yet another
dimension of possibilities.

Digital Feedback Techniques

A digital feedback system can be set up using flip-flops connected as a
shift register. Figure 10-9 shows such a system. The input summer that
drives the register is a parity generator that actually computes the "modulus
2 sum" of all its inputs. The switches enable a particular feedback path if
closed. A low-frequency veo provides trigger pulses to drive the system.

Fig. 10-9. Feedback shift register sequence generator



334 MUSICAL ApPLICATIONS OF MICROPROCESSORS

0000001100000101
0000111100010001
0011001101010101
111111100000001

(A)

0000011100010101
0110101000010110
0110001100101001
1101110100010011
0111100001101001
0001111101011100
1001011111100111
101101100000001

(S)

0000100101000011
0101100110010101
0011110011011010
0000101001011000
1001110001111111
1000001110011111
0110010001000110
0111010111011011
0000001100011011
1100010111101010
1011111101000101
0110111000011110
1110100110100100
100000001

(e)

Fig.1{}-10. Some 8-bit feedback shift register sequences. Note: Switch states
read left to right as in Fig. 10-9. One cycle of the output sequence
from the parity generator is shown. (A) Switches = 00000011. (B)
Switches = 00000111. (C) Switches = 00001001.

The output, of course, is simply a two-level digital signal that may change
only in conjunction with a trigger pulse. As such, it is useful for rhythm
generation, but there are methods for controlling multiple-frequency tones
also.

The sequence generated depends entirely on the configuration of open
and closed switches. Since there are 2N possible switch combinations, a fairly
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1111111010101011
0011001000100011
1100001010000011
000000100000001

(0)

0001110001001011
1000000110010010
0110111001000001
0101101101011001
0110000111110110
1111010111010001
0000110110001111
0011100110001011
0100100010100101
0100111011101100
1111011111101001
1001101010001100
0001110101010111
1100101000010011
1111110000101111
000110100000001

{El

Fig. 10-10. Some B-bit feedback shift register sequences (cont.) (D) Switches =
10000001. (E) Switches = 00011101. This is the longest possible
sequence using an B-bit register (255 bits).
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small number of stages can create a nearly infinite number of different
patterns ranging from highly structured to virtually random. The sequence
length (number of clock cycles necessary to cause the sequence to repeat)
varies from just 2 to 2N -1, where N is the m;mber of shift register stages.
From this vast array of sequences, Fig. 10-10 S:10WS a few of those possible
with an 8-bit register.

The Muse
At least one interesting device has been marketed that is based on the

feedback shift register principle. It is called the "Muse" and is advertised as a
music composition machine with which the user, by setting several levers
and swItches, controls a sequence generator, WhICh 10 rurn controls a single
oscillator to produce notes.

A simplified block diagram of the device is shown in Fig. 10-11.
Thirty-eight different digital signals are generated by several counter stages
and a 31-stage shift register. These signals along with constant 0 and 1 are
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connected to 40 signal rows. Eight 40-position slide switches divided into
two groups of four switches act as columns and can select any individual row
signal. Four of the switches, which are called "theme" controls, feed a parity
generator whose output feeds the 31-position shift register. The other four
switches, designated "interval" controls, are connected through some trans
lation logic to a 5-bit DAC, which drives a VCO tone generator and output
speaker. The VCO and DAC are adjusted so that the step size is a semitone
on the equally tempered scale and the translation logic converts its 4-bit
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input into a 5-bit output according to the conventions of the major musical
scale. An adjustable low-frequency oscillator clocks the counters and shift
register.

In the Muse, the rows driven by the counters and constant 0 and 1 are
designated as the "c" (counter) region. Five of these rows are connected to a
simple 5-bit counter, while two more connect to a divide-by-6 and divide
by-12 counter. The outputs of the various counters are normally used for
short, highly ordered sequences. For example, if the "A" switch is set to row
"C1", B to C2, C to C4, etc., the device will generate an ascending major
scale. Essentially, a binary counter has been connected to the DAC, which
would be expected to generate an ascending staircase waveform. If switch A
is moved to the C1/2 position, the scale will still ascend but by alternate
intervals of one note and three notes. Moving Band D back to the off
position (constant 0 row), results in a pair of trills: C
D-C-D-G-A-G-A-C-D ... Many other combinations, of course, are possi
ble, but the sequence length will never be more than 64 notes using the C6
row or 32 notes otherwise.

The 31 rows in the "B" (binary) region are driven by the 31 stage shift
register, which shifts downward from row 1 to 2 to 3, etc. The four "theme"
switches are used to control the shift register by determining what will be
shifted into the register's first stage input. If they are set in the C region,
then the register acts merely as a delay line. This can be useful in creating
cannon effects. However, if one or more are set in the B region, then a
feedback path into the shift register is created and some complex sequences
indeed can result. One possibility is to set the theme switches for a complex
sequence, set three of the interval switches in the C region for a repetitive
tone pattern, and set the fourth somewhere in the B region. The result is that
the repetitive pattern is modified according to the shift register pattern.
Although one can think through what the effects of a particular switch
setting might be, there are so many degrees of freedom that one usually
succumbs to random tinkering. The number of unique combinations is for all
practical purposes infinite.

Obviously, the concept can be easily expanded to more stages, more
notes, more voices, rhythm control, and even scale changes. Of all the
algorithmic "composition" methods discussed thus far, the author feels that
this one holds the most promise and is the most fun to use. It is obvious that
the Muse can be easily simulated on any microcomputer system using any
language desired. Although user interaction may not be as convenient as the
many slide bars and switches on the real thing, it becomes easy to expand or
restructure the device with minor program changes. Also, with the user
interaction techniques discussed in the next chapter, even the user interface
can be improved upon.
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Display and Editing

One of the unique capabilities of a computer-controlled synthesizer is mean
ingful graphic communication with the user. Many of the normally abstract
ideas about sound parameter variation become concrete objects when vi
sualized through a computer-driven graphic display. As such, they become
much easier to manipulate as well as comprehend. Imagine for a moment
reading the text of this book without the benefit of illustrations. The no
tions of waveshape, spectrum shape, parameter variation contours, etc.,
would be difficult to visualize regardless of the quality of exposition. With
figures to illustrate ideas, understanding of the point being illustrated as well
as its relation to other points is made easy, almost natural. "Dynamic"
illustrations in which variables actually move is better yet for understanding
relationships. A graphic display device provides these aids to the music
system user who must constantly conceptualize a myriad of interrelated
parameters and effects in the evolving composition.

Not very long ago one interacted with a computer music system solely
through punched cards. The keypunch machine in the computer center was
the only means available for editing the sound material, which consisted of
music language statements and an occasional tabulated curve. Alphanumeric
display terminals for on-line editing of text were rare, while graphic display
consoles were exceedingly expensive luxuries. Now an interactive al
phanumeric display is expected even on small, inexpensive home systems and
reasonably adequate graphic capability costs less than $500.

Whereas the previously discussed musical input methods concentrated
on getting data into the system in an initial good form, this chapter will
discuss methods for building up a composition from little or nothing
through editing. Editing is a process whereby a body of initial material is
modified or rearranged in response to commands by the user. It also covers
the addition of new material.and the deletion of old or unwanted material.
An ideal computer music-editing system should be able to accept input in a
variety of forms, such as keyboard activity, source signal analysis, al
gorithmic sequence generation, and music language statements. It should be
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able to "show" the material to the user in several ways, such as music
language statements, standard or specialized music notation, graphs of
parameter variation, and actual synthesized sound. The editing commands
should be simple yet powerful and correspond to the method chosen for
showing the material to be edited. Composition by editing is a uniquely
interactive method for producing the kind of music the user really has in
mind rather than the best approximation that human dexterity or music
language restrictions allow.

Types of Display Devices

Historically, computer data displays have been divided into two types,
alphanumeric and graphic. The former is so named because it is designed to
display strictly letters and numbers, whereas the latter is more generalized,
being capable of displaying line drawings or in some cases gray scale images.
Theoretically, the alphanumeric display is a proper subset of graphic displays
because, after all, characters are nothing more than graphic shapes. However,
the very generality of graphic display means t~at character display quality or
quantity is likely to be less for equivalently priced devices. Because of this,
many computer users have the mistaken idea that a graphic display can never
do as good a job on text as can the alphanumeric type. A good-quality
graphic display, however, can certainly equal the performance of commonly
used, less expensive text-only displays with the added convenience of a
single-display device for both types of information.

Many display technologies have been used to display characters and
graphics. Although other methods have claimed to be superior to the cathode
ray tube in one way or another, the CRT remains the undisputed leader and
likely will continue to be until the late 1980s. CRT hardware is cheap
because of heavy usage in television, radar, and oscilloscopes. Display resolu
tion can be very high; a million resolvable points is routine and upward of 20
million can be done. The most commonly used CRT displays are fast,
capable of being completely updated in milliseconds. Although other
capabilities such as gray scale and color presentations are important for some
applications, the following discussion will focus on monochrome displays
capable of line drawings and alphanumerics.

A graphic CRT display can be thought of as a two-dimensional rectan
gular surface. Any point on (he surface can be specified by giving X and Y
coordinat~. However, since digital logic drives the display, there is a limit
to the number of discrete X and Y coordinate values. The smallest increment
possible in either direction is commonly called a raster unit. A low-resolution
display may have as few as 200 raster units in each direction, whereas a
high-resolution display might have 4,000 or more. The electron beam that
creates the spot of light on the screen does have a finite size, however. In fact,
it is often larger than the raster unit size in a high-resolution display. Herein
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Fig. 11-1. Methods of displaying a line. (A) Line-plotting display. (8) Point
plotting display.

lies the difference between addressable points, which are the product of X and
Y raster unit counts, and resolvable points, which refer to the quantity that
can theoretically be displayed without merging into a continuous sheet of
light.

Graphic Display Classifications

Graphic displays are classified by whether the fundamental display
element is a line or a dot (point). A line drawing display is capable of drawing
a smooth continuous line from any X,Y coordinate (X and Yare integers in
terms of raster units) to any other on command. A point display is capable of
illuminating any combination of dots at X and Y raster unit intersections.
Figure 11-1 shows the difference in appearance between the two presenta
tions in which all other factors such as number of raster units and beam size
are equal. Clearly, the line display provides a superior image. This is because
only the endpoints are constrained to be at grid points in the line display.

Line drawing displays are usually called vector displays because the lines
satisfy the mathematical definition of a vector. Such displays have a number
of important advantages besides better-looking images. The most important
is that they are easy to program. The display accepts data in essentially the
same form that it is likely to be manipulated and stored in. Another advan
tage is that interactive editing of the image is fairly easy to implement and
large data buffers in memory are generally not required. Resolution of the
image (number of horizontal and vertical raster units) can be made quite high
for a moderate increase in cost and memory usage.

There are, however, disadvantages that prevent vector from being the
dominant CRT display technology. Perhaps most serious is the required
CRT monitor, which consists of the tube, high-voltage power supply, and X
and Y deflection amplifiers. It must be capable of random (on command) X
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and Y deflection of the beam. Unfortunately, home TV sets or standard video
monitors do not fall into this category. Oscilloscopes, however, do provide
random positioning capability, but the screen size is fairly small. A large
screen random deflection display monitor is currently a specialized, expensive
device. Another problem is that without an adjunct character generator
circuit and small-angle deflection circuit the amount of text that can be
displayed is limited.

A Simple Vector Display

Perhaps the best way to become acquainted with the characteristics of
vector displays is to describe a simple unit that is easily built, is inexpensive,
and gives surprisingly good performance. It may be interfaced to any com
puter that has two 8-bit output ports. The output consists of X, Y, and Z
(beam on-off control) voltages that can use any oscilloscope having dc
coupled amplifiers as a display monitor. The resolution is 256x 256 raster
units, but the quality is equivalent to much larger dot-type displays.

One fact of life is that the image on the tube must be rewritten
continuously. This is called refreshing the display and is necessary to prevent
it from fading away within a fraction of a second. For most display monitors,
the image must be refreshed at least 40 times/sec to avoid flicker. Maximum
image complexity is directly proportional to the number of lines that may be
drawn in one refresh interval. Very detailed, complex drawings are possible,
however, if some flicker is allowed. It is also sometimes possible to obtain an
oscilloscope with a long-persistence phosphor in which the image does not fade
so quickly. These are usually yellow or orange in color as opposed to green
and are commonly used in medical applications. The display to be described
requires about 50 p,sec to draw a line. Thus, about 500 lines may be drawn in
the 25-msec interval allowed for a 40-Hz refresh rate.

Two 8-bit output ports are used to control the display. Port one is used
for specifying X and Y coordinates. The coordinates are unsigned numbers in
the range of 0 to 255 wi th zero corresponding to the bottom and left edges of
the screen. Only 4 bits of the other port are used. The "save X" bit when a
logic one causes the content of port one to be interpreted as an X coordinate
and stored in an internal register. The "move X" bit causes the previously
saved X to be sent to the X DAC, which then immediately moves the CRT
beam to the new X position. "Move Y" immediately transfers port 1 to the Y
DAC and moves the beam. The fourth bit is called "draw," which turns the
beam on for 50 p,sec and sets up for controlled movement so that straight lines
are drawn. For proper operation of draw, move X and move Y should be set
simultaneously with draw.

A typical sequence for drawing a line between two arbitrary endpoints,
Xl,Yl and X2,Y2 would be as follows:

1. Initially port 2 (the control port) is zeros.
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2. Store Xl into port 1 (the coordinate port).
3. Set "store X" and "move X" bits to ones and then zeros to cause an

immediate move to Xl.
4. Store Y I into port 1.
5. Set "move Y" bit to a one then a zero to cause an immediate move to

Yl.
6. Store X2 into port 1.
7. Set "store X" bit on then off to store X2 In the display generator

without affecting the X DAC.
8. Store Y 2 into port 1.
9. Set "move X," "move Y," and "draw" bits on.

10. Wait 50 j-tsec for the line to be drawn.
11. Clear the control port to zeros.

Usually the majority of an image is formed by line segments joined end-to
end. In this case, each additional segment after the first only requires Steps 6
to 11 to be executed.

Display List Interpreter

In actual use, a display subroutine would be written that would display
all of the line segments.needed for the desired image once and then return. A
display list in memory can specify the line segments in a form that allows
rapid retrieval and display yet easy manipulation of the list for editing. The
display subroutine then becomes a display list interpreter executing commands
from the list not unlike a BASIC interpreter. Although considerably more
sophisticated list formats are possible, let us describe one that is simple yet
well suited for this display.

The display list consists of individual "list ,elements" strung end to
end. Each element contains an "operation code" byte followed by "operand"
bytes. Code Olt6, for example, will specify a move with the beam off;
therefore, it will be followed by two bytes specifying X,Y coordinates of the
destination. Code 02 specifies an isolated line segment; thus, XI,YI and
X2,Y2 will follow as four bytes. For drawing connected line segments, it is
most efficient if they are drawn consecutively. Accordingly, code 03 indi
cates that a count byte and a series of coordinates follows. A move will be
done to the first coordinate of the series and thereafter lines will be drawn
from point to point through the series. The count byte specifies up to 255
lines in the series.

In music synthesis applications, it is common to display graphs in
which one axis, usually X, simply increments for each line in the graph.
Considerable space saving is therefore possible by defining a "graph" seg
ment type. Code 04 is used to specify a graph. It is followed by a count byte,
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an increment byte, the initial X coordinate, and then a series ofY coordinate
bytes. The count byte is as before, while the increment byte specifies the
amount that X is incremented for each graph point. The initial X byte is
needed to specify where the graph begins horizontally. For completeness, one
could specify code 05 as being a graph with Y being automatically in
cremented. The end of the entire display list is specified by a code of 00.

Many other element types can be defined to make image editing easier
and faster. If one desired to move a set of lines vertically by 10 raster units it
would be necessary to alter the Y coordinates of everyone of the lines
individually. The idea of relative coordinates overcomes this problem. With
relative coordinates, the position of all line endpoints are relative to a
specified point. By changing the coordinates of the specified point (origin),
one can change the position of all lines that are relative to that point. To
implement this, code 06 will specify an origin segment and will be followed
by X,Y of the new origin. Codes 07 to OB correspond to 01 to 05 except that
all coordinates are relative.

It is also useful to be able to skip portions of a display list or reuse parts
of it for similar subimages. Code OC is used to specify an unconditional
jump. It is followed by two bytes that specify where in memory the remain
der of the list is located. The jump simplifies editing because a deletion, for
example, can simply insert a jump that skips around the unwanted list
elements. Code OD is similar except it specifies "jump to subroutine." The
address of the next list element is saved and a jump to another display list is
taken. When a "return" (code OE) is seen in the secondary list, a jump back
to the saved address is taken. If the display list interpreter is written so that
return addresses are saved on the processor's stack, the sublists may be
nested.

Relative coordinates make such "image subroutines" very useful. A
common subroutine, such as the shape of an object, can be used to draw the
object at different positions on the screen. One would have a "set relative
origin" element followed by a "jump to subroutine" element for each copy of
the object desired. This technique would also be useful for displaying charac
ters.

To facilitate compact storage of text, code OF will specify an ASCII
mode. It is followed by the X,Y coordinate of the first character and then the
text itself as normal ASCII character codes. The ASCII "ETX" character is
used to indicate end of text and a return to graphics mode. One could define
a variety of control characters in the text to allow formating withour going to
graphic mode and changing coordinates for each line of text. Note that
graphic text display is quite capable of proportional spacing (different letters
are diffetent widths such as the text of this book) and superscripts or sub
scripts or even varying point (character) size. Unfortunately, with this simple
display example only a few dozen characters can be drawn in a 25-msec
refresh interval.
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Keeping the I mage Refreshed

To maintain the image on the screen without flicker, the list interpret
er would have to be called at least 40 times/sec. An easy way to keep the
display refreshed and do other work as well is to have an interval timer
interrupt 40 times/sec. The interrupt service routine would refresh the dis
play once and return. If priority interrupts are available, the display should
probably be the lowest priority. If more than 25 msec is required to display
the list, the system would revert to a state in which the list size determines
the refresh rate, which would be less than 40 Hz.

Obviously, the system can become completely tied up refreshing the
display if the image is complex. Often this is not a problem if the application
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is simply editing curves or text where the system is waltlng on the user
virtually 100% of the time anyway. For other applications, it would be nice if
the display automatically refreshed itself from the display list. One pos
sibility is to utilize a small microcomputer similar to the music keyboard
driver described in Chapter 9 as a dedicated display processor. The main
system would transfer display list data to it through a serial or parallel port.
Alternatively, in a bus-organized system with DMA capability, the display
processor could interpret a display list area of memory shared with the main
system processor. A display program in the dedicated micro would continu
ously interpret the list and keep the display refreshed. Using a 6502
microprocessor for the display processor is advantageous because the address
ing modes and overall high speed of the 6502 allow complex list structures to

be processed as fast as the display generator can accept data. A 1K or 2K byte
EPROM (2708 or 2716) is plenty large enough to hold the display
interpreter and fundamental list-editing software. One to four 2K byte static
RAM chips (6116 type) can easily hold display lists larger than the display's
ability to refresh them at a reasonable rate. A 6522 parallel 1/0 chip provides
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Fig. 11-3. Step response of vector generator

a convenient interface to the vector generator about to be described and also
includes a timer that can be used to conrrol the refresh rate.

Vector Generator Circuit

Figures 11-2A and B show a schematic of the vector display generator.
The digital portion of the interface is quite simple, consisting mostly of type
74LS75 quad transparent latches. The latches are necessary because the same
port is used for both X and Y coordinates and to insure that the X and Y
DACs are updated simultaneously when a line is to be drawn. The term
transparent means that as long as the clock input is high, the input data
passes straight through to the output. Thus, a move X operation, which calls
for setting both "save X" and "move X" conrrol bits high, enables the clocks
on both sets of X latches allowing data to pass through the leftmost set and
be latched into the rightmost set. The single shot is used to carefully control
the beam on time independent of program timing when a draw is executed.
This prevents bright dots at the ends of lines. The Z axis output is boosted to
15 V, since most oscilloscopes require high-level drive to control the beam.

The heart of the analog section is the X and Y DACs. Type MC140SLS
DACs are used in a circuit similar to that in Fig. 7-IS. The offset circuit has
been modified, however, to provide a voltage output (from current-to-voltage
converter op-amp) of + 2.5 for a digital input of 0 and + 7.5 for an input of
255. The type TLOOs4 is a very convenient quad FET input op-amp selected
here for its speed.

Unfortunately, generating the X and Y voltage contours necessary for
drawing a smooth, uniformly bright line between arbitrary endpoints on a
CRT is not as simple as it sounds. The task is called vector generation and
circuits that do it are called vector generators. An ideal vector generator would
move the beam at a constant, uniform velocity regardless of the line length or
orientation, would be free of wiggles and other distortions at the endpoints,
and would have good matching of lines sharing the same endpoint. To make
matters worse, the necessary analog computations must be done accurately at
high speeds. The vector generator used in this simple display sacrifices
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constant velocity in the interest of simplicity. The effect of varying beam
velocity is that short lines will appear to be brighter than long lines and the
portion toward the endpoints may also be brighter than the middle. To the
eye, the effect is not objectionable but it does create difficulty if one wishes to
photograph the screen.

Vector generation is accomplished by using a portion of the step re
sponse of a resonant low-pass filter. Figure 11-3 shows the step response of
the filter used. Note that the filter output rises from its previous value fairly
linearly, overshoots the final value, and then oscillates around it for a time
before settling. Since the time from the input step to the output first crossing
the final value is constant and the curve during this time is reasonably linear,
it is suitable for use as a vector generator. Note that line straightness on the
screen depends on matching the X and Y curves, not on the straightness of the
curves themselves. 51 and 52 have been added to quickly damp out the
oscillation around the final value after the line has been drawn and to allow
fast moving with the beam off. Their effect is to raise the cutofffrequency of
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the filter about 20-fold. The switches themselves are inexpensive CMOS
transmission gates. Since the voltages being switched are between +2.5 V
and +7.5 V plus some margin for overshoot, the CMOS is powered between

+ 10 V and ground. This also allows simple open-collector TTL gates to
drive the switches.

Adjustment of the circuit is fairly simple. First the gain and offset pots
on each DAC must be adjusted so that 00 gives +2.5 V output and FF gives
+ 7.5 V. Next, using an oscilloscope, the low-pass filters in the vector

generator should be adjusted for identical step response shape and time to
first final value crossing. If the capacitors are initially matched to within 1%
or so, then shape matching should not be a problem and the two pots in the
X axis circuit can be adjusted for time matching. Finally, using a test pattern
consisting of a diamond (all lines at 45°), the end match pot should be
adjusted so that the lines just meet. If one line passes the other before
meeting, then the step response balance should be touched up a bit. Any
curvature of the lines due to the vector generator can be ascertained by
displaying a 45° angle line and then a series of points (lines with zero
length) along the path that should have been traversed by the line.

Note that very little additional expense is involved in improving the
resolution of the display. For example, the number of addressable points may
be increased 16-fold merely by using lO-bit DACs and a couple of extra latch
packages. With 12-bit DACs, the taster unit size becomes so small that X
and Y coordinates become essentially "continuous" quantities. The signifi
cance of this is seen by considering the display of, say, an arbitrary number of
equally spaced lines in a fixed area of, say, one-half the screen width. With
256 raster units, one-half of the screen would be 128 raster units. If 47 lines
need to be displayed, the space between lines should be 128/47 = 2.723
raster units. On the screen some lines would actually be three units apart
while others are only two, obviously not equally spaced. With a 4096
raster-unit display, however, the lines would be 43 and 44 units apart and
thus appear quite equally spaced on the screen.

Raster Scan Displays

The other major CRT display type is commonly called a raster scan
display. This is because the deflection circuits in the CRT monitor constantly
scan a rectangular area in a set pattern consisting of numerous parallel
horizontal lines. As the beam scans, it may be turned on and off at controlled
times to show a dot pattern representing the desired image. Since the deflec
tion amplifiers always handle the same waveform (normally a sawtooth) at a
constant frequency, they may be made quite inexpensively even for the high
power levels required for large-screen magnetic deflection tubes. This and
the fact that our national television system works on the same principle are
key advantages of raster scan displays. Note that since time is the only
variable required to control dot position, the raster scan display is inherently
a digital device.
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Fig. 11-5. Simple (A) and interlaced (8) raster scanning

The maximum resolution of a raster scan display is fairly well defined
by the scanning frequencies used. Since television receivers and TV standard
video monitors are so common, the low-cost raster display maker is essen
tially locked into standard TV frequencies, which are 15,750 Hz horizontal
and 60 Hz vertical. For a normal scanning pattern, this yields 262 horizontal
scan lines of which roughly 240 are usable (the others are wasted during
vertical retrace). There is no hard limit on horizontal resolution, but there is
little reason to have more points per inch than the vertical axis. With a 4:3
aspect ratio (screen width:height), this gives a horizontal resolution of 320
points.

A technique called interlacing effectively doubles the vertical resolution
to 480 lines. It does this by vertically shifting odd-numbered screen scans
one-half the scan line spacing with respect to even-numbered scans. Al
though effective for moving pictures viewed at a distance which is typical of
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television, an expensive precision monitor is required for an acceptable sta
tionary image when viewed at close range, which is more typical of computer
displays. Higher horizontal rates of 30 kHz or 60 kHz and/or slower vertical
rates of 30 Hz are other methods of achieving up to 2,000 scan lines per
frame, which is the practical limit of real-time raster display technology.

Nevertheless, 240 X 320 resolution is quite usable for music applica
tions. Although the image appears much coarser, a 256 X 256 raster display
gives just as accurate a picture as a 256 X 256 vector display would for
waveform plots. The difference would really show up, however, if a number
of lines at different angles pass through a small portion of the screen. With a
raster display, the lines may just merge into a patch of light making it
difficult to trace an individual line through the maze. A vector display, on
the other hand, would retain good line identity in such a situation..

Unlike the vector display just described, automatic screen refresh by
external hardware is inherent in raster displays. The overwhelming reason for
this is the blazing speed with which data must be read from the display list
and sent to the display to keep up with the scanning. As an example,
consider that the horizontal sweep period of standard TV is roughly 64
p.,sec. In practice, at least 15 p.,sec must be subtracted to allow for horizon
tal retrace, leaving about 50 p.,sec for the image. For a horizontal resolution
of 320 points, no fewer than 320 bits must be sent to the display during this
time. This gives a bit rate of 6.4 MHz or a byte every 1.25 p.,sec, much too
fast for directly programmed output. Thus, in practice an exact screen image
is stored in a display buffer that may either be part of the display interface or
may be main microcomputer memory with direct memory access (DMA)
used to rapidly read the data for display.

Display Buffer

The display buffer required for a raster display can become quite large
indeed. A full 320 X 240 display would be 76,800 bits or 9.6K bytes,
which is comparable to the total memory capacity of many microcomputer
systems. Note that even if scanning frequency limitations did not exist
doubling the resolution would increase the display buffer size (and therefore
cost) four times. Commercial display designers have devised numerous ways
to reduce this, but all of them involve trading off either display generality or
programming ease or both. The two most common schemes also attempt to
combine text display and graphic display functions by adding special graphic
symbols to the character set of an otherwise normal text display. One method
divides the character cell into three rows of two squares each and assigns 64
character codes to cover all of the possible combinations of light and dark
squares. The resulting graphic resolution ranges from 128 X 48 for
hobbyist-level 16-line 64-character displays to 160 X 72 for commercial
24-line 80-character units. This is obviously quite coarse but is at least
completely general within the limited resolution.
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The other method that is often found in alphanumeric display terminals
adds various graphic character shapes such as horizontal, vertical, and
diagonal lines and corners, junctions, arcs, etc., to the character set. The
user can then select line segments from this set and piece images together
that appear to be of high resolution. While excellent for images such as game
boards, bar charts, and other highly structured material, the technique is
quite limited on arbitrary lines and curves such as music-control functions
and waveforms.

Bit-Mapped Display Interfaces

Thus, for any kind of serious graphics work a true bit-mapped or pixel
display is a necessity. The term bit-mapped means that every point on the
display literally corresponds to a bit in the display memory, whereas pixel
refers to the fact that individual picture elements can be manipulated.

Most integrated personal computers today have some form of bit
mapped graphics display capability. Integrated here means that the display
generation circuitry is part of the computer as opposed to a separate display
terminal. Even the under-$200 Commodore-64 has a 320 X 200 pixel
resolution in its two-color mode. The Apple llline typically provides 280 X

192, although the newest members also have a 560 X 192 mode, which is
quite a resolution mismatch. Pixel graphics is not really standard on the IBM
PC, but most users purchase the option (usually to run "business graphics"
software), which offers an even more mismatched 640 X 200 resolution in
the monochrome mode. Many IBM "clones" offer better graphics capability
as a standard feature; the Tandy 2000, for example, has 640 X 400
resolution even in the eight-color mode. The Apple Maclntosh is currently
the best-known low-cost graphics-oriented computer. Its 512 X 342
resolution, although not the highest around, is well balanced and backed up
by a microprocessor (68000) that is ideally suited to graphics manipulations.
Unfortunately, its "closed" architecture makes connection to synthesis
equipment and user programming of signal-processing-oriented graphics
software much more complex than necessary, although its built-in software
can be of some use.

Larger bus-oriented and multiuser computers typically use separate
display terminals rather than integrated display generators. Usually, such
terminals are alphanumeric with perhaps some line segment character shapes
available. Full graphics terminals are available, however, as are graphics
retrofit kits for some of the more popular alphanumeric units. Graphics
programming, particularly graphics editing, which will be described, of
such a terminal is difficult and slow due to the serial communication link
between terminal and computer.
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Bus-oriented computers using the S-lOO bus, Multibus (Intel), Ver
sabus and VME bus (Motorola), or Q-bus (DEC), have available plug-in raster
graphics display boards that can offer much higher resolutions than
integrated computers. A resolution of 640 X 400 is common and up to
1,280 X 1,024 is available with from 2 to 224 colors. Of course, costs can be
quite high, but such units have the resolution required for nearly any
conceivable musical application. For example, three-dimensional spectral
plots, which often look like mountain ranges, need high display resolution to
be useful. Likewise, a conventional score editor benefits greatly from
resolution high enough to permit seeing an entire page of music rather than
just one line at a time.

Color

As with home televisions, color is expected on home computer displays
and, in fact, most connect to color TV sets. A color television, even an
expensive one, makes a very poor computet display because the three color
signals are multiplexed onto one 4-MHz band-limited video signal. The result
is that the displayable (as opposed to addressable) color resolution is often no
better than 100 pixels across the screen due to blurring. Add to that artifacts
of the multiplexing process, such as ghosts and "worms" at sharp edges in the
ima~e, and the result is a very unpleasant display to watch at close range. The
better personal computers provide separate red-b1ue-green color signals to
'Specialized monitors, which gives a much more satisfactory image.

With current color picture tube technology, there are still substantial
defects that make color displays tiring to use for long periods. One of these is
poor convergence, in which the three color images do not perfectly line up,
an effect often seen in the Sunday comics. For example, when white
characters are shown against a dark background, obvious color fringes are
seen around the edges, or in extreme cases, entire characters may be a
rainbow of color. Another problem is moire patterns of "beating" between the
tube's color dot or stripe pattern and individual display pixels. Very expensive
color monitors (upward of $2,000) can minimize these problems by using a
more precise "sectorized" convergence system and fine pitch shadow masks
that may have dot or stripe density up to three times that of entertainment
grade monitors.

Perhaps the best way to appreciate the clarity difference between
monochrome and color displays is to compare them side-by-side showing the
same image. The higher the resolution of the display generator, the more
dramatic the difference is. Monochrome images can be enhanced in many
ways, such as providing gray scale and rippling dashed lines, to highlight
parts of images. If the resolution is high enough, an almost endless vatiety of
shading patterns can be used when gray scale is not available. Apple
Maclntosh software uses this technique extensively.
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Editing the Display List

Unfortunately, a pixel display is difficult and space consuming to
program. Whereas one can simply specify the coordinates of the endpoints of
a line with a vector display, all of the points in between must be specified
with the pixel display. This in itself is an interesting problem: define an
algorithm that illuminates the best set of points possible on a fixed grid
between two endpoints, also on the grid. In any case, a graphic subroutine
package is a necessity when using a pixel display. Routines for point plot
ting, line drawing, and character generation are all necessary.

The real problem with pixel displays, however, lies in the fact that the
display buffer does not contain data in a format that can be edited in general;
it is just a mass of bits. As was mentioned earlier, a vector display list can be
organized by objects, making it easy to locate an object, move it, delete it, or
add a new one without regard to ot?er objects on the screen. In contrast, the
data in a pixel display buffer is organized byposition in the display field. From
looking at the data itself it is practically impossible to delineate objects and
determine their exact size and orientation.

Direct editing of a pixel list is of necessity very limited. As an example,
consider a pixel display showing a number of lines in which some of the lines
may cross. If the user wants to delete a line it would not be difficult for him
(using human eyes) to recognize the line on the display and supply its
endpoints to the editing program. The program would then simply trace
through the line and turn the pixels off, thus erasing it. Adding a new line
would be simply a matter of specifying it and setting the appropriate pixels
on. Thus, one would think that moving a line could be accomplished by first
deleting it and redrawing it elsewhere. A very serious problem occurs, how
ever, if the line of interest crosses another because a little gap will be left in
the second line when the first is deleted. If interactive line movement using
perhaps a joystick is to be implemented, large portions of the second line
may be erased as the first moves around.

The only way to overcome the editing problem in general is to maintain
two display lists, one in pixel format for the display and the other in vector
format for editing and saving results. The easiest way to handle the two lists
is to execute all editing operations on the vector list and then call a routine to
interpret the vector list and create an updated pixel list whenever anything
has changed. In many cases, this would call for erasing the pixel list and
regenerating it completely from the vector list. In other cases, it may be
possible to regenerate only a portion of the pixel list, or in the case of
additions, simply do similar operations to both lists. When editing is com
plete, it is the vector list that should be stored.

Applications of Graphic Displays in Music
The term "interactive graphics" is commonly used to refer to the

activities about to be described. Three fundamental subsystems are required
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in an interactive graphics application. First, of course, is the computer and
graphic display device. Second is the array of input devices used by the
operator to communicate with the system. Last is the software necessary to

tie it all together. In a well-implemented interactive graphics application,
the user sits with eyes glued to the screen, hands manipulating input devices,
and mind closing the feedback loop. The effect is as if the image on the
screen is an extension of the user's consciousness. To meet this goal, a highly
effective human interface, both input devices and software, is required.

Many of the music input devices described previously are suitable for
and in fact some were orginally developed for interactive graphics work. A
joystick, for example, is typically a two-dimensional device, thus mating
perfectly with a two-dimensional display. When connected to the computer
through an ADC and suitable programming, one can point to objects or
literally draw curves on the face of the display. As a practical matter, how
ever, it is fairly difficult to control a joystick precisely; thus, intended
straight lines are crooked and pointing is somewhat of a trial-and-error
procedure.

Graphic Input Techniques

A mouse is a related device that overcomes the awkwardness of a joy
stick. Typically, it is about the size and shape of an orange half and is
equipped with orthogonal wheels that allow it to roll around easily on a table
top. The wheels are connected to transducers and provide X and Y outputs.
Essentially, the position of the mouse corresponds to the joystick's handle,
but a much larger movement range allows more precise control. Another
device called a trackball consists of a smooth ball about the size of a baseball
sitting nearly frictionless in a stationary socket. The user can roll the ball in
any direction and thus provide X and Y outputs. Since the range may
encompass one or more complete revolutions, control is more precise. Its
major advantage is conservation of table space.

The graphic digitizer mentioned earlier is the most precise of all. Since
the pen or stylus is completely frictionless, one may input to the system as
accurately as drawing on paper can be done. In fact, because of their precision
and repeatability, a screen outline may be taped to the digitizer surface and
used as a guide in the interaction process. If real ink is used in the digitizer
pen, then a permanent record of the input is produced as a by-product.

It would seem though that the ideal situation would be drawing di
rectly on the display screen itself and in fact devices called light pens actually
accomplish this-almost. A light pen consists of a high-speed photocell and
a lens system that makes its angle of acceptance very small and localized. If
placed on the surface of the CRT directly above an illuminated portion of the
image, a pulse is generated whenever the beam refreshes that part of the
image. With the software-refreshed vector display described previously, the
pulse can be connected to interrupt the CPU while the line "seen" by the pen
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is drawn. With a pixel display, additional hardware is generally necessary to
determine the X and Y positions of the beam when the pulse occurs. In either
case, one can easily point to an object on the screen and the program can
ascertain which object it is or its location.

Drawing on the screen where nothing currently exists is a little more
difficult. In practice, a tracking pattern is displayed, which the user can point
to and move around. The path followed by the pattern then becomes the
drawn line. Various types of tracking patterns are used, but the circle type is
easiest to understand. A circle of dots is displayed that has a diameter slightly
larger than the acceptance area of the light pen. As long as the pen points to
the center region, no light is seen and the pattern remains stationary. Pen
movement in any direction, however, will put one of the dots in sight of the
pen. The tracking program in the computer will respond by moving the
entire pattern such that the new pen position is in the center. Besides
drawing lines, interactive graphics software can provide for "attaching" the
tracking pattern to an object, which can then be positioned as desired.
Unfortunately, a vector display or extremely fast computer is just about
mandatory for this degree of interaction.

Light pens do have their problems, however. In general, they must be
carefully tuned to the display used such as by adjusting the focus length to
match CRT faceplate thickness. For tracking applications, the CRT bright
ness needs to be tightly controlled to avoid the effects of light scattering
within the CRT faceplate and ambient light. Short persistence phosphors are
necessary for good pulse resolution, although long persistence visible short
persistence infrared types exist. Obtaining the necessary speed at low light
levels is a design problem that increases cost. Nevertheless, a properly func
tioning light pen is a joy to use and probably the best interactive graphics
input device available short of mind reading.

Finally, most interactive graphics setups use a standard typewriter
keyboard and a special function keyboard. Each function key is set up to
instruct the interactive program to perform a specific function each time the
key is pressed. The actual function of a particular key is entirely dependent
on the particular interactive software in use at the time. For example, six
keys may be reserved to control the display. One might expand the image
5% when pressed and a second could shrink it 5%. Four more could move
the entire display left, right, up, or down. Other often-used interactive
functions may be assigned to other keys. A fu·nction keyboard works just like
an alphanumeric keyboard but is usually limited to 16 to 32 keY5 and
constructed so that the key legends may be easily changed. In fact, legend
overlay sheets are commonly used and one would typically have a sheet for
each interactive program available. In sophisticated systems the sheets may
actually be punched or othetwise coded so that the program can verify that
the operator has actually inserted the correct one!
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Most personal computers, however, don't have the luxury of a separate
function keyboard, but many do have from 4 to 10 function keys added to the
standard layout. These are typically placed in a single- or dual-column to the
left or a single row above the main key array. The latter arrangement allows
for displaying legends at the very bottom of the screen that line up with the
function keys when the keyboard is positioned right. The interactive
graphics program (or text editor or just about any kind of interactive
program) can then dynamically change the legends as the program changes
modes. This has proven very effective in the Micro Technology Unlimited
line of computers and others.

A similar option that works well with a light pen, mouse, or other
pointing device, is to display a menu of function options that the user then
"points" to. In a complex program, only a few such soft keys may normally
appear in a dedicated area of the display, but, when more are temporarily
needed to qualify an earlier selection, part of the screen image can be saved
and overwritten with the temporary menu. These are often called pull-down
menus because of their appearance when the normal menu is at the top of the
screen. In systems with sufficient display resolution, interactive programs
designed for first-time users may even dispense with words for the legends
and substitute little pictures called icons. Extensive use of such conventions
was first popularized by the Apple McIntosh computer and has since become
relatively common.

Composition by Editing
Now that the tools used in interactive graphics have been described,

let's look at how these can be used to communicate musical and acoustical
ideas to a computer-based synthesis system.

First, consider a case in which direct control of several sound parame
ters simultaneously is desired. Further assume that the exact shape of the
variatioh contours and their interrelation is critically important in creating
the desired audible result. To make matters more difficult, the shape of the
required contours is only roughly known. Finally, the rapidity of the varia
tions is such that real-time manual control is out of the question. What has
been described is a perfect example of synthesizing a realistic singing voice,
although the concepts apply to any complex, rapidly changing sound.

Composition by editing is best done if one starts with some approxi
mation, no matter how coarse, of the desired results. In realistic speech
synthesis one might start by analyzing natural speech into the parameters of
interest. Even if the goal is a female singing voice and the input is a
gravel-throated male voice, the set of parameter variations that results is close
enough to the final result so that the necessary editing changes are somewhat
apparent. One might also use a "speech synthesis by rule" program, which
accepts a phonetic spelling and produces a first cut at the values needed.
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Fig. 11-6. Singing voice synthesis patch

Again, even though the initial values are crude, a starting point is estab
lished from which improvements may be made.

With an interactive graphics editing system, the task of determining
magnitude and direction of necessary changes and then actually accomplish
ing the changes is considerably simplified. An editing function is distin
guished from an input function by the fact that its action depends on what is
already there. Some editing functions may be reversible. This means that two
functions with opposite effect are available and that anything done by one can
be undone by applying the other. Nonreversible functions can only be un
done by retrieving a copy of the data made prior to execution of the nonrever
sible function. Examples of both types of functions will be given later in this
discussion.

Figure 11-6 shows the configuration of analog-synthesizing equipment
used in this example. The application is speech (singing) synthesis, and seven
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independent parameters are to be controlled. Four of these are the center
frequencies of the four bandpass filters used to simulate the first four for
mants of speech. Two more are used to control the amplitude of the voice
(buzz) and noise (hiss) sources. The last determines the pitch of the voice. It
is assumed that a multiple-channel DAC has been connected to the computer
so that the synthesizer modules can be controlled. For an application such as
this, 50 to 100 updates of the parameters per second should be sufficient.

While experts in the field might argue the completeness of this model
for producing a convincing singing voice, it is the author's belief that precise
control of the parameters available is often more important than the number
of parameters being controlled. The purpose here is to understand how
interactive graphics can be utilized to quickly determine how these seven
parameters should be varied to obtain the desired result. Further details
concerning speech synthesis theory and practice are abundantly available in
the references.

Figure 11-7 shows what a graphic display representation of a portion of
these seven control functions might look like. The horizontal axis is time and
the vertical axes depend on the particular curve. With all seven functions
shown at once, it is easy to see the relationships that exist among the
functions. When more detail is required, such as when actually editing one
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Fig. 11-7. Typical display of portion of speech synthesis sequence
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of the curves, a command or function key would be available to suppress
display of all but one or two of the curves.

Also shown is a cursor that can be used to designate a specific point in
time on the functions. The cursor can be easily moved back and forth to find
the area of interest. Any of the input devices mentioned earlier could be used
to move the cursor, even the function keyboard. To aid the user in finding
the audible area of interest, the program could be set up to actually send the
corresponding data to the synthesizer as the cursor is moved.

Each of the seven parameter values, of course, has some kind of physical
units, such as hertz for the formant and pitch frequencies. While the exact
value of a parameter may not be as important as its relationship to other
parameters, it is often necessary to know the value more precisely than the
display shows it. Accordingly, the values of each parameter at the current
cursor position is displayed at the bottom of the screen.

For critically comparing two parameters, it is useful to be able to plot
one against another as is done in the bottom right corner. Commands, of
course, would be available to select the parameters being compared. The
curve shown represents the time interval spanning the screen and the empha
sized point represents the current cursor position. One thing the curve does
not show is the time scale, but the user can get a good feel for it by moving
the cursor and noting the corresponding movement of the emphasized point.
It is even possible to have editing functions that operate on this curve (often
called a trajectory) directly.

Editing Functions

Now, how might these curves be edited? Simple sample-by-sample
alteration of a curve should be available but would certainly not be very
productive. Let's first look at the kinds of curve editing that might be
needed and then define editing functions that would make the task easier for
the user. For example, the user might decide that a certain segment of the
sequence moves too fast. A corresponding editing function should therefore
allow the user to point out the time interval to be changed with the graphic
cursor and then stretch it by 10%. At this point, the sequence can be played
for evaluation. This can be made a reversible function by including a corre
sponding shrink by 10% command. The user can experiment until satisfied
that any remaining imperfections in the sound sequence are due to other
causes.

Other operations could be defined that act on only one curve. For
example, the amplitude of the white noise may need to be generally increased
in a certain area. Again the interval could be pointed out and a command to
raise all hiss amplitudes in the region by I dB might be invoked. A com
plementary decrease by I-dB function makes this a reversible function. A
copy function might be imagined whereby the contour of one curve could be
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copied to another curve over a specified interval. Contours could also be
swapped or even called up from a library of contours that had been success
fully used earlier. Note that these are nonreversible functions. The editing
software should have provisions for saving the status of things before a
nonreversible function is performed.

At this point, a potential problem is seen. These editing changes can
result in a discontinuity at the boundary between edited and unedited por
tions of the curves. What is needed is a method of interpolation so that the
boundary transitions are smooth. Figure 11-8 should be helpful in visualiz
ing how such interpolation might be done. A key concept is the idea of an
interpolation window. An interpolation window is itself a curve that varies
between 0% and 100%. In use, it is applied to two curves; the original
unedited curve and the edited but not interpolated curve. The result is a
third, interpolated curve that actually consists of a weighted sum of the first
two curves. In effect, the interpolation window specifies how to weight the
sum. At the 0% points, the result is equal to the unedited curve. At the 50%
points, the result lies midway between unedited and edited curves. At the
100% point, it is all edited curve. As can be seen, interpolation considerably
smooths the transition between unedited and edited segments.

In use, no single interpolation window shape is ideal for all situations.
One variable is the width of the transition interval relative to the edit
interval. Another is the shape of the transition interval itself. Although the
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window is continuous at the beginning and end of the transition interval, its
slope is not. A smooth fillet at these points might be more desirable for many
applications.

The concept of interpolation and variable interpolation windows can be
useful for other functions as well. For example, rather than interpolating
unedited and edited curves, one might want to interpolate between two
completely different curves. Figure 11-9 shows how two curves, A and B,
are combined using an interpolation curve. The result starts out the same as
A but then gradually acquires an increasing proportion of B's characteristics.
Eventually, it is all B. Like the interpolation windows, various shapes and
durations for the interpolation curve are possible.

Another possibility is interpolation between a varying curve and a
constant. The effect is a "pulling" of the varying curve toward the constant
and a reduction in the degree of variation. From these examples. it should be
obvious that interpolation is a very powerful technique not only for editing
but for building up control functions from nothing.

Noncontinuous Curves

Not all synthesis control functions are continuous curves; some are
discrete on---off functions. A good example would be rhythm instruments.
Some of these, such as drums, have no "duration" per se, so the only variable
to represent on the screen is discrete points in time. Others may have a
controllable duration, so initiation and conclusion points are needed. Figure
11-10 shows how a complex rhythm might be represented on a graphic



CONTROL SEQUENCE DISPLAY AND EDITING 363

P04

P03

P02
POI

P3 •
P2 • •
PI •

•
• • •
•

VI
C4 E 0 CEO G

V2

V3

G2

GI

A C

E

B

G

Fig. 11-10. Typical display of portion of rhythm sequence

display screen. Each line of symbols represents a different percussion instru
ment. For those with initiation points only, a simple point is plotted when
the sound starts. For those with duration, a line connecting initiation and
conclusion points is drawn. In the general case, percussion sounds are com
bined with notes of a definite pitch, which themselves have a duration and
can be represented by lines as well but with an identifier, perhaps a small
letter or number over the line, to specify the note's pitch, amplitude, or
other information. Parameter curves for complex sounds could be mixed in as
well.

Editing functions for on-off controls are much simpler than for parame
ter curves, since time is the only significant variable. Essentially, all that can
be done is to move initiation and conclusion points forward and back, delete
events, and add events. In the case of identified events, the identification can
be changed. It would also be desirable to be able to reassign a string of events
to a different instrument.

Note that all of this is starting to approach a method of computer music
notation but with a heavy graphic orientation. Actually, standard music
notation is somewhat graphic, at least in the representation of note pitches
and to some extent note sequencing, but beyond that it is strictly symbolic.
A system could certainly be set up to conveniently enter and edit music
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notation using a graphic display, but its usefulness would be limited primar
ily to conventional music and ordinary musical sounds. For the more imag
inative works that a computer music system allows, specialized notation
methods optimized for ease in manipulation, not ease of writing, should be
used. Manipulation is important because, with a graphic editor, it is far
easier to modify a faulty score than to rewrite it.



SECTION III

Digital Synthesis
antl

Sountl~otlificauoD

In the previous section, the application of microcomputers to the control of
external synthesis equipment was examined in detail. In this section, we will
discuss methods of having digital logic or the computer itself merely simulate
such equipment. As was mentioned briefly in Chapter 4, this is by far the
most powerful synthesis technique known because any computer can simulate
any quantity of conventional or special-purpose synthesis equipment. Al
though the full benefit of such flexibility usually requires operation outside
of real time, the concepts are useful in designing real-time digital synthesis
systems as well.
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Digital-to-Analog

and Analog-to-Digital
Conversion ofAudio

One of the most important components of a digital sound synthesis system is
the DAC used to convert digital data into an analog audio signal. Converse
ly, sound modification by digital methods requires an ADC of high quality.
Unfortunately, one cannot simply buy a DAC or ADC module from a conver
ter company, interface it to a computer or other digital device, connect it to
an audio system, and expect good results. Although the modules do indeed
convert between analog and digital domains, additional hardware and signal
processing is necessary before they can handle audio well. Since synthesis is of
greatest interest here, this discussion will be concerned primarily with
digital-to-analog conversion of audio signals.

In Chapter 4, it was learned that at least in theory the audio quality
possible with a DAC is dependent on only two factors. The sample rate, which
is the speed at which numbers are fed to the DAC, determines the upper
frequency response limit of the system, while the resolution, which is related
to the number of possible output voltage steps, determines the signal-to
noise ratio. Unfortunately, however, there are other sources of error that tend
to degrade the signal-to-noise ratio. In Chapter 7 , it was noted that when the
digital input to a DAC is changed the output may not move smoothly to the
the new value. Instead, it can glitch momentarily to a voltage far removed
from either the previous or the new voltage. Such glitching produces distor
tion that may be severe. Even if glitching was absent, the DAC's output
amplifier will contribute to distortion if it ever slews between voltage levels.
Inexpensive, slow amplifiers can generate a large amount of high-frequency
distortion this way.

Figure 12-1 shows what a practical, high-performance audio DAC
system would consist of. First, a rock-steady sample rate is essential, since
any variation increases noise and distortion. For example, even a lO-nsec
random jitter in the sample-to-sample time can create a noise floor just 66 dB
below the signal level at a 50-ks/s sample rate. This in effect negates the
benefit of using DACs with more than 11 bits of resolution. Generally, a
fixed-frequency crystal oscillator driving a programmable (or fixed) modulus

367
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counter is used for the time base. Such a setup can be expected to exhibit a
jitter of less than 1 nsec if the oscillator is shielded from electrical noise.
Also, the higher crystal frequencies such as 10 MHz tend to reduce jitter
even further.

Because of the stability requirement, connecting the DAC directly to
an output port and then using the computer's interrupt system to time the
samples is unsuitable for anything other than initial experimentation. The
same applies to the direct memory access facility of most computers. Instead,
a first-in, first-out buffer is inserted between the computer and the DAC.
With the buffer, sample pulses from the time base cause an immediate (or
with constant delay) transfer of data to the DAC while the computer has
additional time to provide the next sample to the buffer. Often only one
stage of buffering, which makes it a simple register, is sufficient. In other
cases, FIFO IC chips containing 40 or so stages can bridge gaps in the data
flow up to nearly a millisecond at 50 ks/s. In fact, the computer itself will
tyically be acting as a large FIFO if the data is coming from a mass storage
device.

Other elements in the chain are the high-resolution DAC, low-pass
filter, and combination deglitcher/antislew device. Each of these will be
described in detail in the following sections.

Increasing Dynamic Range
The most difficult and hence most expensive requirement of a high

fidelty audio DAC is the high-resolution DAC module. Earlier it was shown
that the maximum signal-to-noise ratio that can be expected from an N bit
DAC is 6N dB. Note the importance of the word maximum. This refers to the
ideal condition in which the signal exactly fills the full-scale range of the
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DAC. A signal level higher than this will increase distortion (which is the
same as noise if the signal is a complex waveform) due to clipping, while a
lower-level signal will reduce the SiN ratio because the noise level is inde
pendent of the signal level. The graph in Fig. 12-2 shows this effect. Also
shown is the SiN ratio characteristic of a typical professional audio tape
recorder rated at 60 dB SiN. Note that these curves represent unweighted,
wideband signal/(noise + distortion) and do not take into account the fact
that the tape recorder's mostly high-frequency noise may be less audible than
the white noise typical of DACs.

The most obvious feature of the graph is the very sudden onset of
overload (clipping) distortion in the DAC curves. The tape recorder, on the
other hand, has a more gradual overload characteristic. At the 40-dB point,
which represents 1% overload distortion (the minimum amount audible to
most people), the tape recorder is handling about 10 dB more signal than a
lO-bit DAC can. This is called "headroom" and is valuable for handling
momentary peaks and overloads without excessive distortion. For the lO-bit
DAC to have the same amount of headroom, the average signal it handles
must be reduced by 10 dB. Thus, a 12-bit DAC would probably be needed
to equal the tape recorder's noise performance with any real signal containing
momentary peaks.

In the following discussion, it is assumed that 16-bit sample words are
available from the synthesis process. This level of precision fits the word size
of 8- and 16-bit computers and is generally regarded as the ultimate in an
audio DAC system. However, the discussion applies equally well to other
sample sizes both more and less than 16 bits.

Brute Force

It is clear from the foregoing that a high-resolution DAC will be
needed in a high-fidelity DAC system. Even with a 12-bit DAC and 10 dB of
headroom, signal levels must be carefully monitored to maintain an overall
high SiN while at the same time avoiding overload. The additional dynamic
range afforded by 14- and 16-bit DACs not only improves the sound (in live
performance anyway) but reduces the effort required to control signal levels.

Whereas a suitable 12-bit DAC module can be purchased for about
$30, additional resolution comes at a high price. Fourteen bits, for example,
command $150 or more while 16 bits go for about $300. These prices are for
units with guaranteed monotonicity a'nd linearity errors of less than one-half
of the least significant bit over a reasonably wide temperature range.

The price also pays for a super precise and stable reference voltage
source so that the full-scale accuracy is comparable to the linearity. In audio
work, full-scale accuracy is of little concern, since its only effect is a shift in
signal amplitude. For example, a 1% shift in reference voltage, which would
be intolerable in normal applications of these DACs, would amount to only a
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Fig. 12-2. Noise performance of several DACs and a professional tape re
corder

0.08-dB shift in level. Fortunately, with the increased interest in digital
audio equipment, lower-cost DAC modules without such overkill in the
reference voltage source are becoming available.

Another potential complication is that the manufacturers of these units
recommend periodic (monthly) "recalibration" in order to continuously meet
their specifications. This should not be surprising, since one-half of the least
significant bit on a 16-bitter is a mere 0.0008% or 8 parts per million. Any
ordinary resistor or zener diode would drift that much from the heat of a
cigarette 3 feet away! Even the precision, low-drift components used in these
DACs can experience a small but permanent shift if exposed to extremes in
temperature.

Fortunately, though, nearly all of the long-term drift is due to the
zener reference source having no audible effect. Amplifier offset shifts may
also contribute but again there is no audible effect. The ladder resistors that
determine the linearity and therefore the noise level are matched and nor·
mally drift together. Thus, a yearly check is probably all that is required if
temperature extremes are avoided.

In the final analysis, if one wants better than 12-bit performance and a
minimum of trouble, and an extra couple of hundred dollars is not really
significant, then a true 14- or 16-bit DAC is probably the best choice. Note
also that this is the only way to attain the noise performance suggested by the
curves in Fig. 12-2 without compromise. The cost-cutting techniques that
will be studied next all sacrifice something in order to avoid using a true
high-resolution DAC.
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Sign-Magnitude Coding

Looking again at the curves in Fig. 12-2, it is seen that the maximum
SiN ratio of 96 dB for a 16-bit DAC occurs right at the point of overload. In
a real listening situation, this would correspond to the peak of the loudest
crescendo in the piece. At the ear-shattering volume this might represent,
one is highly unlikely to notice a noise level scarcely louder than a heartbeat.
On the other hand, duting extremely quiet passages when the noise would be
noticed most, the noise level remains unchanged meaning that the SiN ratio
has degraded.

It would be nice if some of the excess SiN at high signal levels could be
traded off for a cheaper DAC without affecting or even improving the SiN at
lower signal levels. This, in fact, is possible and can be accomplished in at
least three different ways.

Although not specifically mentioned previously, an audio DAC must
be connected so that both positive and negative voltages can be produced.
Normally, this is accomplished by offset binary coding and shifting the
normally unipolar DAC output down by exactly one-half of full scale. In
audio applications, a de blocking capacitor is sufficient for the level shifting.

Low signal levels imply that the net DAC output hovers around zero.
An offset binary DAC, however, sees this as one-half scale. In Chapter 7, it
was determined that the most significant bit of the DAC had the greatest
accuracy requirement; therefore, it is logical to assume that the greatest
linearity error would occur when the MSB switches. Unfortunately, this
occurs at half scale also so this kind of DAC imperfection would directly
subtract from the SiN ratio at low signal levels as well as high. Thus, with
offset binary coding, one must use a highly linear DAC.

The sign-magnitude method of obtaining a bipolar DAC output does
not suffer from this problem. Using the basic circuit configuration that was
shown in Fig. 7-17, small signal levels will only exercise the lesser
significant DAC bits, thus eliminating the noise caused by errors in the most
significant bits. As a side effect, the sign-bit amplifier provides the
equivalent of one additional bit of resolution making a 16-bit DAC act like a
17-bitter!

The significance of all this is that inexpensive DACs with 16 bits of
resolution but only 13 or so bits of linearity are available. When linearity is
less than resolution it means that the most significant bits are off enough to
make the DAC nonlinear at the points where the affected bits change. A
16-bit DAC with 13-bit linearity could have nearly an eight-step gap or
backtrack right at 1/2 scale, lesser errors at 1/4 and 3/4 scale, and an even
smaller error at 1/8, 3/8, 5/8, and 718 scale. If connected in an offset binary
circuit, it would perform no better than a 13-bit DAC. But when connected
in a sign-magnitude circuit, we have just the tradeoff that we have been
looking for as the curve in Fig. 12-3 shows.
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Fig. 12-3. Performance of degraded linearity sign-magnitude DAC

At low levels, the signal has insufficient amplitude to even reach the
nonlinearities at Ys scale. Thus, at these levels the SiN ratio is what would be
expected from a true 16-bit DAC. At higher levels, the little glitches at Ys,
14, etc., tend to raise the noise level to what a 13-bit DAC would provide.
But since the sound is so loud at this point anyway the increased noise will be
totally inaudible. In effect, the shaded area is what is given up when a
$50-$100 pseudo-16-bit DAC is substituted for the $300 true 16-bit unit.

In using the sign-magnitude circuit, it is mandatory that the two
resistors be accurately matched. If they are not, an unpleasant even order
harmonic distortion is generated. The two analog switches required to switch
between normal and inverted DAC output are not much of a problem, since
one of them would be used anyway in the deglitcher to be described.

Some logic is required to convert normal twos-complement integers to
sign-magnitude integers. This consists of a set of N-l exclusive-or gates
inserted in series with the 15 low order bits to the DAC. When the input is
negative, the gates invert the twos-complement negative number back into a
positive magnitude. The DAC output should be offset by +1/2 the step size
to retain a distinction between 0 and - 1, which is translated to - O.

Note that this method could be extended to additional bits, since the
most significant bits no longer must be precisely calibrated. As a practical
matter, though, personal computers are unlikely to have words longer than
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16 bits for quite some time, and the difference would probably be inaudible
anyway.

Segmented DAC

The sign-magnitude DAC just -described is really a special case of the
segmented DAC discussed in Chapter 7 with two segments: one from minus
full scale to just under zero and the other from just over zero to plus full scale.
Use of a real segmented DAC with the usual 8 or 16 segments in fact provides
the same benefits as sign magnitude coding with the advantage of having the
code conversion logic and sign-bit stage built into the DAC module itself
There are in fact 16-bit DACs on the market designed for audio applications
that use the segmented architecture. Note that, although the differential
linearity at zero (and elsewhere) may be essentially perfect, if the spec sheet
reads 13-bit integral linearity (0.006%), then at high signal levels the
distortion due to that nonlinearity will be the same as a 13-bit DAC. In
practice, the distortion generated by a segmented DAC with 13-bit integral
linearity will be mostly low-order harmonics that tend to be less audible than
the sharp spikes caused by localized nonlinearities in an equivalent all-ladder
DAC. Interestingly, a harmonic distortion analyzer's typical rms readout
would lead one to the opposite conclusion.

Floating-Point DACs

A method commonly used in analog audio equipment to improve
apparent SiN ratio is to "ride the gain." Strong signals are made stronger by
increasing the gain, while weak signals are made even weaker by reducing
the gain. Since the noise is most audible at low signal levels, the act of
reducing the gain also reduces the noise and so improves the SiN ratio. The
main problem encountered in this scheme is knowing when and how much to
change the gain setting.

In an audio DAC application, it should be possible to apply the same
concept to a 12-bit DAC to improve its SiN ratio at low signal levels.
Consider the setup in Fig. 12-4. Twelve-bit samples operate the 12-bit DAC
in the normal way. However, three additional bits control a variable-gain
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amplifier, which the DAC drives. Low signal levels are created by pro
gramming the amplifier for a low gain rather than reducing the digital
sample values going to the DAC. Thus, the DAC's noise is also reduced and
the resulting SiN ratio tends to be constant at low signal levels.

Let us assume for a moment that the programmable gain amplifier has
eight possible gain settings, each a factor of two apart. Thus, gains of 1.0,
0.5, 0.25, ... ,0.0078 are possible. The corresponding SiN ratio graph for
the system is shown in Fig. 12-5. The maximum SiN ratio is no more than
that of an ordinary 12-bit DAC, but at low signal levels it is actually better
than a true 16-bit unit! Furthermore, only 15 bits are used for the samples.
Note that these are theoretical figures, since retaining a noise level 115 dB
below the overload point in subsequent circuitry is quite a feat indeed.

Since the gain data are carried along with the signal data in each
sample, there is no problem in handling transients as there is in an analog
audio system. The data format is actually very much like the floating point
number format in computer arithmetic. The 12 bits going to the DAC are
the "fraction" part, while the 3 bits going to the gain control circuit are the
"exponent." The base of 2 is set by the design of the gain control circuit.

A floating-point DAC can also be viewed as having a variable step size.
In the region close to zero, the step size is quite small, which minimizes
quantization noise. As the signal level increases, the step size becomes twice
as large, four times, etc., until at levels near overload the steps are 128 times
larger than at low levels. Of course, every time the step size is doubled the
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quantization noise increases by 6 dB, but the signal has also increased by 6
dB; thus, the SiN ratio is nearly constant.

One problem in using this setup is that the sample data must be
converted from their typical 16-bit signed integer format into the floating
point format, which can be time consuming. A relatively simple hardware
translator, however, can be placed between the computer and the DAC to
accomplish this on the fly. Essentially, the translator must determine which
of several "ranges" each sample lies in. The range determination then con
trols the amplifier and a parallel shifter, which insures that the most signifi
cant 12 bits in the particular sample are sent to the DAC. Operation would
be as follows:

Digital sample values

000D-07FF
080D-OFFF
100Q--.1FFF
2000-3FFF
4000-7FFF

Bits to DAC

0-11
1-12
2-13
3-14
4-15

Gain selection

0.0625
0.125
0.25
0.5
1.0

A similar table can be constructed for negative sample values. Note
that the lowest gain used is 0.0625. If the input samples are normal 16-bit
integers, it is not possible to get the extra dynamic range that floating-point
format allows.

Aside from the parallel shifter, constructing a floating-point DAC is
fairly simple. For the DAC part, one would use a standard 12-bit DAC
module set up for offset binary coding with an inverter in the most signifi
cant bit to make it twos complement. The gain-controlled amplifier must be
accurate, at least to the 0.012% level to retain 12-bit performance. If the
gains are not accurate, there can be a nonlinearity at points where the gain
switches such as in Fig. 12-6. Simple analog switches with precision gain
setting resistors can be used for the amplifier. A multiplying DAC could also
be used if it can accept a bipolar reference. The main DAC output would be
connected to the reference input of the multiplying DAC. The 3-bit "expo
nent" would be sent to a 1-of-8 decoder whose outputs would be connected
to the most significant 8 bits of the MDAC. The MDAC output then
becomes the final system output.

Exponential DACs

Just as exponential control voltages in analog synthesizers allow accu
rate, noise-free representation of parameters having a wide range, exponential
DACs, which are also called companding DACs, can increase audio dynamic
range with a limited number of sample bits. For use with audio signals, which
are inherently linear, one would first take the logarithm of the sample value.
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When fed to an exponential DAC, the output becomes a linear function
again. One could also view an exponential DAC as having a continuously
increasing step size as the output voltage increases. Thus, the step size is a
constant percentage of the output voltage rather than just a constant voltage.

Exponential DACs are ideal for absolutely minimizing the number of
bits in each sample without unduly sacrificing dynamic range. An 8-bit
scheme used extensively in long-distance telephone circuits, for example,
maintains a nearly constant SiN ratio of 35 dB over a 35-dB signal level
range, a feat that would otherwise require a 12-bit DAC.

Actually, a floating-point DAC is the first step toward an exponential
DAC. Their drawback is the 6-dB ripple in SiN ratio that is apparent in Fig.
12-5. A true exponential DAC would have no ripple in the SiN curve at all.

One possibility for an exponential DAC circuit was shown in Fig.
7-10. For use as a DAC rather than an attenuator, one would simply apply a
constant dc input voltage. A nice property of this circuit is that dynamic
range and maximum SiN ratio can be independently adjusted. Each added
bit on the left doubles the dynamic range measured in decibels. Each added bit
on the right increases the SiN ratio by about 6 dB. Note, however, that there
is no escaping resistor accuracy requirements; they still must be as accurate as
a conventional DAC with an equivalent SiN rating. One problem with the
circuit is the large number of amplifiers required, one per bit. Besides the
possible accumulation of offset errors and amplifier noise, such a cascade
tends to have a long settling time.

Another approach to the construction of an exponential DAC is essen
tially an extension of the floating-point approach using a smaller conven
tional DAC and greater-resolution gain-controlled amplifier. Rather than the
base being 2.0, it could be n The gains available would therefore be 1. 0,
0.707,0.5,0.353,0.25, etc. The SiN ripple then would be about 3 dB.
Smaller bases such as 4v'2or 8Y2 would cut the ripple to 1.5 dB and 0.75
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dB, respecrively. What this actually amounts to is a piecewise linear approx
imation of a true exponential curve.

Segmented DACs using unequal segment slopes can also be used to

make a piecewise linear-approximate exponential curve. The DAC-86 is a 7
bit plus sign unit that does this using a 4-bit fraction, a 3-bit exponent, and
a base of 2. Its application is in digital telephone systems and occasionally
speech synthesizers. To the author's knowledge, nobody has yet manufactured
a high-fidelity (12 to 16 bits) exponential DAC module.

Which Is Best?

The logical question, then, is: Which technique is best for high
fidelity audio? Using a true 16-bit DAC is unmatched for convenience and
does the best job possible on 16-bit sample data. It is expensive, however,
and may require maintenance. Actually, the other techniques were developed
years ago when a true 16-bit DAC was considered an "impossible dream."

Next in convenience is the use of any of the several "designed-for-audio"
16-bit converters currently on the market. While noise and distortion at high
signal levels fall somewhat short of ideal 16-bit performance, it is doubtful if
anyone could ever hear the difference. Architectures range from brute-force
ladders with the differential linearity errors ignored to segmented units to
sign-magnitude units. Burr-Brown, for example, offers both a ladder
(PCM-51) and a segmented (PCM-52) IG-bit audio DAC in a 24-pin IC
package for about $40. Analog Devices has a nice 40-pin CMOS segmented
DAC (AD7546) in the same price range that will be used later in an example
audio DAC circuit. Analogic sells a somewhat more expensive sign
magnitude hybrid module that probably comes closer to true 16-bit
performance than any other "shortcut" unit currently available.

Floating-point and exponential DACs have the lowest potential cost for
a wide-dynamic-range audio DAC. They are also suitable for expansion
beyond the dynamic range of a true 16-bit unit if other audio components
can be improved enough to make it worthwhile. However, the gain
controlled amplifier settling time and overall coding complexity make it a
difficult technique to implement with discrete logic.

Reducing Distortion

As was mentioned earlier, glitching of rhe DAC can contribute to
distortion that is unrelated to the resolution of the DAC itself. Actually,
there would be no problem if the glitch magnitude and polarity were inde
pendent of the DAC output. Unfortunately, however, the glitch magnitude
depends heavily on both the individual DAC steps involved and their combi
nation. Typically, the largest glitch is experienced when the most significant
bit of the DAC changes during the rransition. Proportionally smaller glitches
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are associated with the lesser significant bits because, after all, their influence
on the output is less.

If the DAC is offset binary encoded, the largest glitch, therefore, occurs
right at zero crossing. Unfortunately, even low-amplitude signals are going
to cross zero so the distortion due to glitching can become absolutely intoler
able at low signal levels. The distortion also becomes worse at higher fre
quencies, since more glitch energy per unit time (power) is being released.
Sign-magnitude coding can have the same problem because of switching
transients from the sign-bit amplifier. Floating-point DACs, however, at
tenuate the zero-crossing glitch along with the signal at low levels.

Glitch magnitude and duration are not often specified on a DAC data
sheet. When they are, the units are very likely to be volt-seconds because of
the unpredictable nature of DAC glitches. Unfortunately, this alone is insuf
ficient information to even estimate the distortion that might be produced in
an audio application. What is needed is the rms voltage of the glitch and its
duration so that the energy content can be determined.

Low-Glitch DAC Circuits

The two primary causes of glitching in DAC circuits are differences in
the switching time of the various bits (skew) and differences between the bit
turn-on and turn-off times. In some DAC circuits, the most significant bit
switches carry considerably more current than the least significant bits, thus
contributing to differences in switching times. Some R-2R designs, how
ever, pass the same current through all of the bit switches, thus eliminating
this cause of skew. Even the digital input register can contribute to skew,
since it will undoubtedly span two or more ICs that may have different
propagation times. The use of high-speed Schottky registers, which are
verified to have equal delay times, will minimize this source of skew. Any
sign-magnitude or floating-point translation logic should be in front of the
input register as well.

Nonsymmetrical turn-on/turn-off time is an accepted fact of life among
TTI logic designers. The reason is storage time in the saturated bipolar
transistor switches, which also applies to many DAC analog switch designs.
The digital input registers often accentuate the problem for the same reason.
There are, however, low-glitch DACs on the market that use emitter
coupled logic internally for the register and nonsaturating current steering
analog switches.

Typically, these are only available in I2-bit versions, since they are
designed primarily for CRT deflection circuits. One type that is available has
a maximum glitch amplitude of 40 mY, a duration of 60 nsec, and a
full-scale output of ±5 V. With a I-kHz full amplitude output, the glitch
distortion would be about-78 dB with respect to the signal, about 6 dB
below its I2-bit quantization noise. At 10 kHz, however, the glitch distor
tion rises by 10 dB, making it the dominant noise source.
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Sample-and-Hold Deglitcher

The usual solution to DAC glitching at the sample rates used in audio
applications is the incorporation of a sample-and-hold module at the output
of the DAC. In operation, it would be switched to the hold state just prior to

loading the next sample into the DAC and would not be switched back into
the track mode until the DAC has settled at the new level. In this way,
glitches from the DAC are not allowed to reach the output.

As a practical matter, however, even SAH modules glitch when
switched from one state to another. This is alright, however, if the mag
nitude and polarity of the glitches are constant and independent of the signal
level. In that case, the glitches contain energy only at the sample rate and its
harmonics, which will eventually be filtered out. Most commercial SAH
modules are fairly good in this respect. A linear variation of glitch magnitude
with the signal level can also be acceptable, since the only effect then would
be a slight shift in the dc level of the output.

Another SAH parameter that must be constant for low distortion is the
switching time from hold to sample mode. If this varies nonlinearly with
signal voltage level, then harmonic distortion is produced. Unfortunately,
the switching time of most analog switches is signal voltage dependent. The
reason is that they cannot turn on (or off) until the switch driver voltage
crosses the switch threshold voltage which, as was discussed in Chapter 7, is
relative to the signal voltage. Since the driver voltage does not have a zero
rise time, the time to cross the threshold voltage will vary with the signal
level. A linear variation would be alright, but a perfectly linear drive voltage
ramp is unlikely. However, if the drive voltage is of sufficiently large
amplitude and centered with respect to the signal, reasonably linear variation
can be obtained.

Slew-Limiting Distortion

There still exists a subtle yet quite significant distortion mechanism in
the typical SAH module that is unrelated to glitching or switching time
variation. The mechanism is slew limiting of the amplifiers in the SAH
module when switching from hold mode to sample mode. Figure 12-7 shows
a typical SAH module. When the sampling switch is closed, the circuit acts
as a simple voltage follower. When open, A2 buffers the capacitor voltage

~ :t>l"~,,.AI 'T +FROM +
DAC

~C

Fig. 12-7. Typical feedback SAH circuit
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and produces the output voltage. The effective offset volta2:e is dependent
only on the characteristics of A 1. This is normally important, since A2 is
optimized for low-bias current and typically has a high offset voltage (A2
could even be a simple FET source follower, which, in fact, is often done).

The problem occurs when the input voltage changes while the circuit is
in hold mode. When this occurs, Al goes into saturation, since its feedback
is from the previous input voltage. When S recloses, the capacitor is charged
at a nearly constant rate from the saturated output of A 1 through the switch
resistance until its voltage essentially matches the new input voltage. At this
point, Al comes out of saturation and the output settles.

Figure 12--8 shows how linear charging of the hold capacitor contrib
utes to distortion. For a one-unit change from one sample to the next, the
shaded error is one-half square unit. But for a two-unit change, the error is
two square units. Thus, the error is proportional to the square of the dif
ference between successive samples. It's not difficult to see how this can
generate a great deal of distortion, especially since slew times can easily reach
20% of the sample interval with this type of circuit.

If the step response is a normal inverse exponential instead of a linear
ramp, the error is directly proportional to the step size. This situation does
not cause any distortion, although it can affect the apparent overall signal
amplitude from the DAC when the steps are large (high signal frequency).

Figure 12-9 shows a simple SAH that can be designed not to slew
under any circumstances. If the values of Rand C are properly chosen, then
the voltage change across C will never exceed (or even approach) the slew rate
of the amplifier. For example, if the DAC produces ± 10 V and the R-C
time constant is 1.0 JLsec, then the maximum rate of change of capacitor
voltage (for a step of-lO V to + 10 V or vice versa) would be 20 viJLsec.
A standard high-speed op-amp such as an LM318, which is rated at 50
V/JLsec, would do nicely. One must be careful to limit the peak current
through the analog switch to a value less than its saturation current or a
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secondary slewing effect may be introduced. The offset cancellation and low
drift of the previous SAH circuit are simply not needed in audio applications
where dc cannot be heard and maximum hold times are around 10 JLSec.

Track-and-Ground Circuit

Another type of deglitcher that is suitable for audio DACs is called a
track-and-ground circuit. Essentially, it uses one or possibly two analog
switches to disconnect from the DAC and ground the filter input during the
period that the DAC is glitching. In doing so, problems with SAH slewing,
hold capacitor nonlinearity, and even part of the switching transient are
neatly bypassed.
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Fig. 12-10. Track-and-ground circuit
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Fig. 12-11. Effect of finite DAC pulse width on high-frequency amplitude

Figure 12-10 shows a simplified schematic of a two-switch track-and
ground circuit integrated with a sign-bit switch for a sign-magnitude DAC.
The A and B switches select between straight DAC output and inverted DAC
output according to the desired polarity. However, both are open while the
DAC is settling at a new voltage level. Switch C grounds the filter input
during the turn-off transient of A or B, the DAC settling time, and the
turnon of A or B. Although the grounding is not perfect due to on resistance
of C, it substantially attenuates feedthrough of DAC glitches and transients
from A and B. The only transient seen by the filter is from switch C itself and
most of that is shunted to ground. Finally, since there are no amplifiers in
the switching signal path, there is nothing to slew.

There does appear to be a drawback with the circuit, however. Rather
than getting a stairstep approximation of the audio waveform, the filter gets
pulses of constant width and variable height. Actually, the mathematics of
sampled waveform reconstruction are derived on the assumption that the
samples entering the filter are of zero width and varying but infinite height.
Fortunately, the only effect of finite width pulses is a slight reduction in the
amplitude of high-frequericy reconstructed waves, or simply a loss of treble.
A pure stairstep approximation such as from an ideal DAC or SAH deglitcher
is actually a train of pulses with width equal to the sample period.

The graph in Fig. 12-11 shows that even this is a relatively minor
effect. The stairstep approximation is down nearly 4 dB at the Nyquist
frequency but only about 1. 32 dB down at 60% of the Nyquist frequency,
which represents a 15-kHz signal at a 50-ks/s sample rate. With pulses half
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as long as the sample period, a reasonable value for the previous track-and
ground circuit, the corresponding figures are 0.912 dB and 0.323 dB. In any
case, the high-frequency droop can be compensated for in the low-pass filter.

Low-Pass Filter

The final component of the audio DAC system is the low-pass filter,
which removes the sampling frequency and unwanted copies of the signal
spectrum. Not all audio DAC/ADC applications require the same degree of
filter sophistication, however. A DAC application at a 50-ks/s sample rate,
for example, really needs a filter only to avoid burning out tweeters and
interfering with the bias frequency of tape recorders. The ear itself is quite
capable of filtering everything above 25 kHz. DAC applications at substan
tially lower sample rates need a reasonably good filter because the alias
frequencies are audible. A sample rate of 15 ks/s, which would give good AM
radio quality, would produce quite a harsh sound if frequencies above 7.5
kHz were not attenuated at least 30 dB to 40 dB. Audio-to-digital
conversion at low to medium (10 ks/s to 30 ks/s) sample rates requires the
best filters because high-frequency program content, which usually cannot be
controlled, may transform into quite audible lower frequencies upon
digitizing.

Low-Pass Filter Model

Figure 12-12 shows a model low-pass filter shape that all real low-pass
filters resemble to some extent. The passband is the set of frequencies that
the filter passes with little or no attenuation and extends from dc to the cutoff
frequency. The stopband extends from the cutoff frequency to infinity and is
the set of frequencies that the filter attenuates substantially. The cutoff slope
is a measure of how sharply the filter distinguishes between passband and
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Fig. 12-12. Model low-pass filter shape
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stopband regions. An ideal low-pass filter would exhibit a perfectly flat
passband, an infinite cutoff slope, and complete signal attenuation in the
stopband.

Cutoff frequency is not always a consistently defined term. For simple
filters, it is usually given as the frequency at which the signal is attenuated
by 3 dB or to about 70% of its low-frequency amplitude. For more sophisti
cated filters, it is the lowest frequency at which cutoff becomes evident. In
either case, the cutoff frequency merely marks the beginning of noticeable
attenuation and certainly should not be set equal to one-half the sample rate
in audio DAC applications.

In many cases, the cutoff slope of the filter is reasonably linear when
frequency is plotted on a log scale and the filter attenuation is plotted in
decibels (as is done in Fig. 12-12). On such a scale, frequency decades, which
are tenfold increases, and octaves, which are frequency doublings, are of
consistent length anywhere on the scale. Since the cutoff slope is approxi
mately linear, it is convenient to specify it in terms of "decibels per decade"
or "decibels per octave" with the latter being the more common term. In
cases in which the cutoff slope is not constant, it is almost always steeper
close to the cutoff frequency than further out. In these cases, either the
maximum and ultimate slopes are both given or a composite figure, which is
the average slope over the first octave beyond cutoff, is given.

Sometimes the pole count is used to characterize the steepness of the
cutoff slope. In simple filters, the ultimate cutoff slope is always equal to the
number of effective reactive elements in the filter circuit times 6 dB/octave. A
reactive element is either a capacitor or inductor directly in the signal path
that is not performing a coupling, bypass, or suppression function. More
complex filters may have an initial cutoff steepness greater than this but will
always end up with 6N slopes well beyond cutoff.

Actual Filter Requirements

In designing or experimenting with digital synthesis, one must make
an intelligent tradeoff among three key variables: desired audio bandwidth,
sample rate, and required filter performance. In general, the sharper the filter
cutoff, the lower the sampling frequency can be with respect to the highest
signal frequency.

As an example, consider a requirement for an audio frequency response
flat to 5 kHz and an alias distortion level of at least 50 dB below the signal
level. For an infinite cutoff slope filter, the sample rate could be as low as 10
ks/s. Since that is out of the question, let us try a sample rate of 12 ks/s and
see how sharp the cutoff slope must be. The easiest way to determine this is
to consider the worst case, which is the synthesis of a single tone right at the
top of the frequency range, which in this case is 5 kHz. The lowest alias
frequency with the 12-ks/s sample rate is 12 - 5 or 7 kHz and the filter
must attenuate this by at least 50 dB. Assuming the cutoff frequency is 5
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Fig. 12-13. Methods of filter section combination. (A) Parallel method. (B)
Cascade method.

kHz, the interval from 5 kHz to 7 kHz is just short of one-half an octave
using the formula: Octaves = 1.443LN(Fh/Ff), where Fh and PI are the
uppet and lower frequencies, respectively. Thus, the cutoff slope would have
to be 95 dB to 100 dB/octave, a very high figure indeed. If the sample rate
were raised 25% to 15 ks/s, the filter could go all the way to 10 kHz before it
must attenuate 50 dB. This gives a cutoff slope of only 50 dB/octave, a
much, much easier filter to implement. In most cases, these requirements
could be relaxed somewhat. It is unlikely that one would want to shatter
glass with a maximum-amplitude, maximum-frequency tone and then worry
about small fractions of a percent of alias distortion.

Both of the preceding examples assumed that the digital synthesis
system never tried to generate frequencies higher than 5 kHz. As will be seen
later, it may be difficult to meet that constraint and still make good use of
frequencies close to 5 kHz. If a 6-kHz tone was actually synthesized in the
15-ks/s system, the simple filter would pass its alias at 8 kHz with an
attenuation of only 33 dB. On the other hand, if one used the filter designed
for a 12-ks/s system with a 15-ks/s sample rate, it would be permissible to
synthesize frequencies as high as 8 kHz without exceeding the - 50-dB alias
rejection requirement. Note that 8 kHz is actually above one-half the sample
rate. Its alias frequency is therefore lower than the signal frequency, but since
that is 7 kHz, the filter attenuates it adequately. The conclusion, then, is
that a good filter can either reduce the required sample rate, simplify the
synthesis computations, or some of both.

Sharp Low-Pass Filter Design

Sharp low-pass filter design is itself an interesting topic that has filled
many books, usually with quite a bit of mathematics. Here we will just
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dis-cuss the general characteristics of various filter types so that the reader can
make an intelligent decision in choosing one.

The simplest type of low-pass filter is the single-pole R-C. U nfortu
nately, its gentle cutoff slope of 6 dB/octave is totally inadequate for an audio
DAC. Also its passband flatness is not very good.

In order to get sharper slopes and flatter passbands, several filter sections
may be combined together. There are two methods of combination called
parallel and cascade, which are shown in Fig. 12-13. In the parallel setup, the
same raw input signal is filtered by each of the sections and then their
outputs are combined together, not necessarily equally, in the mixer. In the
cascade arrangement, the signal passes through filter sections one after
another. Thus, any filtering action of the second stage is in addition to that
of the first stage and so forth.

With the cascade arrangement, it is easy to determine the total
amplitude response if the amplitude response of each section is known. The
filter gain at any given frequency is simply the product of the section gains at
that frequency. If gains are expressed in decibels (usually negative, since a
filter is designed to attenuate certain frequencies), then the overall decibel gain
is simply the sum of the section decibel gains.

The overall response of the parallel arrangement is considerably more
difficult to determine, since the phase response of the sections must also be
known. If the section outputs are out of phase, which is the usual case, then
their sum in the mixer will be less than the sum of their gains. Nevertheless,
there are certain advantages of the parallel arrangement. Also, for the types of
filters that will be discussed, any response curve that can be obtained with
one arrangement can be precisely duplicated using the same number of
sections of the same complexity wired in the other arrangement, although
the individual section responses will be different. Thus, for convenience, the
examples will use the cascade arrangement.

ltertttive R-C Low-Pass Filter

Returning to the simple R-C filter, Fig. 12-14 shows what can be done
by cascading these simple sections using a unity-gain buffer amplifier be
tween each section for isolation. The curves are all normalized so that the
-3-dB frequency is the same for each curve. For any individual curve, all of

the sections are identical. However, each curve requires sections with a
different cutoff frequency. As can be seen, adding more sections improves
cutoff slope, although passband flatness is affected only slightly. However,
even 32 sections does not give a very sharp cutoff for the first 50 dB, which is
the most important region for sample filtering. Using the 32-section filter,
the sample rate must be 5.45 times the - 3-dB frequency to be assured of
- 50-dB alias distortion. This type of filter is termed "iterative R-C" and is
used primarily where overshoot and ringing cannot be tolerated in the step
response.
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R·L-C Filters
Another basic type of low-pass filter section is the two-pole R-L-C

resonant type. This filter has an ultimate slope of 12 dB/octave/section.
What makes it interesting is that a response shaping parameter, Q, is avail
able. Figure 12-15 shows the response of this type of filter section with
different .values of Q. When Q = 1/2, the response degrades to that of a two
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Fig. 12-16. Cascaded two-pole R-L-C filter performance. Q = 0.707.

section R-C. Highet Qs tend to "pump up" the gain just below cutoff and
increase the slope just after cutoff. Unfortunately, Qs much above 1 create an
undesirable peak in the response.

Now, how about cascading these improved sections? Figure 12-16
shows the result when various numbers of Q = 0.707 section are cascaded.
Note that just 8 sections, which is only 16 reactive elements, gives a better
response than 32 R-C sections. Since there was no response peak in any of the
sections, the overall response is also peak-free. With the 8-section filter, a
sample rate 3.44 times the cutoff frequency would be suitable for an audio
DAC.

BuuenvQrth Response
Even this level of performance leaves a lot to be desired. Fortunately, it

is possible to merely adjust the Q factors of the sections and obtain better
performance yet. Using a two-section filter as an example, the trick is to
increase the Q of the second section so that the resulting peak in the section
response tends to fill in the rounded area just beyond cutoff of the first
section response. The result in Fig. 12-17 shows that this scheme is indeed
successful in improving the passband flatness just short of cutoff as well as
reaching the ultimate slope of 24 dB/octave soon after cutoff. Shown in Fig.
12-18 is the response of three-, four-, six-, and eight-section cascades. With
this level of performance, an eight-section filter allows a sample rate just
2.43 times the cutoff frequency.

One little detail that was not mentioned is how to calculate what the
section Qs should be to get the optimum benefit of this technique. First,
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however, one must define rigorously what is meant by optimum. For the
curves in Fig. 12-17, optimum was taken to mean the/lattest response possible
before cutoff and the steepest slope as soon after cutoff as possible. The job is to
take the set of realizable response curves for the R-L-C section and approxi-
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mate the shape of an ideal low-pass filter with the sum of a specified number
of them. The problem is not unlike finding the Fourier series for a square
wave in which the best combination of curvy sine waves to approximate the
square shape is determined.

The solution to the problem lies in evaluating what mathematicians
call Butterworth polynomials, named after the person who discovered them.
A filter based on these polynomials is called a Butterworth filter and gives
the sharpest cutoff possible when no peaks in the passband can be tolerated.
As such, it is often called a maximally flat filter. A Butterworth filter is
completely specified by giving the number ofpoles which is twice the section
count. Although an odd number of poles is possible (one of the sections is a
simple R-C instead of R-L-C), it is rare. Four-pole Butterworth filters are
common, eight-pole units are considered fairly sophisticated, and 12- to 16
polers are really super!

Chebyshev Response

In some applications, such as audio DACs, sharp cutoff may be more
important than absolutely flat passband response. Mter all, even the best
speaker systems have frequency response unevenness that can reach several
decibels, particularly in the upper treble range. With the technique of using
resonant peaks to fill in holes for better response, it is possible to get an even
sharper initial cutoff slope in exchange for a somewhat uneven passband.
Initial slope was emphasized because these, like all other poles-only filters,
have an ultimate slope of 6N decibels/octave, where N is the numbet of
poles.

The basic idea is to adjust the resonant frequencies and slightly over
peak the individual sections so that the drop just before cutoff is somewhat
overfilled. When this is done to a multisection filter, the Q of the highest Q
section can become quite large. Looking back to Fig. 12-15, it is seen that
the downslope of the Q = 8 response reaches a maximum value of nearly 54
dB/octave just beyond the peak, although further out it settles back to a
normal 12 dB/octave. Likewise, the Qs of the overpeaked sections contribute
to an initial cutoff slope substantially greater than 6N dB/octave. Even
further out when the slope settles back to 6N, the ground gained is retained,
resulting in greater attenuation at any stopband frequency.

The section cutoff frequencies and Q factors for an overcompensated
filter can be determined using Chebyshev polynomials. Whereas the Butter
worth filter has only one shape parameter, the Chebyshev filter has two: the
number of poles and the passband ripple. The ripple figure specifies how
uneven the passband is allowed to be in terms of decibels. Thus, a O.5-dB
Chebyshev filter has a maximum peak just 0.5 dB above the minimum valley
in the passband. As it turns out, the optimum arrangement of peaks and
valleys results in all of them being equal in amplitude; thus, the filter is said
to have equiripple in the passband.
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Fig. 12-19. Five-section Chebyshev filter response

Figure 12-19 shows two five-section Chebyshev filters with differing
amounts of ripple allowed plus a Butterworth, which can be considered to be
a Chebyshev with zero ripple, for comparison. Note that by merely allowing
0.25 dB of ripple, a reasonable amount for high-fidelity audio, that a 50-dB
attenuation is achieved at 1. 30 times the cutoff frequency rather than 1. 62.
This in turn would allow a sample rate as low as 2.3 times the cutoff
frequency.

Elliptical Response

Believe it or not, there is still something that can be done to improve
cutoff slope. The idea is to follow the basic low-pass filter with a band-reject
(notch) filter tuned just a little beyond the cutoff frequency in an attempt to
make the cutoff sharper. Essentially, the notch depresses the response just
after cutoff in much the same way that peaks improve the flatness just before
cutoff.

Unfortunately, to be effective the notch must be narrow. Thus, on the
other side of the notch, the response curve starts back up toward what it
would have been without the notch filter. At this point, another notch can be
inserted to press the curve back down again. This is continued until the
original filter curve has dropped low enough to be satisfactory without
further help. Figure 12-20 shows the response curve of a 7th order (it is no
longer meaningful to give section or pole counts) elliptical filter. With such a
filter, the sample rate could be a mere 2.19 times the cutoff frequency, the
best yet.
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amplitude response

Such filters are called elliptical (also Cauer) filters after the mathe
matical functions that describe them. Three parameters are necessary to
specify an elliptical filter: the order, which is related to the number of reactive
components, the allowable passband ripple, and the minimum allowable
stopband attenuation, also called stopband ripple. The latter figure is needed
in order to determine how closely the notches must be spaced. With such a
large number of variables, design tables for elliptical filters are almost
impossible to find and their design procedure is quite complex. Later in this
chapter, however, an abbreviated design table will be given along with
sample circuits.

Although an elliptical filter provides the sharpest cutoff with the fewest
number of reactive elements, these elements all interact with each other (there
are no discrete "sections" with isolating amplifiers between them) making
precise (1% or better) element values mandatory. In contrast, the sections of
Butterworth and Chebyshev filters are independent because of isolating
amplifiers and, when necessary, can be tuned independently. Therefore, it is
probably better for the individual experimenter/designer to stick with the
latter types, at least, initially.

Phase Shift

So far in this discussion the phase response of the low-pass filters has
been ignored. Regretfully, it is a fact of life that the sharper a filter cuts off,
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Fig. 12-21. Step response of five-section Q.25·dB Chebyshev filter (1 kHz
cutoff)

the worse its phase shift will be right before cutoff (the phase after cutoff is
not important, since the signal is greatly attenuated). Poor phase response in
a filter also means poor transient response, which is evident in Fig. 12-21,
which shows the response of the five-section 0.25-dB Chebyshev to the
leading edge of a square wave.

The ringing waveform is due to the four peaked low-pass sections that
make up the filter. Since they are sharper, elliptical filters are even worse,
while Butterworth types, although much better, are still far from perfect. It
is important to realize, however, that, while this might be characterized as
poor transient response for a filter, it is quite good compared to normal audio
standards, particularly for speakers. The majority of the ringing is right at
the top edge of the passband, and, while it appears to imply a large peak in
the response, we have seen that it only amounts to 0.25 dB. Also note that
such an isolated step function should never come from the DAC, since it
implies the synthesis of frequencies far beyond one-half the sample rate.

Thus, this filter characteristic should not be confused with what hi-fi
critics term poor transient response, which is usually a mid- and low
frequency phenomenon. In any case, a decision must be made between a
sophisticated filter and low sample rate or a simpler filter with better tran
sient response and a higher sample rate.

Finite Sample Width Compensation

Earlier it was mentioned that if the DAC output was actual steps or
pulses of finite width a slight high-frequency rolloff was inevitable. Figure
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12-11 showed that the rolloff is about 4 dB for 100% width and less than 1
dB for 50% width at one-half the sample frequency. With reasonably good
filters, this would amount to no more than 2 dB of loss at the top of the
frequency range. For the utmost in fidelity, it may be desirable to
compensate for the rolloff, particularly if the pulse width is equal to the
sample period (stairstep DAC output). Correction for this effect can best be
accomplished in the low-pass filter. Although it is mathematically possible to
design a filter with other than flat passbands, it is a very involved process.

If a Butterworth filter is being used, a slight rise in response just before
cutoff can be effected by raising the Qs of the lowest Q stages. This action
does not have much effect on the cutoff characteristics and in fact can be
expected to raise the 50-dB cutoff point no more than a couple of decibels.
Correcting a Chebyshev or elliptical filter is best accomplished by adding
another re$onant low-pass section with a resonant frequency somewhat be
yond the main filter cutoff frequency. Q factors in the range of 1 to 2 for the
added section will provide a gentle but accelerating rise in the otherwise flat
passband, which then abruptly cuts off as before. Any resonant peak in the
extra section will occur so far into the main filter stopband that its effect will
be completely insignificant.

Figure 12-22A shows the typical performance of such a compensation
stage. The frequency scale has been normalized so that 1. 0 represents the
cutoff frequency of the main low-pass filter; thus, compensation accuracy
above 1. 0 is of no concern. Curve A shows the amplitude response of a DAC
with stair-step output (100% pulse width) at a sample rate 2.5 times the
main filter cutoff frequency and followed by a deglitcher with a time constant
that is 10% of the sample period. Since a finite deglitcher time constant also
represents a slight high frequency loss, it is appropriate to compensate for it
at the same time. Curve B is the amplitude response of the compensation
stage, and curve C is the composite, compensated response.

The short BASIC program in Fig. 12-22B can be used to iteratively
design compensation filters. The variables FO and QO are the frequency and Q
parameters of the compensation filter normalized to the main filter cutoff
frequency. FI is the sample rate, also normalized. TO is the DAC output
pulse width, and TI is the time constant of the deglitcher, both as fractions
of the sample period. For track-and-ground deglitchers, set T1 to zero. To
use the program, set the FI, TO, and TI variables to match the DAC
operating conditions and "guess" at values for FO and QO. Then run the
program and note the shape of the compensated curve either by manually
plotting it or adding plotting statements to the program. The goal is
accurate compensation up to 1.0 with a gradual rolloff for higher frequencies
as in Fig. 12-22A. Good starting values are those used to produce the curves
in A; PI = 2.5, TO = 1.0, T1 = 0.1, FO = 1.58, and QO = 1.45.

Fig. 12-22. (A) Two-pole sin(X)/X compensator performance. (B) BASIC
program to evaluate compensation filters.
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-2
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-10

-12

-14

-16

-18

-2D
0.1 0.15 0.2

DAC RESPDNSE /

(AI

(AI

/COMPENSATOR RESPONSE

COMPENSATED
RESPONSE

3.0 4.0 5.0 6.0 8.0 10.0
NORMALIZED FREQUENCY

10 REM PROGRAM TO AID IN THE DESIGN OF 2-POLE COMPENSATION FILTERS FOR DACS
11 REM USING FINITE OUTPUT PULSE WIDTHS AND TIME CONSTANT LIMITED DEGLITCHERS.
20 REM IN STATEMENTS 101-105, SET THE VARIABLES AS FOLLOWS:
21 REM F1 = SAMPLE RATE AS A MULTIPLE OF THE MAIN FILTER'S CUTOFF FREOUENCY
22 REM TO = DAC OUTPUT PULSE WIDTH AS A FRACTION OF THE SAMPLE PERIOD
23 REM T1 = DEGLITCHER TIME CONSTANT AS A FRACTION OF THE SAMPLE PERIOD
24 REM FO = RESONANT FREQUENCY OF PROPOSED COMPENSATION FILTER
25 REM QO = RESONANT Q OF PROPOSED COMPENSATION FILTER
26 REM N = NUMBER OF FREQUENCY POINTS TO EVALUATE AND PRINT
30 REM WHEN RUN, THE PROGRAM PRINTS THE NORMALIZED FREOUENCY BETWEEN 0.1 AND
31 REM 10 TIMES THE MAIN FILTER CUTOFF FREOUENCY ON A LOG SCALE AND THEN FOR
32 REM EACH FREQUENCY, THE RAW DAC OUTPUT AMPLITUDE INCLUDING SIN(X)/X AND
33 REM DEGLITCHER TIME CONSTANT LOSSES, THE COMPENSATION FILTER GAIN, AND THE
34 REM PRODUCT OF THE TWO WHICH IS THE COMPENSATED DAC OUTPUT.
101 F1=2. 50
102 TO=1.0
103 T1=0.1
104 FO=1.58
105 QO=1.45
106 N=100
200 F2=F1/(6.283*T1): REM NORMALIZED 3DB DOWN POINT OF DEGLITCHER
201 F3=FI/TO: REM NORMALIZED FREQUENCY OF FIRST SIN(X)/X NULL
210 F=O.I: REM INITIAL STARTING FREOUENCY
220 PRINT "FREQUENCY";TAB(l5);"DAC OUTPUT";TAB(30);"COMP. GAIN";TAR(45);
221 PRINT "COMPOSITE"
230 F=O.I: REM INITIAL FREQUENCY
300 A=ABS(SIN(3.14159*F/F3)/(3.14159*F/F3)): REM SIN(X)/X LOSS
301 A=A*((F2/F)/SOR(I+(F2/F)t2)): REM DEGLITCHER ADDITIONAL LOSS
310 G=SQR(I/((F/FO)t4+(F/FO)t2*(1/QOt2-2)+I)): REM COMP FILTER GAIN
320 R=A*G: REM COMPOSITE CORRECTED OUTPUT
400 PRINT F;TAR(15);A;TAB(30);G;TAB(45);R
500 F=F*10 (2/N)
510 IF F<10.0 THEN GOTO 300
999 STOP

( B)
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Building a Chebyshev Filter

The first decision to be made in building a filter for an aduio DAC is
whether it is to be passive, that is, use real inductors, or active, using only
resistors, capacitors, and amplifiers. Nowadays, an active implementation is
chosen almost automatically for any audio-frequency filter. The list of appar
ent advantages is long, but most of them are the result of eliminating induc
tors.

Two possible pitfalls must be avoided when designing a sharp active
low-pass filter for use with a DAC, particularly 16-bit units. One is noise in
the amplifiers, especially since several will be in the signal path. The other is
distortion and possible overload. Remember that a 16-bit DAC is capable of
distortions on the order of 0.00 15%, so just about any amount of amplifier
distortion is going to be excessive. Active filter configurations that require
high-gain wide bandwidth amplifiers should therefore be avoided.

Of the three best-known configurations for a resonant low-pass section
(SaIlen and Key, multiple feedback, and state variable), the Sallen and Key
circuit shown in Fig. 12-23 has many important advantages. First, it is hard
to imagine a circuit using fewer components. Also, the filter characteristics
are relatively insensitive to component variations. Most important, however,
is the amplifier requirement, a simple unity-gain buffer with ideally infinite
input impedance and zero output impedance. Such an amplifier is very easily
constructed with an ordinary op-amp, special voltage-follower op-amp, or
discrete components. Since the gain is unity, the output noise amplitude is
nearly the same as the input referred noise level, which is what appears on the
amplifier spec sheet. Also, the frequency-independent 100% feedback
minimizes the amplifier distortion. About the only negative aspect of the
circuit is that high Q factors require a large spread in capacitor values.

OUTPUT

1
F "" 271" VR2C1C2

0~05~

If R,F, and Q are Known, then

C, =_0-
rrFR

Cz = 4g~

If C2, F. and Q are known. then

C, = 402 C2

1
R = 2rrF vc:fC2

Fig. 12-23. Sallen and Key resonant low-pass section
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RI
OUTPUT
(DRIVE FROM
A ZERO o---""~o-JVv'v1o---j
IMPEDANCE
SOURCE)

Sample 3-dB R1 C1 C2 R2 C3 C4 R3 C5 C6

Rate" Cutoff (kill (pF) (pF) (kill (pF) (pF) (kil) (pF) (pF)

(kHz) (kHz)

8 2.67 15.2 17,380 7,500 14.9 24,200 1,250 15.4 64,190 250

10 3.33 15.2 13,900 6,000 14.9 19,360 1,000 15.4 51,353 200

12 4.0 15.2 11,590 5,000 14.9 16,133 833 12.8 51,353 200

15 5.0 12.2 11,590 5,000 14.9 12,910 667 10.3 51,353 200

20 6.67 9.14 "1,590 5,000 14.9 9,680 500 7.70 51,353 200

25 8.33 7.31 11,590 5,000 11.9 9,680 500 6.16 51,353 200

30 10.0 6.09 11,590 5,000 9.93 9,680 500 5.13 51,353 200

40 13.3 4.57 11,590 5,000 7.45 9,680 500 3.85 51,353 200

*Filter ftlspOnSe is down 40 dB at 1/2 sampling frequency

(Aj

OUTPUT

INPUT

RI

Sample 3-dB Al Cl C2 A2 C3 C' A3 C5 C6 A' C7 C8 A5 C9 C10

Rate' CuloH (klll (pF) (pFl (kill IpF) (pF) (kIll (pF) (pFI (kill (pFJ (pF) (Kll) (pF) (pF;

(kHz) (kHz)

8 3.08 12,74 19.70D 12,500 159917,4002.5001561 22,450 937 13.5740,2504501584 100,000 109

10 3.85 12.74 15,760 10,000 15.9913,9182.000 1561 17,960 750 13.57 32,200 360 1382 91.680 100

12 4,62 12.74 13,130 8,330 15,99 11,600 1,667 1561 14.970 62~ 1357 26.836 300 11 52 91.680 100

15 5,77 1274 10,500 6.667 1599 9,280 1,333 156\ 11,975 500 10.85 26,836 300 9.21 91,680 100

20 7691274 7,880 5,000 1599 6,959 1.000 11 71 ".975 500 8 14 26,836 300 6.91 91,680 100

25 9,62 10,19 7,880 5.000 12,79 6,959 1.000 9.37 11,975 500 6.51 26.836 300 5.53 91,680 100

30 115 8,49 7,880 5,000 10,66 5.959 1,000 781 11.975 500 543 26.836 300 4.61 9\.680 100

40 15 , 6,37 7,B80 5,000 8.00 6,959 1,000 5.85 11,975 500 407 26.836 300 345 91.680 100

'Filler response IS down 50 dB at 1,2 sampling frequency

(8)

Fig. 12-24. Design data for active Chebyshev filters. (A) Three-section 1-d8
ripple. (8) Five-section O.25-d8 ripple.
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Therefore, one must be careful not to let C2 get so small that amplifier input
capacitance becomes a significant factor.

Figure 12-24 and Table 12-1 give design data fot Butterworth and
Chebyshev filters using Sallen and Key sections. In Fig. 12-24, complete
data including component values is found for a five-section 0.25-dB and a
three-section I-dB Chebyshev. The fotmer is recommended for ultra-high
fidelity applications, while the latter is quite suitable for experimentation. In
fact, it is common practice to utilize two different sample rates in computer
music applications. The lower rate would be used for experimentation and
fast turnaround where quality is not overly important, while the higher rate
would be used for the final performance. Thus, one good filter would be
constructed for the higher rate and one or more of the simpler types would
satisfy experimental needs. Table 12-1 provides data that can be used to
design a filter with nearly any number of sections, ripple amplitude, and
cutoff frequency. When selecting components for the filter, be sure to use 5%
or better polystyrene capacitors and 1% film resistors, particularly with four
or more sections. A good amplifier to use is, believe it or not, an LM318
high-speed op-amp, which gives acceptably low noise and total freedom from
slewing distortion. The dual NE5532 from Signetics also works well and has
even less noise.

The last concern is the order of the sections in the cascade. Mathemati
cally, the order is not significant but in real life it can make a substantial
difference. The problems are most acute with the highest Qsection. The high
Q means that internal amplifier noise frequencies in the vicinity of the
resonant peak will be amplified. It also means that large-amplitude signals
right at the peak frequency can be amplified to the point of overload. To
minimize noise, the highest Q section should be placed first, right after the
DAC. Here, noise at the resonant frequency will be considerably attenuated
by subsequent stages. Unfortunately, since it sees raw DAC output, certain
data patterns could severely overload it. Thus, if an op-amp buffer is used in
the filter sections, the lowest Q section should connect to the DAC with
successively higher Q sections following toward the output.

Building an Elliptical Filter

Although elliptical filters are more difficult to understand, design, and
successfully build than Butterworth or Chebyshev types, their shatper cutoff
characteristic for a given number of reactive circuit components is attractive.
Elliptical filters are normally implemented as ladder type L-C circuits or the
direct active equivalent rather than individual sections isolated by amplifiers.
The reason for this is also responsible for the circuit's small number of reactive
components. Below the cutoff frequency, the inductors and capacitors
interact to provide a series of closely spaced resonant peaks like the
Chebyshev filter. Above cutoff, these same elements interact differently to
produce anti-resonant notches. Figure l2-25A and B shows two possible
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Fig. 12-25. l-C ladder implementation of elliptical filter. (A) Parallel resonant
form. (B) Series resonant form. (C) Seventh-order, 0.28/60-dB, 10
kHz cutoff elliptical filter. (D) Fifth-order, 1.25/40-dB, 5,180-Hz
cutoff elliptical filter.

passive L-C implementations of a ninth order elliptical filter. In fact, when
the source and load impedances (represented by R in the figure) are equal, the
two forms are equivalent with A favoring capacitors and B favoring
inductors. Note that, at low frequencies, the filter's insertion loss will be 6 dB
because of the voltage divider effect between the source and load resistors.

Table 12-2 gives design data for elliptical filters of this form. Fifth,
seventh, and ninth order types with passband ripples of 0.28 '1ud 1.25 dB
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and stopband attenuations of 50 to 90 dB are given. These should covet the
range of application for audio filters from minimum cost experimental units
to very sharp professional application units. The element values are given in
henties and farads for a cutoff frequency of 0.159 Hz and impedance level of 1
ohm. To compute actual practical component values, use the formulas below:

L' = 0.159RL
F

c' = 0.159C
RF

where L' and C' are the practical component values, Land C are from the
table, R is the source and termination impedance, and F is the cutoff
frequency. Figure 12-25C shows a practical seventh order parallel resonant
filter design having 0.28 dB ripple, 60 dB attenuation, a cutofffrequency of
10 kHz (25 ks/s sample rate), and an impedance of 5,000 ohms. Figure
12-25D shows a fifth order series resonant filter with 1.25 dB ripple, 40 dB
attenuation, 5,180 Hz cutoff (12.5 ks/s sample rate), and lK impedance.

Even considering the advantages of small size, inexpensive compo
nents, etc., of active implementation, actual passive implementation of the
filter, just as shown in Fig. 12-25, does have some advantages. For one, there
are only two amplifiers in the signal path to contribute noise and distortion,
and these can often be part of surrounding circuitry and not specifically
"charged" to the filter. The L-C networks can be easy to tune, which may be
necessary with the higher-order filters. Finally, the component values tend to
be similar in magnitude unlike the active Chebyshev filter described earlier.
On the minus side, the inductors are susceptible to hum pickup from stray
magnetic fields and therefore should be of torroid or pot core construction
and kept away from power transformers. Also, it is conceivable that
nonlinearities in the magnetic core could contribute a slight amount of
distortion, so relatively wide air gaps within the core should be used.
lnductor size and Q are not much of a problem because the section resonant
frequencies will be in the high audio range.

In actually building such a filter, accurate element values are crucial;
2.5% for fifth order, 1% for seventh order, and O. 5% or better for ninth
order. This is normally accomplished with an impedance bridge, a bunch of
polystyrene capacitors, and a supply of ferrite pot cores and magnet wire. The
pot cores usually have tuning slugs that simplify the task of getting exactly
the right inductance, and appropriate parallel combinations of two or three
capacitors can usually be determined easily. Typically, the parallel resonant
form will be preferred since it has fewer inductors.

An active implementation of the filter using only op-amps, resistors,
and capacitors is also possible and straightforward to derive from the passive
L-C circuit. Whereas the Sallen and Key circuit studied earlier is a contrived
form that just happens to have the same response as a resonant R-L-C low-
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pass section, impedance converters are normally used for active elliptical filters.
An impedance converter is an active circuit that in effect converts one type of
passive component, such as a capacitor, to another type, such as an inductor,
by means of phase shifting. A gyrator, for example, does just that; connect a
capacitor across its ourput terminals and its input terminals have the
frequency-phase characteristic of an equivalent inductor. A negative impedance
converter shift things just 90° instead of 180° and thus can make a resistor act
like an inductor in a suitably designed circuit. While these circuits are
interesting to study, their theory is beyond the scope of this discussion.

The negative impedance converter (NIC) is very easy to apply to the L
Celliptical filter circuits given earlier, however. Figure 12-26A shows the
series resonant form of a seventh-order elliptical filter adapted to a NIC active
circuit. In effect, the phase of everything has been shifted 90° so every
inductor becomes a resistor, every resistor becomes a capacitor, and every
capacitor becomes a "frequency-dependent negative resistor" implemented
with a negative impedance converter and two capacitors. Fig. 12-26B shows
the same circuit with "practical" element values included. These were
calculated for a lO-kHz cutoff from the Table 12-2 entries for a seventh
order, 0.28/60-dB filter. First, an impedance scale factor is determined using
Z = 1/6.283FC, where F is the cutoff frequency and C is a convenient
capacitor value in farads. For best results, choose C so that Z is in the 5K to
20K range. For this example, 2,200 pF gave an impedance scale factor of
7,235. Values for the remaining components are simply the impedance scale
factor times the corresponding element values from the filter table. Figure
12-26C shows the actual active filter circuit. Most of the resistor values are
simply copied from the element values in Fig. 12-26B. The two 499K
resistors are included to provide a path for the amplifier bias current and also
give the circuit accurate response down to de. The 4.99K resistors in the
negative impedance converters merely need to be matched; their actual value
does not affect the response.

One of the big advantages of this circuit is that all of the capacitors are
the same value! Of course, the resistors turn out to be strange values, but it is
much easier to find precision resistors with strange values than capacitors. In
practice, the circuit impedance is usually adjusted so that the capacitors are
some standard value (such as 2,200 pF here) which is easy to get. One would
typically purchase several dozen 5% capacitors of this value and select those
that fall within 1% of 2,200 pF for use. One pitfall of this circuit is that at
certain frequencies, the output swings of the NIC op-amps will be three times
the input signal amplitude. Thus, the input signal amplitude should be
restricted to 3 V peak to avoid severe distortion. Also, there is a 6 dB
passband loss that is made up for somewhere, usually in the output amplifier.
Amplifier noise is not much of a problem because the NICs don't tend to
amplify noise at the resonant peaks. Note that the bias current for amplifiers
AI, A3, and A5 plus that of the output amplifier passes through the two
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Fig. 12-26. Active elliptical filter design. (A) Active filter form using negative
impedance converter. (8) Element values for O.28/60-d8, 10-kHz
cutoff, 7,235-ohm impedance. (C) Complete active elliptical filter
circuit.

499K resistors. To avoid large offsets, all of the amplifiers should be FET
types. Singles, such as the LF356, should be used for the input and output
amplifiers, while duals, such as the TL072, are convenient for the negative
impedance converters.

Digital Anti-Alias Filters
From the foregoing, it is obvious that very sharp cutoff analog filters for

digital audio applications can become quite complex, costly, and just plain
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Fig. 12-27. Digital anti-alias filter, (A) Block diagram. (B) Signal spectra at
indicated points.

messy to work with. It seems strange to have to deal with complicated,
precision analog circuits in what might orherwise be an all-digital system.
Actually, use of a digital filter right before the DAC can greatly simplify the
analog filter by substantially increasing the sample rate to the DAC without
increasing the sample rate from the source. The analog filter can then be less
sharp and still adequately separate the signal spectrum from its alias copies.
Figure 12-27 shows how this would be accomplished in principle.

The source sample stream is presented at a rate of FS I to the sample rate
changer block, which, in this example, multiplies the sample rate by 2 to
produce sample rate Fs,. This is accomplished by simply duplicating each
input sample to produce two identical output samples. Below these blocks is
shown the spectral equivalents of the original signal A and the multiplied
rate signal B. Of course, this duplication of samples has not really
accomplished anything in the frequency domain so the overall spectra are the
same.

However, the 2X increased rate can now be digitally filtered by the
digital low-pass filter block to just below Fs/4 to produce signal spectrum C.
Sample stream C is then D-to-A converted at sample rate Fs, to produce
analog signal D. Note that there is a very large frequency gap between the
desired signal spectrum, which extends up to 0.25Fh, and its first alias copy,
which extends down to only 0.75Fh. This gap, which is nearly 1.6 octaves
wide, provides plenty of room for a simple analog low-pass filter to perform
the final filtering. In fact, a three-section Butterworth filter can provide 56
dB suppression of alias distortion in this example. Greater multiplication
factors are also possible. A 4X increase, for example, would allow use of a
two-section analog filter yet provide 67-dB alias suppression.

What the sample rate changer and digital low-pass filter blocks do, in
effect, is to interpolate an intermediate output sample point between each
input sample point. Unfortunately, "sin(X)/X" interpolation, which is much
more complex than linear interpolation, is needed. Sample rate conversion



408 MUSICAL ApPLICATIONS OF MICROPROCESSORS

SAMPLE
RATE
INPUT
(VALUE
SHOWN
IS FOR
25 ks/sl

I---f----1
0---+-"-1
1--+-----'-1
/---f-----'''-i

+5

O---+-+-~

o--++----::-1
0--++-----::-1
0--++---:"'-1

+5
+5

QS

QA

p;:.6 • DAC WR PULSE

560 1.5 K

7474 7474

3 - 6 [I - 8
2.0 MHz220

D
ClK

R
Q ClK R Q

I 13
8 MHz

+5 +5SERIES RESONANT

(AI

Fig. 12-28. Sixteen bit audio DAC. (A) Timing generator. (6) Data register and
DAC. (C) Sin(X)/X compensator and filter.

and interpolating filters will be described in more detail in Chapter 14. Besides
replacing a complex analog filtet with a stable digital one, this technique can
eliminate much of the phase distortion of a high-order analog filter. Whereas
in the digital domain it is easy to design a very sharp low-pass filter with
virtually zero phase distortion, it is nearly impossible to accurately phase
compensate a high-order analog low-pass filter. Phase distortion in the simple
analog filter that remains here is of little consequence, since it occurs at the
top of its passband where there is now no signal energy.

Of course, the entire scheme depends on a sharp cutoff, linear phase,
digital filter which, until recently, was much more complex and costly even
than a high-order compensated analog filter. However, such filters (for a 2X
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sample rate increase) have been integrated onto proprietary custom LSI chips
by at least one company making "compact disk" digital audio playback
systems. Although such chips are not generally available in the marketplace,
they show exciting promise for the future. Another drawback of this
technique is that the DAC must now run at a much higher speed. For the
example in Fig. 12-27, where PSI is 40 kHz, the DAC and deglitcher must
now run at 80 ks/s, which requires a more expensive high-speed DAC and
more care in the circuit layout. In·a stereo playback system, two DACs,
rather than one multiplexed two ways, will probably have to be used. Thus,
perhaps the greatest overall advantage of this technique is the elimination of
phase distortion.

A Complete Audio DAC

Figure 12-28 shows a reasonably complete schematic of an inexpensive
yet high-quality audio DAC using the concepts developed in the preceding
sections. It is a 16-bit unit having 14-bit linearity at high signal levels.
Maximum sample rate is 50 ks/s, although the filter shown is set up for a 25
ks/s sample rate and a lO-kHz audio bandwidth. The deglitcher utilizes the
handy extra analog switch in the 7546, and the low-pass filter incorporates
high frequency compensation for sin(X)/X and deglitcher time constant
losses. Component values in the filter have been rounded to the nearest 1%
standard values. Timing for the DAC and deglitcher is derived from a built
in crystal oscillator and counter-decoder combination. The counter inputs are
shown connected for a 25-ks/s sample rate (40 J.tsec, 80 counts) but can be
reconnected for any rate from 7.8 to 50 ksls. They could also be connected to
a port on the host for a programmable sample rate. Note that the filter will
need to be changed for different sample rates. The 2-MHz output can be used
to drive the audio ADC to be described later. Total cost of parts using the
AD7546KN DAC module (made by Analog Devices) should be in the $100
range.

For best performance, the circuitry should be constructed over a ground
plane such as a piece of copper-clad Vectorboard. Mount the components on
the copper side and trim the copper from the edge of any hole a component
lead passes through by hand-twisting a small drill bit in the hole. There can
never be too many power-supply bypass capacitors of the 0.1-J.tf monolithic
ceramic variety. The digital circuitry should be kept away from the analog
elements as much as possible. This is made easier by the pinout of the 7546,
which has all digital signals along one side and analog signals along the
other. In particular, the holding register should right at the edge of the
board, and its input data lines should go immediately offboard to the host.
Finally, the entire unit should be shielded, at least by steel front- and
backplates, and mounted in a separate enclosure.

The timing diagram in Fig. 12-29 should be self-explanatory. The WR
pulse to the DAC can be used to inform the host system that a sample has
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Fig. 12-29. Audio DAC timing diagram

been latched from the data-in lines and that a new sample should be made
available. The data could be supplied directly by a running audio-output
program, direct memory access circuit, or FIFO buffer logic. The DAC
output signal is 10 V peak-to-peak in amplitude but is reduced to 5 V by the
filter compensation stage. The filter itself reduces it further to 2.5 V but then
is amplified back to 10 V (3.5 V'lns) by the output amplifier, a level sufficient
to overcome minor ground-loop noise. Ground-loop concerns may be
completely eliminated in exchange for dc response by incorporating a
standard 600-ohm line transformer into the unit (use a 25-JLF nonpolarized
dc blocking capacitor in series with the transformer primary). The output
amplifier can drive a primary impedance as low as 600 ohms.

Only three adjustments are necessary after the unit is built. For best
linearity in the DAC, the offset voltage of Al and A2 must be nulled. Do this
by removing the 7546, temporarily shorting both amplifier inputs to
ground, and turning the offset null pot to the point where the amplifier
output switches between - 14 and + 14 V. The dc offset at the final output is
zeroed with the potentiometer in the 7546 reference circuit. Perform the
adjustment with the DAC running and outputting a string of zero samples.
This is important because control feedthrough capacitance in the deglitcher
contributes to the output offset.

Au.dio Digitizing

At this time, let us take a brief look at analog-to-digital conversion of
audio. In a synthesis application, the major reason for digitizing audio is for
modification or source-signal analysis. Consequently, there is not as much
need for superdynamic range and distortion figures as with the audio DAC.

Like the DAC, an off-the-shelf ADC alone is not suitable for audio. A
block diagram of an audio ADC is shown in Fig. 12-30. The low-pass filter
considerations are not the same as those with the DAC except that high
sample rates do llOt eliminate the need for a filter. The DAC used for
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DIGITAL
r---r---7 OUTPUT

Fig. 12-30. Audio ADC

successive approximation must be reasonably fast in order to attain the higher
audio sample rates. For example, the settling time of the DAC plus the
response time of the comparator must be less than 2 f-Lsec if 12-bit
conversions are to be done at 40 ks/s. This can be a very strict requirement if
a fast sample rate and high resolution for audio recording/playback is desired.
The successsive approximation logic is as described in Chapter 7. The FIFO
buffer holds the last sample value converted until the host can accept it. As
with the DAC, the buffer may be as simple as a single register or a true
multilevel hardware FIFO. Uniformity of sample rate is just as important as
before and therefore should come from a crystal-controlled timing generator.

The sample-and-hold, however, performs a completely different func
tion. Rather than gating out glitches, its job is to capture the input signal at
an instant in time and hold it long enough to be digitized. Slewing and
glitching are not important, but aperture time and aperture uncertainty are
critical for low noise and distortion in the converted results.

Figure 12-31 illustrates the job to be done by the SAH module.
Acquisition time specifies the interval between the sample command and the
time when the SAH is adequately following the signal. This time usually
varies with signal level but need not cause concern unless it becomes longer
than the sample period minus the ADC conversion time. Even when the
signal is being followed, there is a finite lag in the tracking called tracking
error. As long as the lag time is constant, its only effect is a very slight
reduction in high-frequency response, but if it varies with signal amplitude,
distortion can be introduced.

When the hold command is given, there is a finite delay before the
sampling switch starts to turn off, which is called aperture delay. Once the
switch begins to turn off, there is an additional delay before it is completely
turned off, which is called aperture time, and is a critical audio SAH parame-
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Fig. 12-31. SAH errors

ter. It is critical because the partially off switch is highly nonlinear and
contributes to distortion. Aperture uncertainty is a variation in aperture delay
usually caused by variations in signal amplitude. It has the same distortion
causing effect as variation in the sample rate. Both of these aperture errors
create distortion proportional to frequency and amplitude. Essentially, then,
the aperture is the effective time width over which the signal voltage is
measured and, much like a camera lens, a small aperture gives sharper focus
over a wider range of conditions.

Hold step usually is not important unless it varies with signal level.
One must wait until the turn-off transient decays before starting the conver
sion cycle, however. Hold droop is almost never a problem, since the hold
time is a few dozen microseconds at most.

Often, it is helpful to have an automatic gain-control (AGC) circuit in
the signal path before the SAH and ADC to keep signal levels consistently
high. In order to retain information about the dynamics of the input, it
would be a simple matter to digitize the gain-control voltage in the AGC
circuit with an inexpensive 8-bit ADC module. Since this voltage changes
slowly, its sample rate could be as low as tens of hertz. Internally, the AGC
information could multiply the samples from, say, a l2-bit ADC into full
l6-bit samples and restore the dynamic range. Note that the response speed
of the AGC circuit has no bearing on the accuracy of reconstruction provided
it is fast enough to suppress sudden, high-amplitude transients below the
ADC clipping point.
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Fig. 12-32. Front-end for 12-bit audio ADC

A 12-Bit Audio A-to-D Converter

Although the last few years have seen a very large price decrease in 16
bit DAC modules suitable for audio use, the same has not been true for ADC
modules. This is even true at the 12-bit level where a converter fast enough
for audio use still costs $100 or more. Figure 12-32 shows a timing generator
and sample-and-hold circuit that may be added to the fast ADC circuit in
Fig. 7-33 to allow sampling audio signals at rates up to about 80 ks/s. The
SMP-ll (Precision Monolithics) in the SAH circuit normally has dynamic
characteristics unsuitable for deglitchers but it performs well in ADC
sampling. The 2-MHz clock for the successive approximation register also
operates the timing generator, which properly sequences SAH and successive
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Fig. 12-33. Timing diagram for 12-bit audio ADC

approximation register operation. Total parts costs should be under $30. Of
course, a suitable filter must be added to these two circuits.

A timing diagram of the unit is shown in Fig. 12-33. A sampling
cycle starts with the 8-bit counter teaching the 240 (11110000) state, which
switches the SMP-11 into its hold mold and resets the successive approxima
tion register. Four counts later at 244 (11110100), the SAR is allowed to run.
Conversion is complete after 12 additional counts and the counter reloads for
the next cycle. The SAH is also switched back to sample mode to reacquire
the input signal. The host system can look at the end of conversion output
signal, which holds for the sample period minus 8 f-Lsec, to determine when
valid data is present. By inserting a l2-bit latch between the SAR and host,
the data valid time is extended to a full sample period. The counter inputs are
shown connected for a 25-ks/s sample rate (40 f-Lsec, 80 counts) but can be
reconnected for any rate from 7.8 to 80 ks/s. If both the DAC from Fig.
12-28 and this ADC are being constructed, the sample rate counter can be
shared between the two.
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Digital Tone
Generation
Teehniques

Because of its total generality, there can be difficulty in knowing where to
start in designing a direct digital synthesis system. Most often, though, the
fundamental concepts of analog synthesis, which have been proven through
years of use, form the basis for a digital synthesis system. Thus, digital
equivalents of tone generators, sound modifiers, and control mechanisms are
incorporated into the system, hopefully with improved characteristics and
flexibility. In fact, some direct synthesis software systems simulate a com
plete "voltage"-controlled synthesizer along with provisions for simulated
patch cords! In this chapter, the digital equivalents of analog tone generators
will be described followed later by other tone-generation techniques that are
practical only in the digital domain.

One of the many strengths of digital tone generation is that the fre
quency and amplitude of the resulting waveforms are extremely accurate and
stable with time. The user need have no concern whatever about the unpre
dictable results that frequency and amplitude errors can create. Also, the
exact phase between two or more digitally generated tones can be controlled
to an equal degree of precision. Of course, if slight relative errors are desired
for, say, an ensemble effect, they will actually have to be added in.

Although the previous chapter may have seemed to be preoccupied
with vanishingly low noise and distortion figures for the overall sound,
individual tones need not be of such high quality. For example, a slight
amount of harmonic distortion on a single tone is completely inaudible,
while even the effect of a larger amount is simply a slight change in timbre.
The equivalent amount of distortion in an ensemble of sounds would be very
objectionable because of the accompanying intermodulation distortion. Also,
super-signal-to-noise ratios for a single tone are not needed because sub
sequent signal processing, which is what would change the amplitude, also
processes the noise, thus retaining whatever the tone's SiN ratio is independent
of signal level. These are important points because, as will be shown later,
extra effort and computation time are necessary for ultra-low-distortion tone
generation.

417
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One of the big problems with the generation of tones of arbitrary
frequency and waveform is the avoidance of alias distortion. As it turns out,
it is quite possible, sometimes unavoidable, to digitally generate a tone
having frequency components above one-half the sample rate. When this
occurs, the higher frequencies are reflected down as lower frequencies that
then sail right through the DAC's low-pass filt~r, no matter how sophisti
cated. The audible effect is usually harsh distortion or excessive noise, and it
occurs even with single tones. The only way to positively avoid this source of
alias distortion is to avoid generating significant amounts of excessively high
frequencies.

Direct Waveform Computation

One of the easiest ways to generate tones digitally is to simulate the
operation of an analog voltage-controlled oscillator. In an actual synthesis
program, the "oscillator" would probably be a subroutine that accepts some
arguments (control "voltages") such as one or more frequency parameters and
returr~s one or more results representing samples on one or more output
waveforms. The subroutine would probably also require some carryover stor
age from one sample to the next.

The analog VCO that was described in Chapter 6 consisted of three
major parts: control input acquisition, the sawtooth oscillator proper, and
waveshaping circuits. A digital equivalent will require the same setup. Con
centrating on the oscillator part, it was seen to consist of a current source, an
integrator, a comparator, and a discharge (reset) circuit. Fortunately, the
digital equivalents to all of these are exceptionally simple and, most impor
tant, require very little computation time.

Digital Sawtooth Oscillator

An integrator is an accumulator, somewhat like a bucket that inte
grates the flow rate of water entering it. A computer accumulator is also an
integrator;. it accumulates discrete-sized "pieces" represented by numbers
added to it via the "add" instruction. When a bucket overflows, it remains
full and only the excess water is lost. When an accumulator overflows, its
entire contents are dumped and integration starts anew. Thus, it should be
apparent that if one considers a number that is repeatedly added to a comput
er's accumulator to be a "current," the accumulator contents to be the
integrator's output, and the overflow phenomenon of binary arithmetic to be
a combination comparator/discharge circuit, one has a sawtooth oscillator
just like the analog one.

This can be clarified by examining the program segment below, written
in 6502 assembly language:
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REPEAT

CLEAR CARRY FLAG
ADD B TO ACCUMULATOR
WRITE ACCUMULATOR TO DAC
WAIT 16 CLOCKS FOR A
TOTAL LOOP TIME OF
25 f.LSEC WHICH GIVES
A 40-ks/s SAMPLE RATE

*+3
LOOP

B
DAC

CLC
ADC
STA
NOP
NOP
NOP
NOP
NOP
JMP
JMP

LOOP 2
3
4
2
2
2
2
2
3

-.2
25

Assuming that the A register was initially 0 and that B contains 1, the
sequence of numbers that would be sent to the DAC would be 1, 2, 3,
4, ... 125, 126, 127. Now, assuming twos-complement arithmetic, the next
addition would try to produce 128, which, of course, overflows the 6502's 8
bit accumulator, producing instead a result of -128. The sequence would
continue -127, -126, ... , - 2, -1, 0, 1, etc., and a full sawtooth cycle
has been completed. The overflow from + 127 to - 128 is simply the
sawtooth flyback.

In a typical 6502, this loop would execute in 25 f.Lsec, giving a sample
rate of 40 ks/s. Since 256 times around the loop are required for a single
sawtooth cycle, the sawtooth frequency will be 40 ks/s/256 = 156.25 Hz,
essentially D-sharp below middle C. Now, what if B has the value 2 in it?
Register A, starting at zero would be 0, 2, 4, ... , 124, 126, -128,
-126, ... , - 2, 0, 2, etc. It would take only 128 iterations for a complete
cycle, so the tone frequency would be 312.5 Hz, precisely twice what it was.
Other frequencies can be had by setting B to other values. Thus, continuing
the analog sawtooth analogy, the content of B represents the current into the
integrator, although it will be called the increment in the discussion to follow.

Improving Frequency Resolution

Obviously, only a very limited number of frequencies is available with
this basic loop. Another way to change the sawtooth frequency is to change
the loop time and thus the sample rate, perhaps by changing the number of
NOP instructions. However, this would violate the holy dogma of direct
computer synthesis, which decrees that the sample rate shall remain constant
throughout the system.

Actually, the numbers in the accumulator and B should be considered
as /ractions between - 1 and + 1. Thus, the accumulator starts at 0,
increments in units of 1/128 to 127/128, overflows to -128/128, continues to
0, and repeats. B can hold values of 1/128, 2/128, 3/128, etc. The sawtooth
ftequency is given by F = 40,000[/2, where I is the ftaction stored in B, the
40,000 is the sample rate, and the 2 is because the sawtooth traverses a range
of 2 units; from - 1 to + 1. In order to get finer frequency resolution, it is
simply necessary to specify the increment with more ptecision.
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Increasing the accumulator and increment word length to 16 bits im-
proves frequency resolution considerably. A modified loop to do this is:

LOOP LOA L GET LOWER BYTE OF 16-BIT
"ACCUMULATOR" 3

ADC C ADD LOWER BYTE OF INCREMENT 3
STA L SAVE LOWER BYTE OF RESULT 3
LOA H GET UPPER BYTE OF

"ACCUMULATOR" 3
ADC B ADD UPPER BYTE OF INCREMENT

WITH CARRY 3
STA H SAVE UPPER BYTE OF RESULT 3
STA DAC ALSO OUTPUT IT TO THE DAC 4
JMP LOOP REPEAT 3

25

Here memory locations Hand L function as the accumulator with H
being the most significant byte, while Band C hold the increment with B
being most significant. The formula for frequency is the same as before, but
now the frequency resolution is 256 times better or about 0.61 Hz. Thus, if
it is desired to generate middle C, which has a frequency of 261. 625 Hz, the
value of the increment should be I = 2F/40,000, which evaluates to
0.01308. Converted to fractional form with a denominatot of 32,768, it
would be closest to 429/32,768 and therefore locations Band C would
contain 429 or the hex equivalent, 0IAD. The important point is that the
frequency resolution has been improved from an unacceptable 156 Hz to a
mere 0.61 Hz. Extending the fractions to 24 bits gives a resolution of 0.0024
Hz (l cyclel7 min), which for practical purposes makes frequency a
continuous variable.

One interesting property of the digital sawtooth generator is that the
increment can be negative as easily as it is positive. With negative increments,
the sawtooth slopes downward and underflows upward, just the opposite of
posi tive increments. This behavior satisfies the mathematical requirements
fot a negative frequency, which is a handy property if dynamic depth fre
quency modulation is being performed because then one does not need to
worry about possible negative frequencies.

other Waveforms

Just as an analog sawtooth can be easily converted into other
waveforms, some simple computations ate all that is necessary to transform
digital sawtooths. Programming for the conversion would simply accept a
sample from the sawtooth generator and return a sample of the converted
waveform. Perhaps the simplest is conversion into a square waveform. Saw
tooth samples are merely tested to determine if they are positive or negative.
If positive, a value equal to positive full scale is produced, otherwise negative
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full scale is sent out. Rectangular waves with the width specified by a
parameter are ne-d.rly as easy; simply compare the sawtooth samples with the
parameter rather than with zero.

Conversion to a triangular waveform requires a little more manipula
tion, although it still parallels the analog operation. Full-wave rectification is
equivalent to an absolute value function, thus the first step is to test the
sawtooth sample and negate it if it is negative. A potential problem exists,
however, because there is no positive equivalent of negative full scale in
twos-complement arithmetic. If this value is seen, simply convert to the
largest positive numbet which results in an ever so slightly clipped triangle
wave. The next step is to center the triangle, which is accomplished by
subtracting one-half of full scale from the absolute value. The result now is a
triangle wave but with one-half of the normal amplitude. A final shift left by
1 bit doubles the amplitude to full scale.

Conversion to a sine wave is most difficult. The analog-rounding cir
cuits used to do the job have as their digital equivalent either the evaluation
of an equation representing the rounding curve or a table lookup. Of these
two, table lookup is far faster but does require some memory for the table.
The brute-force way to handle table lookup is to simply take a sawtooth
sample and treat it as all integer index into a table of sines. The table entry
would be fetched and returned as the sine wave satnple. Memory usage can be
cut by a factor of four by realizing that the sine function is redundant. Thus,
if the sawtooth sample, S, is between zero and one-half full scale use the table
entry directly. If it is between one-half and full scale, look into the table at
1.°- S. If S is negative, negate the table entry before using it.

Still, if the sawtooth samples have very many significant bits, the table
size can become quite large. One could truncate S by just ignoring the less
significant bits and looking up in a smaller table. Rounding is another
possibility that is implemented simply by adding the value of the most
significant bi t ignored to the sample before truncation. As we shall see later,
rounding has no effect on the audible portion of the error. Generally, trunca
tion is accurate enough if a reasonable size table is used. For example, a
256-entry table, which would require 512 bytes, using symmetry would be
the equivalent of 1,024 entries. The distortion incurred by using this table
would be approximately 54 dB below th~ signal level, or the equivalent of
0.2% distortion. Actually, the kind of distortion produced will sound more
like noise so a SiN ratio is the more appropriate measure. At very low
frequencies, the noise amplitude will appear to be modulated by the signal.

Linear Interpolation

The most accurate approach, however, is interpolation between the sine
table entries. Linear interpolation gives good results for very gentle curves
such as sine waves and, if done perfectly, could be expected to reduce the
noise level to -103 dB based on a 256-entry table with symmetry, which is
the limit of 16-bit samples anyway. Figure 13-1 shows generalized linear
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Fig. 1~1. Linear interpolation

interpolation and some important information about it. Essentially, the job
is to compute the correct value of F(X) given an arbitrary X, where X is the
sawtooth sample and F(X) is the sine sample. Xl and X2 are tabulated
arguments, while F(XI) and F(X2) are the tabulated sines of those argu
ments.

Due to the nature of the table and binary arithmetic, the computation
is actually simpler than it looks. Since the table is tabulated in equal incre
ments of X, the quantity X2 - Xl is a constant. If the table has a power
of two number of entries, then even the division by X2 - Xl is a simple
shifting operation. As a result, the overall computation is reduced to two
subtractions, an addition, and one multiplication.

As an example, consider linear interpolation in a sine table of only 64
entries using a 16-bit argume~t and assuming that the table entries are
signed 16-bit values. Let's further assume that a separate table giving
F(X2) - F(XI)/(X2- Xl) is also available, which will be called the first
derivative table and that its entries have been scaled to make the following
operations possible. Figure 13-2 illustrates binary linear interpolation.

The first step is to save the most significant 2 bits of the argument and
transform the remaining 14 bits into a positive, first-quadrant value. Next,
using only the 6 bits left in the upper byte, access the function table to get
F(Xl) and the derivative table to get F(X2) - F(XI)!(X2 - X). Finally,
multiply the lower byte of the argument, which is X - Xl, by the derivative
and add the product (possibly shifted for scaling) to F(Xl) fetched earlier. The
derivative table entry need be only one byte long; therefore, the multiply is
an 8 x 8-bit operation, which can be quite fast even in software on an 8-bit
machine. Before returning, the two saved bits, which identify the quadrant,
should be examined and the function value adjusted accordingly. The linear
interpolation is so effective that this 192-byte table gives a sine wave with 30
dB less noise than a 512-byte table using the brute-force method. In practice,
it would be up to the programmer to decide if the memory savings and
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Fig. 13-2. Linear interpolation in a sine table

improved noise level are worth the extra computation time, particularly if
hardware multiply is not available.

Alias Distortion
So far everything sounds great; all of the normal analog synthesizer

waveforms are available in digital form with adequate frequency resolution
and are just waiting to be processed further. There exists, however, one
problem that can only be minimized and that is alias distortion from the
upper harmonics of most of these waveforms. When the algorithms just
described are used to generate samples on a waveform, the samples generated
are exactly the same as would have come from an ADC sampling the equiva
lent analog waveform with no low-pass jilter! Thus, one would expect the
higher harmonics to fold back into the audio range and create distortion.

Before deciding what to do about the problem, its severity should be
determined. As a "best-case" example, let us assume a sample rate of 50 ksls,
the use of a sharp I5-kHz low-pass filter in the output DAC, and a I-kHz
sawtooth wave. The idea is to add up the power in all of the unaliased
harmonics in the I5-kHz range and compare this with the sum of the aliased
harmonics that are in the 15-kHz range.

The power spectrum of a sawtooth wave is well known and is
Pn = Pdn 2 , where Pn is the power in the nth harmonic relative to the
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power 10 the fundamental. Thus, the "signal" is 1 + 1/4 + 1/9 . ..
+ 1/225 for the first 15 harmonics that lie within the range of the low-pass
filter. Harmonics 16 through 34 do not contribute to the signal or the
distortion, since they or their aliases are above 15 kHz in this example.
Harmonics 35 to 65, 85 to 115, etc., contribute to the distortion. If the
calculations are carried out, it is found that the signal power is 1.58 units,
while the distortion due to the first-two groups offoldovers is 0.01717 unit
giving a SiN ratio of about 20 dB. Actually, if the example frequencies were
exact, the distortion frequencies would exactly overlap the signal frequencies
and would not be heard. However, if the signal frequency is not a submulti
ple of the sample rate, then the distortion would be apparent.

This does not seem to be very good and in fact does not sound all that
good either. What's worse, a 2-kHz signal can be expected to be almost 6 dB
worse, although lower frequencies can be expected to be better by about 6
dBloctave of reduction. The square wave is about 2 dB better, but a
rectangular waveform approaches 0 dB SiN as the width approaches zero.
The triangle wave SiN ratio is an acceptable 54 dB, and the sine generates no
alias distortion at all. In conclusion, the results are usable if high-amplitude,
high-frequency sawtooth and rectangular waveforms are avoided.

Besides restrictions in use, there are few options available for lowering
the distortion figure. One thing that can be done is to generate the
troublesome waves at a higher sample rate, pass rhem rhrough a digital low
pass filter operating at the higher rate, and then re-sample the filter output at
the lower system sample rate. For example, the sawtooth might be generated
at 400 ksls, which is eight times the system rate and then fed to a simple
digital low-pass filter that cuts off at 15 kHz. Only every eighth sample
emerging from the filter would actually be used. With this setup, the SiN
ratio for the I-kHz sawtooth would be improved to 38 dB. While the
computation time necessary to do this in software is much greater than that
required for some of the more sophisticated tone generation techniques, it
can be a viable hardware technique whereby simplicity of the algorithm often
outweighs computation time considerations because the digital hardware is
so fast.

Table Lookup Method
If direct computer synthesis is to live up to its promise of nearly infinite

flexibility and very high sound quality, then better tone-generation tech
niques than the simulation of analog synthesizer oscillators will have to be
used. One of these involves scanning of precomputed waveform tables. An
important advantage is that the sample values stored in the table can in many
instances be selected so that alias distortion is not a problem. Another is that
microprocessors are far more efficient in looking up waveform samples than
in computing them from scratch.
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Fig. 13-3. Waveform table scanning

Elementary tone generation by table scanning is just what the terms
imply: a simple loop is programmed to fetch the table entries one at a time
and send them to the DAC. When the end of the table is reached, scanning
should continue uninterrupted at the beginning. Each time through the
table is one cycle of the waveform. Figure 13-3 shows graphically a gener
alized table-scanning process. Since the beginning follows the end, the table
can be imagined to be circular. The table pointer points ro an entry and the
pointer increment specifies how far the pointer is to advance between sam
ples.

If the number of table entries is a power of two, the "wraparound" can
be simplified. Essentially, an I -bit counter is programmed, where
I = 10gzN, and N is the number of table entries. The value of the counter
is used as a pointer into the table. When the counter overflows from
maximum count to zero, the pointer automatically starts at the beginning of
the table. Thus, tables of 256 entries are extremely convenient in an 8-bit
microcomputer, since the lower byte of the address pointer can be used ~ the
counter and the upper byte, which is the "page number" (block of 256
memory addresses starting at an address divisible by 256) of the table, is left
alone.

Controlling Frequency

As with sawtooth oscillator simulation, the frequency of the tone may
be changed by altering the time between lookups, but this amounts to

changing the sample rate. Thus, frequency control is achieved by changing
the increment from 1 to 2 to 3, etc. Note that this means that table entries
are skipped as the scanning proceeds. However, as long as the number of
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Fig. 13-4. Table scanning in an a-bit microprocessor

entries skipped is less than one-half the period of the highest significant
harmonic in the tabulated waveform, nothing is lost and no audible noise is
added. If the number of entries skipped becomes larger than this, alias
distortion occurS. Also, the fact that each trip around the table is likely to be
different is of no significance, since the effect would be the same as sampling
a waveform at a rate that is not an exact multiple of its frequency.

As before, only a very few frequencies can be generated with integer
increments, so it will be necessary to extend the precision of the increment by
adding a fractional part. Now, the pointer increment and the table pointer are
mixed numbers having an integer part and a fractional part. Note that the
fractional part of the pointer implies some kind of interpolation between
adjacent table entries. For maximum speed, however, the fractional part of
the pointer can be ignored and the integer part used to select the table entry
as before.

A simple example should clarify this some. Let us assume a moderate
performance direct synthesis sytem with a sample rate of 15 ks/s and
waveform tables having 256 entries of 8 bits each. If a tone frequency of 220
Hz (A below middle C) is desired, the pointer increment should be 3.75466
according to the formula: I = NFIFs, where I is the increment, N is the
number of table entries, F is the tone frequency, and Fs is the sample rate. In
an 8-bit machine, it is convenient to make the pointer and the increment
double-byte mixed numbers with the upper byte being the integer part and
the lower byte being the fractional part. Thus, the decimal mixed number,
3.75466 would have an integer part of 3 and a fractional part of 193, the
latter being 0.75466 multiplied by 256.

To get the next sample from the table, the increment would be
double-precision added to the pointer with overflow from the integer parts
ignored. Then the integer part of the pointer would be used to access the
table. If the microprocessor has an indirect addressing mode through mem
ory like the 6502, then Fig. 13-4 illustrates how utterly simple these
operations are. A three-byte vector in memory is used for each tone. The
most significant byte gives the page address of the waveform table, while the
remaining two bytes are the pointer. An indirect load through the leftmost
two bytes of the vector are all that is necessary for the table lookup! In the
6502, the entire operation of adding the increment and getting the next
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sample from the table takes a mere 23 clock cycles, which for the standard
machine is 23 f-Lsec. While other 8-bit microprocessors will be slower, this is
a highly efficient operation on all of them. The 68000 can perform the
identical operation (table pointer in a data register, increment in memory) in
44 clock cycles, which, at 8 MHz is only 5.5 f-Lsec, sufficiently fast to
synthesize several tones in real time!

It is perfectly feasible to gradually change the pointer increment in
order to gradually change the frequency. Thus, glides, vibrato, and even
dynamic depth FM can be accomplished by changing the increment as re
quired. The only limit to the speed and magnitude of increment variation is
the FM sidebands that result. If they become broad enough, a portion may
spill over the Nyquist frequency and begin to generate alias distortion.

Table Size

A natural question at this point is, "How large should the table be for
an acceptable noise and distortion level?" Actually, there are two sources of
error in samples derived by table lookup. One is simply quantization error of
the stored samples, which can be made vanishingly small (- 100 dB) simply
by using 16 bi ts to store a table entry. The other error is the interpolation error
that occurs when the fractional part of the table pointer is nonzero. This
error, which is worst with no interpolation at all, can be made small only by
using a large table and linear, quadratic, or higher order interpolation be
tween the tabulated points. Thus, interpolation noise is likely to completely
dominate, and if it does not, the precision of the table entries should be
increased until it does.

Unfortunately, the average magnitude of the error, and hence noise, is
dependent on the waveform stored in the table. If the waveform can be
exactly described by a simple formula, a mathematician can always take the
formula and other parameters such as size of table, interpolation method,
sample rate, and DAC LPF cutoff and derive an exact SiN ratio.

A much simpler way to get a noise estimate is to simulate an ideal tone
generator and a table-driven tone generator and look at the difference in the
sample values generated. What is desired is the ims average of the ac compo
nent of the difference, which represents the noise power. The ac component of
the difference is simply the actual difference samples with the long-term
average of the difference, which represents the inaudible dc component of the
error, subtracted out. It is also important that the two tone generators be
precisely in phase (ttuncating rather than rounding the table pointer intro
duces a phase shift of 7TIN radians where N is the number of table entries)
otherwise the noise estimate will be excessively pessimistic.

The simulation is best done by choosing an irrational number such as
7T for the pointer increment and obtaining several hundred to a thousand
samples from each generator and their differences. The rms average difference
is found by squaring the adjusted difference samples and adding them up.
The ideal signal samples are also "ac coupled," squared, and added up. The
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1000 REM TABLE NOISE CALCULATE PROGRAM
1001 REM N=NUMBER OF TABLE ENTRIES P=PHASE SHIFT DUE TO TRUNCATION
1010 N=256: P=1/(2*N)
1100 REM GET THE MEAN OF THE IDEAL SAMPLE STREAM AND THE MEAN OF THE
1101 REM DIFFERENCE BETWEEN WEAL AND TABLE LOOKUP SAMPLES
1110 REM M1=MEAN OF IDEAL, M2=MEAN OF DIFFERENCE
1120 M1=0: M2=0: Tl=O
1130 FOR 1=1 TO 1000
1140 Tl=Tl+.314159
1150 IF Tl>=l THEN T1=Tl-l
1160 T=T1
1170 GOSUB 2000
1180 Ml=Ml+S
1190 SI=S
1200 T=(INT(N*T1)/N)+P
1210 GOSUB 2000
1220 M2=M2+(Sl-S)
1300 NEXT I
1310 M1=M1/1000
1320 M2=M2/l000
1330 PRINT "MEAN OF IDEAL SAMPLES = ";M1
1340 PRINT "MEAN OF DIFFERENCE = ";M2
1400 REM GET THE AUDIBLE IDEAL SIGNAL POWER AND AUDIBLE NOISE POWER
1401 REM VI IS SIGNAL POWER V2 IS NOISE POWER
1410 V1=0: V2=0: T1=0
1420 FOR 1=1 TO 1000
1430 T1=T1+.314159
1440 IF T1>=1 THEN T1=T1-1
1450 T=T1
1460 GOSUB 2000
1470 V1=V1t(S-M1)*(S-M1)
1480 Sl=S
1490 T=(INT(N*T1)/N)+P
1500 GOSUB 2000
1510 V2=V2+(((Sl-S)-M2)*((Sl-S)-M2))
1520 NEXT I
1600 REM PRINT RESULTS
1610 PRINT "SIGNAL POWER = ";V1
1620 PRINT "NOISE POWER = ";V2
1630 PRINT "NOISE LEVEL IS ";4.3429*(LOG(V1)-LOG(V2));" DB DOWN."
1999 STOP
2000 REM SIMPLE WAVEFORM SUBROUTINE, INPUT IS T, O<=T<=l, OUTPUT IS S
2100 S=SIN(6.283186*T)
2200 RETURN
3000 REM COMPLEX WAVEFORM SUBROUTINE, INPUT IS T, O<=T<=l, OUTPUT IS S
3010 REM CHANGE GOSUBS IN LINES 1170, 1210, 1460, 1500 TO USE
3100 A=6.283186*T
3110 S=SIN(A)+SIN(2*A)+SIN(3*A)+SIN(5*A)+SIN(8*A)+SIN(11*A)+SIN(14*A)
3120 S=SIN(17*A)+S
3130 RETURN
9999 END

Fig. 13-5. program to calculate table lookup interpolation noise

two sums, which represent noise and signal energy over the same test period,
are divided to obtain the SiN ratio.

Figure 13-5 is a program written in BASIC for estimating the SiN
ratio of the table lookup method with specified parameters. The subroutine
starting at statement 2,000 should look at the variable T, which represents
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time, and return the corresponding ideal tone sample by storing it in S. T
will always be between 0 and 1 but will never equal 1. The range of Ss
returned is not important but should be reasonable. The effect of a table
lookup tone-generation routine is simulated by quantizing T according to
the specified number of table entries and calling the ideal tone-generator
subroutine.

The program executes in two parts. The first part runs 1,000 samples
through and accumulates the mean of the ideal samples and the mean of the
difference. The second part runs another 1,000 samples to compute the rms
difference as described earlier. Phase shift due to truncation in the table
lookup is also corrected. When complete (the program may run for several
minutes on many systems) it prints a single number, which is the SiN ratio
in decibels. Note that this is an absolute worst case, since all noise frequen
cies including those that would be stopped by the DAC's filter are included.
A figure ;n better agreement with actual audible noise would be about 5 dB
better.

Figure 13-0 gives some results from running the program. Table sizes
of 256, 512, and 1,024 were tried with no interpolation and with linear
interpolation. Two waveforms were also tried, one being a simple sine wave
and the other being a fairly rich waveform having an equal mix of fundamen
tal, 2,3, 5,8, 11, 14, and 17th harmonics.

A. NO INTERPOLATION
1. Sine waveform

a. 256 points 42.99 dB
b. 512 points 49.03 dB
c. 1024 points 55.05 dB

2. Complex waveform

a. 256 points 23.56 dB
b. 512 points 29.55 dB
c. 1024 points 35.41 dB

B. LINEAR INTERPOLATION

1. Sine waveform

a. 256 points 85.19 dB
b. 512 points 97.23 dB
c. 1024 points 109.28 dB

2. Complex waveform

a. 256 points 42.75 dB
b. 512 points 54.76 dB
C. 1024 points 66.82 dB

Fig. 13-6. Worst case table noise for various combinations of table length,
stored waveform, and interpolation. (A) No interpolation. (B) Linear
interpolation.
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Filling the Table
Once a. suitable table size and interpolation method has been deter

mined, the remaining task is to fill the table with waveform samples. Since
the table is seldom, if ever, filled in real time, a variety of techniques is
applicable.

Probably the simplest method conceptually is drawing a waveform by
hand on a piece of graph paper (or a graphic digitizer) and then entering the
sample values into the table. Although simple in concept, there are a number
of constraints that should be kept in mind. One is that the table must
contain exactly one cycle of the waveform; therefore, the first and last sam
ples are the same as any other adjacent pair and must be continuous. When
drawing, some forward planning is necessary to complete the cycle exactly at
the end of the scale. Alternatively, the cycle can be drawn freehand and the
grid lines added afterward in the proper scale.

This same constraint applies if one desires to capture a musical instru
ment sound in a table. When digitizing the waveform, one possibility is to
simply adjust the sample rate and the tone frequency until one cycle exactly
fills N samples. Another alternative is a sample rate conversion program that
in effect does superinterpolation in order to adjust the sample rate after
several cycles of the waveform have been digitized.

When drawing by hand, it is very easy to come up with waveforms
with such strong upper harmonics that alias distortion and noise can be a
problem when the table is scanned with pointer increments larger than 1.0.
Thus, one should be careful to draw reasonably smooth curves rather than
sharp angles or discontinuous jumps. Note that if a perfect sawtooth
waveform were placed in a table, the result when scanned would be identical
to the sawtooth oscillator studied earlier.

Table Filling by Fourier Series

One of the best ways to fill the table is to specify the amplitudes and
optionally the phases of the harmonics desired in the waveform and then use a
Fourier series or Fourier transform program to compute the table entries. The
result when the table is scanned is a tone with the exact harmonic makeup
specified. Since the timbre of the tone has a much stronger relation to the
harmonic structure than to the appearance of the waveform, experimentation
to find the desired timbre will be easier with the Fourier series approach.

Another advantage is that alias distortion can be positively controlled.
Since the exact harmonic makeup of the table content is known, one simply
avoids having the highest harmonic of the highest frequency tone generated
using the table ever get high enough to produce an audible alias. In practice,
this means that tables used for the higher register voices should have a more
restricted spectrum than those used for the lower-pitched voices. For example,
if the sample rate is 30 ks/s, the DAC filter cuts off at 10 kHz, and the
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highest note played is C6 (two octaves above middle C, 1,046 Hz), the
highest harmonic present in the table should be about the 18th. This would
alias to about 11.2 kHz, which would be attenuated. Any harmonics higher
than the 18th would alias to frequencies lower than 11 kHz and would be
attenuated little if any. For a bass voice with an upper limit of middle C, one
could go to about the 70th harmonic with no problems.

Actually computing the waveform that corresponds to a particular set
of harmonic amplitudes is quite simple in BASIC, although slow. Essentially
one computes sine waves at the fundamental and harmonic frequencies,
multiplies each by its corresponding amplitude specification, and adds them
up. For example, assume that a waveform with 1 unit of fundamental, 0.5
unit of second harmonic, and 0.15 unit of third harmonic is desired. Assume
further that the table size is 256 and the table entries are 8-bit twos
complement numbers. Since the sin function in BASIC expects angles in
radians, the angle increment that corresponds to a table increment of 1.0 is
27T/256 or 0.024544. Thus, we will start the angle, A, at 0, compute the
first table entry, increment A by 0.024544, compute the second entry, and
so on until the 256th entry is done. The preliminary value of a table entry,
therefore, is equal to sin(A)+O. 5sin(2A)+0. 15sin(3A). This assumes that
all of the phase angles are zero. If a 90° phase angle is desired for the third
harmonic, the third term of the expression above should be changed to

O. 15sin(3A + 1. 5708), where 1. 5708=(90)(27T)/360.
After the preliminary table entries are computed, they must be ad

justed and converted into binary integers for use by the table-scanning
routine, which will undoubtedly be written in assembly language. The first
step is to normalize the existing entries so that there is no overflow when
conversion is done but at the same time the full-scale range is used in order to
minimize quantization noise. This is done by scanning the table and finding
the entry with the largest absolute value, which will be called M. Then each
entry in the table is multiplied by 127/M and "poked" into memory at the
locations reserved for the table. The poke function available in many mi
crocomputer BASICs converts the adjusted entry from floating point to the
single-byte twos-complement integer desired.

Figure 13-7 implements these operations in an easy-to-use form. The
A array holds the harmonic amplitudes and the P array holds the phases. N
is a variable that specifies the highest harmonic to process. Ideally,
amplitude-array elements should be between 0 and 1.0 for ease in visualizing
relationships between harmonics, although the normalization process allows
virtually anything. The phase entries range from 0, which represents zero
phase shift, to 1. 0 which is a 360° shift. Therefore 0.5 is 180°, 0.25 is
90°, etc. If phase of the harmonics is not important (it usually is not for
audio waveforms), the variable Q should be set to zero. This instructs the
program to set the phases randomly, since zero phase for all of the components
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1000 REM PROGRAM TO UTILIZE THE FOURIER SERIES TO FILL A WAVEFORM TABLE
1010 REM ARRAY A HOLDS THE AMPLITUDES OF THE HARMONICS
1020 REM ARRAY P HOLDS THE PHASES OF THE HARMONICS
1030 REM THE ZEROTH ELEMENT OF A AND P CORRESPONDS TO THE DC COMPONENT
1040 REM VARIABLE N HOLDS THE NUMBER OF THE HIGHEST HARMONIC TO PROCESS
1050 REM VARIABLE MHOLDS THE SIZE OF THE TABLE TO GENERATE
1060 REM VARIABLE Q IF 0 SELECTS RANDOM PHASES, IF 1 USES ARRAY P
1070 REM ARRAY T IS THE GENERATED TABLE WITH ALL ENTRIES BETWEEN BUT NOT
1080 REM INCLUDING -1 AND +1
1100 REM AMPLITUDE DATA
1110 DATA 0,.8,.6,.2,.55,1.0,.7,.3,.2,.1,.05
1120 REM PHASE DATA
1130 DATA 0,0, .2,.4,.7, .45, .1, .5, .85, .9,0
1140 LET N=10
1150 LET M=256
1160 LET Q=l
1200 REM SET UP THE AMPLITUDE AND PHASE ARRAYS
1210 FOR 1=0 TO N
1220 READ A( I)
1230 NEXT I
1240 FOR 1=0 TO N
1250 IF Q=O GOTO 1270
1260 READ P(I)
1270 GOTO 1280
1270 LET P(I)=RND(l)
1280 NEXT I
1300 REM MAIN LOOP TO COMPUTE PRELIMINARY TABLE CONTENTS
1310 FOR 1=0 TO M-1
1320 LET T(I )=0
1330 LET A1=6.28318*I/M
1340 FOR J=O TO N
1350 LET T(I)=T(I)+A(J)*COS(J*A1+6.28318*P(J))
1360 NEXT J
1370 NEXT I
1400 REM SCAN RESULTING TABLE FOR MAXIMUM ABSOLUTE VALUE
1410 LET A1=0
1420 FOR 1=0 TO M-1
1430 IF ABS(T(I)~A1 THEN LET A1=ABS(T(I))
1440 NEXT I
1500 REM NORMALIZE THE TABLE
1510 FOR 1=0 TO M-1
1520 LET T(I)=T(I)/A1*.99999
1530 NEXT I
1600 REM ADD CODE HERE TO OUTPUT THE TABLE IN SUITABLE FORM
1700 STOP
1800 END

Fig. 13-7. Program to optimally fill waveform tables

almost always produces waves with a single high-amplitude peak and low
average amplitude elsewhere, which is less than optimum for low noise. The
array T is the waveform table containing values between - 1 and + 1 when
the program returns. Additional code to convert the values into integers with
the appropriate range and to store them in the final waveform table is easily
added.

Assembly language can also be used to construct the table in 1% to
10% of the time required by a BASIC program. Part of the improvement is
due to more efficient program execution, while the rest is due to the use of
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fixed-point rather than floating-point arithmetic. Only the sin function poses
any computational difficulty and that can bypassed through use of a sine
table with a length equal to the waveform table being filled. Chapter 18 will
describe the use of integer and fractional arithmetic to maximize the speed of
digital synthesis computation.

Dynamic Timbre Variation

In a voltage-controlled synthesizer, the tone generators usually put out
an unchanging waveform that is dynamically altered by processing modules.
Although the same can be done in direct synthesis with digital filters, the
table method of tone generation lends itself well to types of timbre variation
not easily accomplished with filters.

One technique that is quite practical involves two waveform tables and
interpolation between them. The idea is to start with the waveform in Table
A and then gradually shift to a different waveform in Table B. The arithmetic
is actually quite simple. First, a mixture variable ranging between 0 and 1.0
is defined, which will be called M. The contribution of waveform B to the
resultant waveform is equal to M and the contribution of A is 1.0 - M.
The actual resultant samples are computed by evaluating
Sr=(l-M)Sa+MSb, where Sr is the result sample, Sa is a sample from the
A table, Sb is the B-table sample, and M is as before. Thus, as M changes
from 0 to 1.0, the mixtute changes in direct proportion.

In actual use, M should be updated frequently enough so that it
changes very little between updates. Also the same table pointer should be
used on both tables to insure that they are in phase. If these rules are
followed, the transition is glitch- and noise-free even for very fast transitions.
The technique is not limited to two tables either. One could go through a
whole sequence of tables in order to precisely control a very complex tonal
evolution.

Speaking of evolution, it would be desirable to know exactly what the
spectrum of the tone does during the transition. If each harmonic has the
same phase in the two tables, then the amplitude evolution of that harmonic
will make a smooth, monotonic transition from its amplitude in tone A to its
new amplitude in tone B.

Things get quite interesting, however, if they are not in phase. Depend
ing on the phase and amplitude differences between the two tables, any
number of things can happen as shown in Fig. 13-8. The graph shows
amplitude and phase variations of an arbitrary harmonic during a linear
transition from wave A, where this harmonic has an amplitude of 0.4 units,
to wave B, where its amplitude is 0.9 units. Its phase in wave A is taken as a
zero reference and its phase in wave B is the parameter for the curves. When
the phase of this harmonic in wave B is also zero, the amplitude transition is
linear. It becomes progressively nonlinear and even dips momentarily along
its rise as the phase difference approaches 1800

•
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Fig. 1~8. Time-variable interpolation between two sine waves. (A) Amplitude
contours; phase difference is parameter. (B) Phase contours;
phase difference is parameter.

Note on the phase curve that the phase of the resultant shifts during the
transition as well. This dynamically shifting phase means that the harmonic
frequency is actually shifting during the transition region! The magnitude of
apparent frequency shift is proportional to the instantaneous slope of the
phase curve. Thus, at the beginning and end of the transition region, the
frequency is unchanged, but it may momentarily increase or decrease in the
middle.

The preceding applies to each harmonic in the two waves indepen
dently. Thus, a complex harmonic evolution in which some change linearly,
some nonlinearly, and some undershoot is easily set up merely by altering the
harmonic phases in one of the waveforms. It is important to realize that,
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while there is a great variety of possible tranSItiOnS, the technique is not
general enough so that any arbitrary transition can be realized. One could
piecewise approximate an arbitrary transition by using a sequence of tables,
however.

Another method of dynamic spectrum variation using the table lookup
method actually amounts to a continuous Fourier series evaluation. One
would have a single table, which is actually a sine table, and program several
table pointers with pointer increments that are integer multiples of the
smallest increment. Then, using each pointer in sequence, the corresponding
samples would be fetched from the table, multiplied by a corresponding
amplitude factor, and the products added together to produce the output
sample. This is equivalent to treating each harmonic as a separate tone and
controlling its amplitude independently. Relative phase can be controlled by
temporarily adding a phase parameter to the pointer when table access is
performed but using the original pointer value when the increment is added.

The technique is not limited to exact harmonic frequencies either, since
the set of pointer increments need not be integer multiples. Most stringed
musical instruments in which the string is plucked or struck have upper
harmonics that are somewhat sharp with respect to the fundamental. Bells
and chimes have spectra that are decidedly inharmonic. For these and other
similar sounds, this is the only general technique available. Although
dynamic depth FM can also produce inharmonic spectra, only gross control is
possible; the details of the spectrum are pretty much left to chance.

While this technique can be time consuming for a large number of
harmonics, it is quite effective for a small number. Its primary strength over
faster Fourier techniques to be discussed is that amplitudes and phases of the
harmonics may be changed at any time and as rapidly as desired without
glitches and discontinuities in the composite waveform. In particular, a
hardware implementation of the technique can be extremely flexible and
effective as well as adequately fast for real-time tone generation.

Fourier Transformation

Fourier transforms are the cornerstone of many modern signal
processing techniques. They have a list of desirable mathematical properties
that seems never to end as well as many useful physical properties for synthesis
and analysis work. The main attractive feature about any kind of Fourier
operation is that it is a bridge between the time domain, which is concerned
with waveforms and sample values, and the frequency domain, which is con
cerned with the amplitudes and phases of frequency components. The pri
mary need for such a bridge is that the human ear hears in the frequency
domain, while sound waves are stored, synthesized, and observed (via an
oscilloscope) in the time domain.
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As we shall see, a block of samples representing a segment of sound can
be transformed into the frequency domain via Fourier transform and appear
as a bunch of harmonic amplitudes and phases. This data can then be trans
formed back into a block of samples unscathed and indistinguishable (within
round-off error) from the original block via an inverse Fourier transform!
Thus, Fourier transformation is a reversible operation. However, while in the
frequency domain, we can manipulate the spectrum directly by altering indi
vidual frequency component amplitudes as desired; no filrers to design and
tune are necessary. After the manipulation has been accomplished, the in
verse transform returns the data to the time domain. This is one way to
implement a filter with a completely arbitrary amplitude response.

One can also synthesize a spectrum directly and convert it to the time
domain for output. This can be valuable, since most sounds are more easily
described in terms of their spectrum rather than in terms of their waveforms.
Although a method was just discussed for Fourier series synthesis, the Fourier
transform can require far less computation if the required spectral detail is
great.

In source-signal analysis using digital techniques, the first step is
nearly always Fourier transformation of the input into spectral form. Since
the ear hears in the frequency domain, it is logical that audible features of the
source signal will be much more apparent than when in the time domain. In
most cases, transformation greatly reduces the quantity of data to be proc
essed as well.

Characteristics of the
Discrete Fourier Transform

Fourier transforms applied to sampled data are usually called discrete
Fourier transforms, since the time domain data are at discrete instants of time
and the frequency data are likewise at discrete frequencies. One very impor
tant property of the discrete transform is that the waveform data are specific
sized chunks called records, each consisting of a specified number of samples.
The discrete transform assumes that the samples in the record represent
exactly one cycle of a periodic waveform. This assumption must be made
regardless of whether or not it is actually true, as in Fig. 13-9. The trans
form then gives all of the harmonic amplitudes and phases of the assumed
periodic waveform.

This record-oriented property has several important ramifications when
constantly changing arbitrary sounds are to be synthesized or analyzed. For
most applications, the record size is fixed and often is a power of two. Thus,
even if a periodic waveform were being analyzed, it is unlikely that a tecord
would exactly span a single cycle. In order to reduce the resulting error, the
record size is chosen to be great enough to span se!Jeral cycles of the lowest
frequency expected. Then the partial cycle at the beginning and end of the
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Fig. 13-9. Actual and assumed waveforms used with discrete Fourier trans
form. (A) Actual wave to be analyzed. (B) Assumed wave that will
be analyzed.

record is of less consequence. Techniques are available to "tail out" the ends
of the record to minimize the error even further.

When a large but nonintegral number of cycles of a truly periodic
waveform is transformed, each harmonic of the actual waveform becomes a
group of harmonics of the assumed waveform. An example of this is shown in
Fig. 13-10 in which 5.31 cycles of a waveform containing fundamental,
second, and third harmonics in equal proportions was made into a record and
Fourier transformed. The three clusters of transform harmonics correspond to
the individual harmonics of the actual waveform. High-frequency energy
above the third waveform harmonic is due to the discontinuity caused by the
nonintegral number of cycles in the record.

When a section of changing sound is marked off into a record, the
spectrum reported by the Fourier transform is the average spectrum during
the time interval represented by the record. Thus, if one wishes to use
Fourier transformation to track a changing spectrum, the variation contours
will themselves be sampled curves with the sample period equal to the record
period. As a result, there is a tradeoff between long record size for minimum
"periodicity error" and maximum frequency resolution, and a short record
size for following rapidly changing sounds. One technique that is often
useful is to overlap successive records rather than arrange them end to end.
This way one can obtain a high "spectrum sample rate" while using ade
quately long records.

Fourier transform synthesis is also complicated by record orientation.
There are actually two problems. One is that an integral number of cycles of
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Fig. 13-10. Discrete Fourier transform of 5.31 cycles of a waveform containing
equal proportions of fundamental, second, and third harmonics

the synthesized waveform is just as unlikely to span the record as in the
analysis case. The other problem is that if the spectrum changes significantly
from one synthesized record to the next, there is likely to be a discontinuity
between the two records when they are spliced together. These synthesis
problems may be overcome by record overlapping and time-variable interpo
lation between the overlapping records.

The frequency domain data produced and used by the discrete Fourier
transform bear a very specific relationship to the corresponding sample rec
ord. In particular, the number of harmonics (including the zeroth or dc
component) in the frequency domain representation is exactly one-half the
number of samples in the time domain record plus one. It is easily seen that
any more than this would not make any sense. For example, let's assume a
record size of 200 samples taken at a sample rate of 10 ks/s. The record
duration, therefore, is 20 msec, which is also the period of the assumed
periodic waveform. A 20-msec period is a 50-Hz frequency for the assumed
wave, so harmonics would fall at 50 Hz, 100 Hz, 150 Hz, etc. It is easy to
determine, then, that there are 100 harmonics at or below one-half the
sample rate and, when the dc component is included, the total becomes 10 1,
which is one-half the record size plus one. This also shows that the frequency
resolution of the analysis is 50 Hz or simply the reciprocal of the record
duration.

Each harmonic in turn consists of two components. Although har
monics have been characterized by amplitude and phase so far, the Fourier
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transform normally deals in sine and cosine components of the harmonic,
which can be negative as well as positive. Conversion between the two forms
is avally quite simple. The overall harmonic amplitude, A, is given by
A = S2+C 2, where S is the sine component value and C is the cosine
component. The effective phase angle (in radians) is listed in the following
table:

c S Phase angle

+ + Tan- 1 (SjC)

+ Tan- 1 (Sj-C)
Tan- 1 (SjC)

+ Tan- 1
( -SjC)

Note that these formulas always give a positive amplitude and phase
angle. Also, C will have to be tested for zero before calculating the phase
angle to avoid division overflow. When C is zero, the phase is 7T/2 if S is
positive and 37T/2 if S is negative. When translating from amplitude and
phase to sine and cosine the formulas are: C=Acos(P) and S=Asin(P).
Thus, conversion from one form to the other is fairly simple.

The dc and Nyquist frequency components of the wave are a special case,
however. The cosine part of the zeroth harmonic is the actual dc component,
while the sine part would be expected to be zero, since a zero frequency wave
cannot have a phase angle other than zero. For mathematical completeness, it
is also necessary to consider the harmonic at exactly one-half the sample rate.
As it turns out, the Nyquist frequency harmonic must have a zero sine part
also. Note that if this Nyquist frequency component is very strong, it is an
indication of serious aliasing in the data. Thus, in a real audio signal applica
tion, its existence can usually be ignored.

Now, if the harmonic components are counted up, we find that there is
exactly the same quantity of numbers forming the frequency domain repre
sentation as are in the time domain representation. Actually, this is a re
quirement if the transformation is to be precisely reversible for any arbitrary
sample set as was stated earlier. Fourier transformation is exactly what the
name implies, a data transformation. It alone is not a magic data compression
technique.

Slow Fourie,. Transform

Before delving into the fast Fourier transform, it is necessary to under
stand how the straightforward but slow version works. A few pages ago there
was some discussion about filling a waveform table by evaluating a Fourier
series. By making a couple of modifications to the procedure, the inverse
(frequency domain to time domain) slow Fourier transform results. The first
modification is that the number of samples generated in the output record
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will be exactly twice the number of harmonics in the input record. The other
modification is for the sine and cosine form of the harmonic data. Thus,
when filling a waveform table of 256 entries, 128 harmonics must be
specified, although many if not most of the higher ones may be zero to avoid
aliasing problems when the table is used for synthesis.

The program segment below.illustrates the inverse slow Fourier trans
form. The "C" and "5" arrays hold the cosine and sine harmonic data,
respectively. The de component uses subscript 0, the fundamental uses sub
script 1, etc. Thus, the cosine component of the eighth harmonic would be
stored in C(8) and the sine component would be in 5(8). During execution,
the time samples will be stored in the T array, which also starts at subscript 0
and is assumed to initially contain zeroes. The constant N is simply the
number of samples in the record and should be even.

1000 FOR 1=0 TO N/2-1
1001 FORJ=O TO N-l
1002 LET T0)=T0)+C(I)*COS(6.283l8*I*J/N)
1003 NEXT J
1004 NEXT I

The outer loop steps through the harmonics starting at the zeroth and ending
one short of N /2. The inner loop steps through all of the time samples for
each harmonic adding the specified cosine and sine components to the cur
rent content of the samples.

The "forward" transform, which converts time samples into harmonic
components, however, is what most people have in mind when they speak
about a Fourier transform. Unfortunately, its computation is not intuitively
obvious, although it turns out to be no more complex than the inverse
transform. The basic approach for determining the amplitude of a component
with a particular frequency and phase is to generate samples of the sought
component, multiply them by corresponding samples of the signal to be
analyzed, and then add up the products. The sum, after being divided by
one-half the record size for averaging and mathematical anomalies is the
amplitude of the signal component having that frequency and phase! (The de
component will be twice its correct amplitude, however.)

The truth of this can be comprehended by remembering that multiply
ing two sinusoidal signals is equivalent to balanced modulation and produces
a signal having only sum and difference frequency components. The reader
should also recall that any sinusoidal wave averaged over an integral number
of cycles is zero. It is easily seen then if the two signals being multiplied have
different frequencies, that the product consists of two sinusoidal waves that,
when averaged over a duration having an integral number of periods for'both,
gives zero. If the frequencies being multiplied are the same, the difference
frequency is zero, which is de and results in an average value equal to the
product of the signal amplitudes if they are perfectly in phase. When not in
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phase, the average is proportional to the cosine of the phase difference.
Fortunately, this procedure works even when one of the signals has many
frequency components; if one component matches it will contribute a de
component to the product samples. Thus, by using two "probe" waves 90°
apart in phase at all of the possible harmonic frequencies of the data record,
one may determine its complete harmonic amplitude and phase makeup.

The program segment below, which is remarkably similar to the in
verse transform segment, performs discrete Fourier analysis. The C, S, and T
arrays and N are as before and C and S are assumed to be initially zeroes.

1000 FOR 1=0 TO N-l
1001 FOR ]=0 TO N/2-1
1002 LET CO)=CO)+T(l)*COS(3.14159*I*]/N)/(N/2)
1003 LET SO)=SO)+T(I)*SIN(3.14159*I*]/N)/(N/2)
1004 NEXT]
1005 NEXT I

The outer loop in this case scans the time waveform, while the inner loop
accumulates running averages of cosine and sine components of each har
monic. Note that the Nyquist frequency component is not computed. There
fore, if one transforms arbitrary random data and then transforms it back, the
result will not be exactly equivalent. However, practical, unaliased data will
be returned with only a slight roundoff error. Note also that in both of these
program segments that the inner and outer loops may be interchanged with
no real effect on the results.

Fast Fourier Transform

Examination of the preceding two program segments reveals that N2
useful multiplications and additions are required for the transformation. Use
ful is emphasized because a well-thought-out assembly language implemen
tation of the programs could eliminate multiplications within the cosine and
sine arguments by proper indexing through a sine table. Likewise, subscript
calculations can be eliminated by use of index registers. The division by N/2
in the forward transform may still be required, but it can be deferred until
the computation is completed and then need only be a shift if the record size
is a power of two. In the case of the inverse transform, the number of
multiplications may be cut in half by using the amplitude-phase form for the
harmonics rather than cosine-sine.

Even with the world's most efficient assembly language program, a
tremendous amount of computation is needed for even a moderate number of
samples. For example, 20-msec blocks taken at a 25 ks/s sample rate would
be 500 samples that, when squared, implies about a quarter of a million
operations for the transform. Upping the sample rate to 50 ks/s quadruples
the work ro a million operations. An efficient assembly language program on
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a minicomputer with automatic multiply would require about a minute for
such a transform, while a BASIC equivalent running on a microcomputer
might crunch on it overnight, and that is just one record!

Like many topics in computer science, the real key to speed lies in an
efficient algorithm rather than an efficient program. In the case of the
discrete Fourier transform, such an algorithm was first publicized in 1965
and results in an enormous reduction in computation at the expense of a
longer and rather difficult-to-understand procedure. The fast Fourier trans
form algorithm requires approximately Nlog2N multiplications and
additions instead of N2. This means that 512 samples need only about 4,500
operations, while 1,024 samples need about 10,000 operations. This is a
savings of 100-to-l for the 1,024-sample case!

Redundancy

The key to the fast Fourier transform (FFT) algorithm is identification
and systematic elimination of redundancy in the calculations executed by the
slow Fourier transform (SFT). From looking at the two program segments, it
is obvious that every possible product of samples (forward) or amplitudes
(inverse) and sine/cosine values is formed. Figure 13-11A shows how the sine
and cosine multipliers for each harmonic can be arranged in a square array.
The horizontal axis represents time, while the vertical axis represents fre
quency. The number at each intersection is a sample of the sine/cosine wave
for the row at the time designated by the column.

For the forward transform, one would first write the waveform sample
values as a row of numbers above the top of the coefficient array. Then each
sample would be multiplied by every coefficient in the corresponding column
with the product wtitten just below the coefficient. Finally, the products
would be added up by row and the sums written as a column at the right side
of the array. This column then represents the spectrum of the waveform. For
the inverse transform, the process would be reversed by starting with the
spectrum column, forming products by row, and adding by column to get a
row of time samples. Parts Band C of Fig. 13-11 show these operations for a
record size of 16 samples. Note that the row for the sine of the de compo
nent, which would otherwise be all zeroes, has been replaced by the sine of
the Nyquist frequency component.

Examination of the array reveals considerable redundancy in the prod
ucts, however. For example, the product of sample number 2 and the cosine
of 7T/2, which is 0.707, occurs four times. If in the computation, multipli
cation by a negative number is replaced by subtracting the product of the
corresponding positive number, then the product of sample 2 and 0.707 can
be reused eight times. Further computational savings are possible by skip
ping multiplication altogether when the cosine or sine values are zero or
unity. Doing all of this reduces the actual number of unique products to a
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mere 28 instead of the original 256! Although it is not immediately apparent
how the redundancies can be identified in a general algorithm, one can use
matrix theory and trigonometric identities and derive the FFT algorithm
from this rype of table.

A completely different way to look at the redundancy involves the
concept of decimation. As an example, consider a sample record with N
samples where N is even. Using the SFT, one could perform N2 operations
and wind up with the spectrum. Now consider splitting the record into two
smaller records with NI2 samples in each such that the even numbered
samples go to one record and the odd numbered ones to go the other. If an
SFT is performed on each record, it will require N 2/4 operations for a total of
only N 2/2 operations. The trick is to combine the two resulting spectrums
into one representing the true spectrum of the original record. This can be
accomplished by duplicating the even sample spectrum of N14 harmonics and
adding with a progressive phase shift the odd sample spectrum, also dupli
cated, to yield N12 harmonics total. The combination requires N extra
multiplications and additions.

If N is divisible by 4, the decimation operation could be repeated to
give (our records of N14 samples each. The SFT can be performed on each,
requiring only N 2/4 operations, and the four resulting spectrums combined
in two stages to form the final spectrum. In fact, if N is a power of two,
decimation can be repeated until there are NI2 subrecords, each having only
two samples as in Fig. 13-12. Note the resulting scrambled order of the
samples. This is called bit-reversed order because if the binary representation of
the scrambled sample numbers is observed in a mirror, it will appear to be a
simple ascending binary sequence.

Since the discrete Fourier transform of two samples is trivial (the cosine
component of the single harmonic is the sum of the sample values, while the
sine component is the difference), most of the computation is combining the
subspectra together in stages to form the final spectrum. The essence of the
FFT, then, is complete decimation of the time samples followed by recombi
nation of the frequency specrra to form the exact spectrum of the original
sample set.

Complex Arithmetic

At this point in the description of the FFT we will be forced to commit
a mathematical "copout" that is customary in such a discussion. In any case,
it will not only simplify the discussion but will facilitate the development of
an FFT program. The first step is to treat each harmonic, which has a cosine
and a sine component, as a single complex number. Although the cosine
component is normally called the "real" part and the sine component the
"imaginary" part, both are quite real as far as a physical waveform is con
cerned. Therefore, it is best to forget about "real" and "imaginary" and
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Fig. 13-12. Stages in decimation of a 16-sample record

consider the complex number as a compact method of representing a pair of
closely related but independent numbers. Accordingly, complex numbers
will be represented here as two ordinary numbers, real part first, separated by
a comma in a manner much like the two-dimensional coordinates of a point.

The cosine and sine multipliers used in the computation are also con
sidered to be complex numbers. Previously we used the cosine and sine of an
angle that incremented by 27T/N for the fundamental, 47T/N for the second
harmonic, etc. Now the cosine and sine of the angle will be treated as a single
complex number. Since the angles are always an integer times 27T/N, we can
define a complex function, W, such that W(I) =cos(27TI/N) ,sin(27TI/N) ,
where I is any integer and N is the number of points in the record under
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Fourier Multipliers Expressed as
Arguments of the Function

W(I) ~ COS(21TI/N), SIN(21TIIN)

N = 16

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
3 0 3 6 9 12 15 2 5 8 11 14 1 4 7 10 13
4 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 F

5 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11 r

6 0 6 12 2 8 14 4 10 0 6 12 2 8 14 4 10 e
7 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9 q
8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 u
9 0 9 2 11 4 13 6 15 8 1 10 3 12 5 14 7 e

10 0 10 4 14 8 2 12 6 0 10 4 14 8 2 12 6 n
11 0 11 6 1 12 7 2 13 8 3 14 9 4 15 10 5 c
12 0 12 8 4 0 12 8 4 0 12 8 4 0 12 8 4 Y
13 0 13 10 7 4 1 14 11 8 5 2 15 12 9 6 3
14 0 14 12 10 8 6 4 2 0 14 12 10 8 6 4 2
15 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Fig. 13-13. Fourier multipliers expressed as arguments of the function W(I) =

cos(21TJIN),sin(21TIIN). N = 16.

consideration which is constant throughout the FFT computation. If I ever
exceeds the range of a to N -1, it is customary to use the principal value,
which is simply I mod N. Finally, as if nothing is sacred, even the time
samples are considered to be complex numbers with a real part and an
imaginary part.

As a result of going complex, the number of harmonics is equal to the
number of complex samples. Thus, the forward FFT takes a set of N complex
time samples and generates a set of N complex harmonics. As we will see
later, all of the'intetmediate arithmetic in the FFT algorithm is also com
plex.

In the real world, which includes audio, the time samples are, of
course, real, which means that the imaginary parts are zero. The correspond
ing spectrum has only (N/2)+ 1 unique harmonics; the remaining (N/2)-1
are simply the complex conjugate (the signs of the sine components are reversed)
of the others less de and Nyquist frequency components. Thus, in actual use
with audio samples, one has N samples and (N/2)+ 1 harmonics, just as
before. Although the preceding implies considerable waste in the computa
tion, a method of eliminating it will be described later.



DIGITAL TONE GENERATION TECHNIQUES 449

With these conventions for representing everything as complex num
bers, the SFT coefficient matrix can be rewritten as in Fig. 13-13. The
numbers listed in the matrix are arguments to the W function mentioned
earlier needed to generate the proper complex multiplier. The operations
involved in going from time to frequency and back are the same as before,
except all arithmetic is now complex. In case one has forgotten (or never
knew), the basic arithmetic operations on two complex numbers, A,B and
C,D, are given below:

A,B + C,D = A+C,B+D
A,B C,D = A-D,B-D
A,B X Cp = AC- BD,AD+ BC

A,B _ AC+BD
C,D C2+D2

'

The nice thing about the complex form of the SFT is that it is com
pletely symmetrical. There are no special cases for dc or Nyquist compo
nents, and the form of the output is exactly the same as the form of the input.

The FFT Algorithm

At this point, we are ready to look at the FFT algorithm itself. Ac
tually, there are many different algorithms, each with an edge over the others
in certain applications. They all, within roundoff error, give the same result,
however. The one that will be described here is one of the most straightfor
ward and has the desirable property that sines and cosines (the W function)
are used in ascending order. In technical terms, it is a radix 2 FFT using time
decomposition and input bit reversal. Radix 2 means that the record size
must be a power of two. Other radices are possible, but two is the most
efficient, particularly in a binary computer.

The first step in the FFT is to completely decompose the input samples,
which means that they are scrambled in bit-reversed order as in Fig. 13-12.
Fortunately, the scrambling can be accomplished without need for a second
array. One simply programs two counters, one normal and one bit-reversed,
and iterates them from 0 to N -1. Whenever the bit-reversed counter is
numerically greater than the normal counter, the corresponding samples are
swapped. This is illustrated in Fig. 13-14 for N= 16, but the procedure
applies for any record size as long as it is a power of two. In assembly
language on a microprocessor, on~ could use just one counter and write a
bit-reversal function, which would take a binary number and return its
bit-reversed equivalent.
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Step Normal Counter Bit Reverse Counter Action

1 0000 0000 NONE
2 0001 1000 SWAP 1 & B
3 0010 0100 SWAP 2 & 4
4 0011 1100 SWAP 3 & 12
5 0100 0010 NONE
6 0101 1010 SWAP 10 & 5
7 0110 0110 NONE
6 0111 1110 SWAP 14 & 7
9 1000 0001 NONE

10 1001 1001 NONE
11 1010 0101 NONE
12 1011 1101 SWAP 13 & 11
13 1100 0011 NONE
14 1101 1011 NONE
15 1110 0111 NONE
16 1111 1111 NONE

0 3 4 6 7 9 10 II 12 13 14 15

o 8 4 12 10 6 14 13 II 15

Fig. 13-14. In-place bit-reverse scrambling

The second part of the procedure takes the scrambled sample set,
massages it using the W function with various arguments, and produces the
spectrum as output in natural ascending order. The computation is done in
place, which means that the sepctrum replaces the sample data with no inter
mediate storage required! Thus, the FFT is literally a transformation of the
data in the record.

A,a ------7------;~--- .....E,F

C,D----W(I)

COMPLEX
E,F A,S -t W{ll x (G.DI EXPRESSION

EAt COS (21Tlln)C SIN(2rrIInJ D NORMAL
F B + COS(21Tl/n)D + SIN(21Tllnl C EXPRESSION

Fig. 13--15. Nodes used in FFT butterfly diagram
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The massaging is best described using a special flowchart called a
butterfly diagram because of its appearance. The fundamental element of a
butterfly diagram is the node, which is illustrated in Fig. 13-15. There are
always two inputs to the node. One goes straight in, while the other is
multiplied by the W function of a specified argument before entering. In the
nQde, the two inputs are added together to form a single number, which may
then become the source for further computations. A node therefore implies
one complex multiplication and one complex addition. In a computer program,
this would be accomplished with four normal multiplications and additions.

Figure 13-16 shows the butterfly diagram for a 16-point (N= 16)
FFT. Note that there are N rows and 10g2N columns of nodes. The rows
correspond to storage locations that are initially filled with the scrambled
time samples and later become loaded with the spectrum harmonics. The
computation proceeds one column at a time starting from the time samples at
the left. In order to retain the in-place computation property of the al
gorithm, the nodes are evaluated in pairs. Each member of the pair uses the
same inputs and produces outputs on the same rows as the inputs. Further
more, these inputs are not used by any of the other nodes in the column.
Thus, after the node pair is evaluated, the node outputs can be stored in place
of the values used as their inputs. Careful examination reveals that the two
values of the W function used in each pair of nodes are always the negative of

TO

TB

T4

TI2

T2

TID

T6

DECIMATED Tl4

TIME
SAMPLES fI

T9

T5

TI3

T3

Til

T7

'15

Fig. 13-16. N = 16 FFT butterfly
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each other. This is important because the actual number of multiplications
required to evaluate the node pair can then be cut in half.

After the first column of nodes has been processed, everything is back
in storage in a partially transformed state, and processing of the next column
of nodes can begin. When the rightmost column has been evaluated, the
array contains the N complex harmonics. Note that for the first column the
nodes that should be paired for calculation are adjacent. In the next column,
the pair members are two apart, in the third column four apart, and so forth.
Also note that the mass of crossing lines forms a group of two nodes in the
first column, four nodes in the next column and so forth until there is only
one mass in the final column. These and other symmetries discovered by
examining the diagram should make the progression sufficiently clear so that
generalization for other values of N can be understood. Since the progression
is consistent from column to column, it is clear that a general FFT subroutine
can be written for any value of N that is a power of two.

Table 13-1 shows the actual sequence of intermediate results corre
sponding to the diagram. The example time samples are of a seven-harmonic
approximation to a sawtooth wave with a few degrees of phase shift included
to make life interesting. Note that the spectrum output starts with the dc
component in the zero array position, fundamental in position 1, etc. up to
the seventh harmonic in position 7. The Nyquist component is in position 8
(the sine part is always zero), while higher array positions contain the first
through the seventh harmonics again but in descending sequence and with
the sign of the imaginary components (sines) flipped. Also note that the
correct amplitudes of the frequency components have been multiplied by N/2
except for the dc component, which is N times too large.

An FFT Subroutine in BASIC

Figure 13-17 is an FFT program written in BASIC. Although BASIC
and fast are contradictory terms, the program serves to illustrate the al
gorithm and to allow the reader to become familiar with it. The array of
complex input samples is actually stored and handled as two arrays of normal
numbers; D 1 being the real part and D2 being the imaginary part. Note that
the array subscript starts at zero. When the transformation is complete, the
spectrum is stored in the same two arrays. To insure that N is a power of two,
the record size is specified by K, which is 10gzN and must be a positive
integer.

In the program itself, statements 3110 to 3125 scramble the naturally
ordered time samples into bit-reversed order using the method illustrated
earlier. N3 being the "for" loop index counts naturally from 1 to N. Nl in
conjunction with statements 3114 to 3117 acts like a bit-reversed counter
taking on successive values of 0, 8, 4, 12, 2, etc. (for the N= 16 case).
Whenever N 1 is greater than N3, the samples pointed to by N 1 and N3 are
swapped.
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3000 REM FAST FOURIER TRANSFORM USING TIME DECOMPOSITION WITH
3001 REM INPUT BIT REVERSAL
3002 REM COMPLEX INPUT DATA IN ARRAY D1 (REAL PART) AND D2 (IMAGINARY
3003 REM PART).
3004 REM COMPUTATION IS IN PLACE, OUTPUT REPLACES INPUT
3005 REM K SPECIFIES NUMBER OF POINTS, K=LOG(2)N
3100 REM SCRAMBLE THE INPUT DATA INTO BIT REVERSED ORDER
3110 N=2**K
3111 N1=0
3112 N2=N-1
3113 FOR N3=1 TO N2
3114 N4=N
3115 N4=N4/2
3116 IF N1+N4>N2 GOTO 3115
3117 N1=N1-INT(N1/N4)*N4+N4
3118 IF N1<=N3 GOTO 3125
3119 Tl=D1(N3)
3120 D1(N3)=D1(N1)
3121 D1(Nl)=Tl
3122 T2=D2(N3)
3123 D2(N3)=D2(Nl)
3124 D2(N1)=T2
3125 NEXT N3
3200 REM DO THE COMPLEX TRANSFORM
3210' N4=1
3211 N6=2*N4
3212 FOR N3=0 TO N4-1
3213 A=N3*3.1415927/N4
3214 C=COS(A)
3215 S=SIN(A)
3216 FOR N7=N3 TO N-1 STEP N6
3217 N8=N7+N4
3218 T1=C*D1(N8)-S*D2(N8)
3219 T2=C*D2(N8)+S*D1(N8)
3220 Dl(N8)=D1(N7)-Tl
3221 D2(N8)=D2(N7)-T2
3222 Dl(N7)=D1(N7)+T1
3223 D2(N7)=D2(N7)+T2
3224 NEXT N7
3225 NEXT N3
3226 N4=N6
3227 IF N4<N GOTO 3211
3228 RETURN

Fig. 13-17. FFT subroutine in BASIC

Statements 3210 to 3227 implement the butterfly diagram and consist
of three nested loops. The outer loop, which spans lines 3211 to 3227, is
executed for each column of nodes. The next loop starts in line 3212 and is
iterated for each different principal value of the W function. The innermost
loop starting at 3216 covers all of the pairs of nodes using a particular
principal value. In the N = 16 example, the outer loop will be executed four
times for the four columns of nodes. The middle loop will be executed one
time for column 1, twice for column 2, four times for column 3 and eight
times for the final column. The inner loop count is the inverse of the middle
loop and is executed 8, 4,2, and 1 time for each iteration of the middle loop.
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Innermost in the nest of loops is the useful calculation for a pair of
nodes. The complex numbers that form the node inputs, outputs, and W
function are handled one part at a time according to the rules of complex
arithmetic. Note that only the lower argument value (principal value) ofW is
explicitly evaluated, since the upper argument value gives the same result
with opposite sign. A count of useful operations for the node pair gives four
multiplications and six additions. These statements are evaluated (NlogzN)/2
times, which gives a total of 2NlogzN multiplications and 3Nlog2N
additions.

So far the FFT has been described in terms of transforming a set of time
samples into a frequency spectrum. Because of the symmetry of the W
coefficient array, transforming a spectrum into a sample record requires only a
trivial change in the FFT subroutine. All that is necessary is to place a minus
sign in front of N3 in statement 3213. When this is done, the spectrum to be
transformed is stored in the D arrays in the same format that it appears after a
forward transform (be sure to store both the normal and the conjugate
spectrum) and the modified FFT subroutine is called. The time samples will
then appear in the D1 array in natural sequence with the first one at the zero
subscript position. No amplitude adjustment is necessary after the inverse
transform.

Modification for Real Data

As was noted earlier, the complex formulation of the FFT tends to be
wasteful when the time samples are real. The multiplication count turns out
to be twice the promised value, which is due to the assumption of complex
data and the redundant set of computed harmonics. Fortunately, it is possi
ble to eliminate the wasted storage and redundant spectrum by the addition
of a real/complex conversion subroutine.

For the forward FFT, the idea is to store the even-numbered time
samples in the real part of the data array and the odd-numbered samples in
the imaginary part, thus doubling the number of samples stored. Next, the
FFT is performed as described previously. The spectrum that emerges is no
longer redundant and typically looks like a list of random numbers. At this
point, a complex-to-real conversion is performed on the spectrum, which
results in a complete, conventional spectrum of N + 1 harmonics for the 2N
data points. For convenience, the Nyquist component is stored as the sine
part of the dc component which would otherwise always be zero.

For an inverse FFT, the spectrum is first entered into the data array
normally with no duplication required. Next a real-to-complex conversion is
performed that transforms the set of real harmonics into a complex set.
Finally, the inverse FFT is executed to generate a list of 2N time sample1:
stored in even-odd order as before.

Figure 13-18 is a diagram of the computations involved in the
complex-to-real conversion. First the dc and Nyquist components are both
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Fig. 13-18. Complex-to-real transformation for N = 16
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derived from the de term in the complex spectrum according to the "/'
function. Next the pairs of harmonics that would have been conjugates if the
even-odd storage arrangement were not done are combined according to the
"g" function to produce a pair of real harmonics. Finally, the "h" function is
applied to the remaining N/2th spectral component. Note that cosines and
sines of angle increments half the size of the smallest increment used in the
FFT are utilized in evaluating g much like an extra step in the FFT. In fact,
the whole procedure can be regarded as an extra column of nodes in the FFT
algorithm.

Figures 13-19 and 13-20 are BASIC subroutines for complex-to-real
and real-to-complex conversion, respectively. The complex-to-real routine
also scales the spectrum output so that all of the harmonics, including the de
component, are of the correct amplitude. Except for scaling, the real-to
complex routine undoes what the complex-to-real routine does.

The conversion adds essentially 2N multiplications to the FFT, which
gives a total of 2N +2NlogzN for 2N data points. If M = 2N = the number
of real data points, this is equal to MlogzM multiplications, which is the

4000 REM COMPLEX TO REAL TRANSFORMATION FOR FOURIER TRANSFORM
4001 REM IF REAL DATA POINTS ARE ALTERNATELY STORED IN D1 AND 02
4002 REM ARRAYS, I.E. TO->01(0), T1->02(0), T2->01(I), T3->02(1),
4003 REM THEN THIS ROUTINE CONVERTS THE COMPLEX SPECTRUM INTO A
4004 REM REAL COSINE-SINE SPECTRUM.
4005 REM THE ROUTINE ALSO DOES AMPLITUDE CORRECTION ON THE DC
4006 REM COMPONENT AND THE HARMONICS SO THAT THE FINAL SPECTRUM OUTPUT
4007 REM IS THE TRUE SPECTRUM OF THE WAVE.
4008 REM THE SINE PART OF THE DC COMPONENT IS SET EQUAL TO THE NYQUIST
4009 REM COMPONENT AND SHOULD BE NEAR ZERO IF THE SAMPLE RATE OF THE
4010 REM DATA WAS ADEQUATE.
4011 REM THIS ROUTINE USES THE SAME INPUT AS THE FFT ROUTINE
4100 N=2**K
4200 REM COMPUTE DC AND FOLDOVER COMP6NENTS
4201 Tl=D1(0)
4202 T2=D2(0)
4203 D1(0)=(T1+T2)/(2*N)
4204 D2(0)=(T1-T2)/(2*N)
4300 REM COMPUTE REMAINDER OF FREQUENCY COMPONENTS
4301 FOR N1=1 TO N/2
4302 N2=N-N1
4303 C=COS(-3.1415927*N1/N)
4304 S=SIN(-3.1415927*N1/N)
4305 T1=(D1(N1)+01(N2))/2
4306 T2=(D1(N1)-D1(N2))/2
4307 T3=(D2(N1)+D2(N2))/2
4308 T4=(D2(N1)-D2(N2))/2
4309 T5=T2*S-T3*C
4310 T6=T2*C+T3*S
4311 D1(N1)=(T1-T5)/N
4312 D1(N2)=(T1+T5)/N
4313 D2(N1)=(T4-T6)/N
4314 D2(N2)=(-T4-T6)/N
4315 NEXT N1
4316 RETURN

Fig. 13-19. Complex-to-real spectrum transformation routine in BASIC
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5000 REM REAL TO COMPLEX TRANSFORMATION FOR INVERSE FOURIER TRANSFORM.
5001 REM THIS ROUTINE CONVERTS A REAL COSINE-SINE SPECTRUM INTO A
5002 REM COMPLEX SPECTRUM THAT WHEN INVERSE FOURIER TRANSFORMED WILL
5003 REM PRODUCE REAL DATA POINTS STORED SUCH THAT EVEN NUMBERED
5004 REM POINTS ARE IN THE REAL PART OF THE DATA ARRAY AND ODD
5005 REM NUMBERED POINTS ARE IN THE IMAGINARY PART OF THE ARRAY.
5006 REM THIS ROUTINE IS THE INVERSE OF THE COMPLEX TO REAL ROUTINE
5007 REM EXCEPT FOR SCALING WHICH HAS BEEN SET FOR THE PROPER OUTPUT.
5008 REM THIS ROUTINE FOLLOWED BY AN INVERSE FOURIER TRANSFORM IS THE
5009 REM EXACT INVERSE OF A FORWARD FOURIER TRANSFORM FOLLOWED BY THE
5010 REM COMPLEX TO REAL ROUTINE.
5011 REM THIS ROUTINE USES THE SAME INPUT AS THE FfT ROUTINE
5100 N=2**K
5200 REM RESTORE DC AND FOLDOVER COMPONENTS
5201 Tl=D1(0)
5202 T2=02(0}
5203 01(O}=T1+T2
5204 D2(O}=T1-T.2
5300 REM COMPUTE REMAINDER OF FREQUENCY COMPONENTS
5301 FOR N1=1 TO N/2
5302 N2=N-N1
5303 C1=COS(-3.1415927*Nl/N}
5304 Sl=SIN(-3.1415927*N1/N}
5305 T1=(Ol(N1)+D1(N2}}/2
53Q6 T4=(D2(N1}-02(N2})/2
5307 T5=(D1(N2)-D1(N1}}/2
5308 T6=( -02 (N1) -02 (N2) )/2
5309 T2=T5*Sl+T6*C1
5310 T3=T6*Sl-T5*C1
5311 D1(N1}=T1+T2
5312 01(N2}=T1-T2
5313 D2(N1}=T3+T4
5314 D2(N2)=T3-T4
5315 NEXT N1
5316 RETURN

Fig. 13-20. Real-to-complex spectrum conversion routine in BASIC

promised value. With clever programming to avoid multiplication by zero
and one in the FFT and real conversion routines (especially in the first
column of the FFT), one can ultimately reach a lower limit of
M[(logzM)-2] multiplications, which is a significant reduction when Mis
small.

Using the FFT for Synthesis

Although the greatest value of the FFT is in sound analysis and modifi
cation, it is covered in this chapter because it is also a powerful "synthesis
from-scratch" technique. Unfortunately, its record-oriented properties com
plicate application to changing spectra with arbitrary frequency components.
However, if the required spectral detail is great, the FFT can be much more
efficient in computing samples than a direct Fourier series evaluation in spite
of these complications.

In all FFT-based synthesis procedures, the general idea is to compute a
sequence of sample records using the FFT and then combine them sequen-
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Fig. 13-21. Generating an arbitrary frequency sine wave with the FFT. (A)
Record boundaries with a 256-Hz wave. (8) Phase correction
between records.
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tially in time to produce a continuous string of samples suitable for further
processing or output to a DAC. Generally, the record size is chosen once and
remains constant throughout the synthesis but a dynamically variable record
size is conceivable. If the synthesis result is intended for human consump
tion, record sizes in the lO-msec to 50-msec range provide the best tradeoff
between frequency and time resolution consistent with human perceptual
capabilities.

In order to get acquainted with some of the problems and their
solution, let's first consider the task of generating a sine wave of an arbitrary
but constant frequency using the FFT. For the purpose of illustration, we will
assume a sample rate of 10 ks/s = 0.1 msec/sample, a record size of 256 =

25.6 msec, and a sine wave frequency of 200 Hz. The first problem that will
be noted is that 200 Hz is not an exact harmonic of 1/25.6 msec = 39.0625
Hz. The closest harmonic is the fifth, which is 195.3 Hz, an error of about
one-third semitone. If FFT synthesis is to be useful, a way must be found to
produce such intermediate frequencies accurately.

Figure 13-21A illustrates the problem. Shown is an exact sampled
200-Hz waveform and the record boundaries for 256-sample records. Obvi
ously, the phase of the desired wave with respect to the record boundaries is
different for each record. In fact, the phase advances by
(200 - 5 X 39.0625)/39.0625 = 0.12 cycle every record period. Since the
spectrum fed to the FFT includes phase, one can increment the phase of the
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fifth harmonic by 0.12 X 2n before each record IS calculated and thus
generate the correct average frequency.

Unfortunately, there is a substantial glitch where the records are
spliced together as shown in Fig. 13-21B. This is due to the fact that the
wave frequency within the records is still 195 Hz and the entire phase
correction takes place between the 'records. Such discontinuities are quite
objectionable. If there was a way to spread the correction throughout the
record, perhaps the results would be better.

One method of accomplishing spreading involves the concepts of record
overlap and interpolation. Overlap means that the end of one record overlaps
the beginning of the next rather than butting up against it. Time-variable
interpolation is used to combine the overlapping portions of the records into
a single string of samples in the overlap area. With this technique, the sharp
discontinuities seen earlier are spread out over the overlap interval.

Figure 13-22 shows some possibilities for overlapping and interpola
tion. Figure 13-22A shows an overlap factor of 50%, which means that 50%
of the time there is overlap between records. Thus, a new record is started
every 0.75 times the record length. figure 13-22B shows 100% overlap
where a new record is started when the previous one is only half complete.
Even higher orders of overlap are possible. Obviously, overlapping results in
more computation, since more records are needed per unit time.

The interpolation needed in the overlap areas is accomplished with the
same method described earlier regarding interpolation between two
waveform tables. One requirement is that the "weighting curves" always
sum up to 1. 0 during the overlap interval. A linear curve is the simplest that
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Fig. 13-22. Record overlap and interpolation. (A) 50% overlap. (8) 100% over
lap. (C) Interpolation curves for 50% overlap. (0) Linear interpola
tion for 100% overlap. (E) sin2 interpolation for 100% overlap.
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satisfies this requirement. A better curve for 100% overlap is the sin2 curve,
which also gives a sum of 1.0 (remember that sin2A +cos2A = 1).

Now, how does overlap and interpolation affect the job of creating a
200-Hz tone with the FFT? Taking the case of 100% overlap, it is immedi
ately obvious that the phase shift per record of the fifth harmonic needs to be
only one-half of its previous value or 0.06 cycle because there are now twice
as many records per unit time. A general expression for the phase shift per
record period with 100% overlap is: P=D(F-H)/2, where P is the phase
shift in terms of cycles/record period, F is the desired frequency in hertz, H is
the nearest harmonic frequency of the record duration, and D is the record
duration. A little study will reveal that the largest possible phase shift, 0.25,
occurs when the desired frequency falls midway between harmonics.

How well does overlap and interpolation work in smoothing out distor
tions in the synthesis? Figure 13-23 was prepared using a "worst-case"
situation of synthesizing a 214.8-Hz wave (halfway between fifth and sixth
harmonics) with a record duration of 25.6 msec, 100% overlap, and a sin2

interpolation function. The waveform itself in Fig. 13-23A seems to be
essentially perfect when compared to the ideal below but shows 34% or about
3 dB of amplitude modulation, which is due to partial phase cancellation
during the interpolation. Such amplitude modulation is not always objec
tionable for musical applications, since it occurs at the relatively slow record
frequency.

A more sensitive analysis was performed in Fig. 13-23B by taking the
FFT of 51.2 msec of the synthesized waveform, which, ideally, would show
an 11th harmonic component and nothing else. In fact, there is a small
amount of distortion clustered around the signal frequency that is caused by
the amplitude modulation. With arbitrary frequencies, the phase shift per
record averages only half the maximum, which corresponds to about 7.9% or
0.7 dB of modulation. Higher overlap factors and multiway interpolation in
the synthesis can reduce the distortion dramatically. A four-to-one overlap,
for example, exhibits 0.6% worst-case amplitude modulation, which is only
about 0.05 dB and therefore quite inaudible.

The Phase-Derivative Spectrum

At this point, let's examine the best way to represent an arbitrary
spectrum for use with FFT synthesis. First, we will assume that the arbitrary
spectrum, which will be called the source spectrum, is given as a list of
sinusoidal components with each component characterized by an amplitude
and a frequency parameter. If the spectrum is dynamically changing, there
will be such a list for each record period, >yhich means that the amplitude
and frequency parameters are sampled functions but at a relatively low sam
ple rate.

The first step toward an FFT-compatible representation is to specify
frequencies in terms of the reciprocal of the record duration. Thus, with a
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record duration of 25.6 msec = 1/39.0625 Hz, a 100-Hz component would
have a frequency of 2.56 units. The integer part of the rounded frequency
parameter is the harmonic in the FFT that this particular frequency compo
nent will affect.

Next, we define the current FFT spectrum, which for convenience will be
in the amplitude-phase form. This spectrum, after conversion into cosine-
sine form, is what is Fourier transformed to produce a record. After each
record is computed, the current FFT spectrum is updated according to the
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source spectrum. Note that the curtent spectrum will have to be copied
before the FFT is executed.

Updating the current spectrum from the source spectrum is simple if
the source spectrum components are far enough apart such that no more than
one affects any given FFT spectrum harmonic. First, each source frequency is
rounded to an integer and the amplitude simply copied to the corresponding
FFT harmonic number. Next the rounded value is subtracted from the
unrounded value and the difference is divided by two (for two-to-one overlap
factor) to yield a number between -0.25 and +0.25. This number is added
to the current phase (in units of 27T mod 1.0) of the corresponding FFT
harmonic to give a new phase. After all of the source spectrum is processed,
another FFT sample record is computed and the process is repeated. Note
that even a very-low-frequency source spectrum component, which may
correspond to the de component of the FFT, comes out alright by virtue of
the amplirude-phase to cosine-sine conversion.

Problems occur, however, when two or more source components map
into the same FFT harmonic. In real life, two such closely spaced frequencies
would slowly beat together giving an apparent frequency equal to the
stronger of the two (or the average if substantially equal) and a periodic
varying amplitude envelope with a frequency equal to the difference between
the component frequencies. While not exact, it is possible to replace the two
closely spaced components with one component and some tremolo in the
amplitude parameter for the new component.

A more exact method that works for any number of closely spaced
frequencies is to keep track of the current phase of each in a separate array.
When the FFT harmonic affected by the cluster is updated, the contents of
this array are combined according to:

Pr=tan-'

N
I Aisin(Pi)
i= 1
N
I AiCOS(Pi)
i= 1

Ar= [,£ AiCOS(P} 2 + [.r AisinW} 2

1=1 J 1=1 J
where N is the number of frequencies in the cluster, Ai and Pi are the am
plitude and phase, respectively, of the ith array element, and Ar and Pr are
the amplitude and phase of the resultant that are entered into the FFT
spectrum.

Table 13-2 shows these methods applied to a short segment of sound.
It is a sequence of source spectrums, spaced 12.8 msec apart. Frequency is
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Fig. 13--24. Waveform computed from sequence of object spectrums from
Tables 13--2 and 13--3.

expressed as multiples of the inverse of the record size (39 Hz for lO-ks/s
sample rate and 256 record size) and amplitude is in arbitrary units. Table
13-3 is a listing of the nonzero portion of the corresponding FFT spectrum
sequence.

Figure 13-24 is the actual waveform (with line segments connecting
the sample points for easier visualization) created by this sequence. Note that
ultrasharp attacks are simply not possible with FFT synthesis. In fact, no
event shorter than a record period can be resolved. This drives home the
primary assumption of FFT synthesis that the record size must be shorter
than the limits of human time perception yet longer than the limits of
human frequency perception for simultaneous tones.

Table 13--2. FFT Synthesis Example: Source Spectrum Sequence

Record
number Freq. Amp. Freq. Amp. Freq. Amp. Freq. Amp. Freq. Amp.

1 0 0
2 5.7 1.0
3 6.0 1.3
4 6.3 1.0
5 6.3 1.0
6 6.3 1.0 2.1 0.5
7 6.3 1.0 2.1 0.75
8 6.3 1.0 2.1 1.0
9 6.1 0.75 2.4 0.6 8.7 0.2 9.3 0.2 0.4 0.3

10 5.9 0.2 2.7 0.1 8.7 0.5 9.3 0.5 0.4 0.7
11 8.7 0.5 9.3 0.5 0.4 1.0
12 8.7 0.5 9.3 0.5 0.4 1.0
13 8.7 0.3 9.3 0.3 0.4 1.0
14 8.7 0.1 9.3 0.1 0.4 1.0
15 0.4 1.0
16 0.4 1.0
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Table 13--3. FFT Synthesis Example: Sequence of Object Spectrums
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Record
number Hrm. Amp. Phase Hrm. Amp. Phase Hrm. Amp. Phase Hrm. Amp. Phase

1 All 0
2 6 1.0 0.85
3 6 1.3 0.85
4 6 1.0 0.00
5 6 1.0 0.15
6 6 1.0 0.30 2 0.5 0.05
7 6 1.0 0.45 2 0.75 0.10
8 6 1.0 0.60 2 1.0 0.15
9 6 0.75 0.65 2 0.60 0.35 9 0.235 0.00 0 0.30 0.20

10 6 0.20 0.60 3 0.10 0.20 9 0.309 0.50 9 0.70 0.40
11 9 0.951 0.50 0 1.0 0.60
12 9 0.809 0.50 0 1.0 0.80
13 9 0.000 0.00 0 1.0 0.00
14 9 0.162 0.00 0 1.0 0.20
15 0 1.0 0.40
16 0 1.0 0.60

Note that all harmonics not specifically listed are assumed to have zero amplitude.

Other Digital Tone Generation Techniques

The tone-generation techniques described up to this point have all been
direct, that is, a straightforward application of digital technology to

generating very precise arbitrary waveforms (table lookup) or very precise
arbitrary spectrums (Fourier synthesis). Either, with allowance for smooth
parameter changes, is theoretically capable of synthesizing any kind of tone.
While these methods are therefore completely general, a lot of "data" must be
"input" to the generator to produce what often seem to be simple changes in
a tone's timbre.

Recall from Chapter 3 that analog FM synthesis was capable of
producing a wide variety of tone colors by manipulating only two synthesis
parameters: the modulation index and the ratio of modulating to carrier
frequencies. Since only two variables were being controlled, the "data rate"
needed by FM synthesis to produce dramatic timbre variations was very low.
FM, however, is not a direct technique, since there is no simple relationship
between the "data" (modulation index and frequency ratio) and either the
waveform or the spectrum. It is also not a general technique, at least in its
pure form, because it cannot synthesize any arbitrary waveform or spectrum.
For the remainder of this chapter, we will look at FM and other indirect
digital synthesis techniques that in many applications have substantial
advantages over direct techniques.

FM Synthesis

FM synthesis is as easily implemented in digital form as it is in analog
form. Furthermore, it is efficient in its use of memory space and computing
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power relative to table lookup and Fourier synthesis techniques. In its pure
form, only one table, which contains a sine wave, is required. For each
sample, as few as three additions, two table lookups, and one multiplication
are required. This remains true even when the modulation index is changed
for dynamic timbre variation.

Figure 13-25 is a "block diagram" of these calculations, which can
easily be translated into a program or dedicated hardware. Note that, unlike
the analog case, controls for the three variables (carrier frequency, modulation
frequency, and deviation amount) are kept separate rather than combined to
provide the more useful pitch frequency, ratio, and modulation index
controls. Otherwise, the combination calculations would be done for every
output sample, which substantially increases computing effort. Typically,
the more useful "source" controls would be translated into these "object"
controls at a slower control sample rate, which may be one-tenth of the audio
rate or less. Flexibility is also increased because the same synthesis routine
could serve for constant deviation or constant modulation index synthesis as
the pitch frequency is varied.

Note that if the carrier frequency is relatively low and the deviation
amount is large, it is possible for table pointer 1 to have a negative increment
specified, i.e., a negative frequency. This is no problem for digital synthesis,
provided signed arithmetic is being used, and simply results in the sine table
being scanned backward. In actual use, it has been found that interpolation
noise in the sine table lookups is much more detrimental in FM synthesis
than in direct table-scanning synthesis. This is because errors in lookup of the
modulating wave are compounded when they modulate the carrier wave.
Therefore, either the sine table must be large or linear interpolation in a
smaller table used. One should shoot for at least 16-bit accuracy in the table
lookup results, which means effective table sizes of 64K points for no
interpolation or 0.5 to lK for linear interpolation. Since the table content is
fixed as 1 cycle of a sine wave, symmetry can be used to reduce table size by a
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Fig. 13-26. FM synthesis using a complex modulating wave
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factor of 4. One potential drawback of digital FM synthesis is the possibility
of aliasing when the carrier frequency becomes too high or the modulation
index becomes too large. To avoid the sudden harsh sound of aliasing, some
intelligence may have to be applied to the synthesis process.

More complex forms of FM synthesis are also possible when imple
mented digitally, which can largely overcome its otherwise limited range of
timbres. One possiblity is to use a complex carrier wave and a sine
modulating wave, which produces a duplicate set of modulation sidebands
around each harmonic of the carrier. A more interesting technique is to use a
complex modulating waveform while retaining a sinusoidial carrier waveform.
For example, using a modulating waveform with just two frequency
components, i.e., two harmonics, results in a final spectrum with sidebands
around the carrier due to each frequency component and its associated
modulation index alone plus additional sidebands due to all possible sums
and differences of multiples of the frequency components. If the carrier
frequency and each component of the modulating signal are all harmonically
related, all of the sidebands are also harmonics and many of them will overlap
at equal frequencies. The resulting amplitudes at these frequencies are
determined by relative amplitudes and phases of the equal-frequency
sidebands. Thus, complex spectra with wide local variations in harmonic
amplitudes are possible. It may in fact be possible to approximate arbitrary
spectral shapes closely enough for practical synthesis applications with just a
few harmonics in the modulating wave, although determining these would
not be a simple task.

Only a slight modification of Fig. 13-25 is necessary to implement
complex modulating-waveFM. The table used in table lookup number 2 is
simply replaced by a table containing the complex modulating wave. Note
that with this approach, the deviation control will affect the modulation
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index of all components of the complex modulating wave simultaneously. If
instead the calculations are restructured as in Fig. 13-26, the modulation
indices as well as the frequencies of each modulating component can be
separately controlled. Also, all table lookups remain into the same, easily
interpolated, sine table. As few as two modulating frequency components
have been found to dramatically improve the utility of FM synthesis. In one
experiment, piano tones (which are normally not well synthesized with FM
techniques) were quite successfully approximated using one modulating
ftequency equal to the carrier frequency and another four times the carrier
frequency. The slightly inharmonic partials of piano tones were then
simulated by slightly detuning these ratios.

"VOSIM"

Other "minimal-parameter" synthesis techniques besides FM are possi
ble, although none seem to be quite as flexible. One of these, which is quite
efficient in synthesizing a wide range of vocal-like sounds, is called VOSIM,
from the words VOcal SIMulation. VOSIM uses a very simple waveform
described by three parameters that is periodically repeated at the desired
fundamental frequency. Figure 13-27 shows the VOSIM waveform, which
consists of one or more bell-shaped pulses. A single width parameter specifies
the baseline widths of the pulses. The first pulse has unity amplitude, while
succeeding ones are smaller according to a decay parameter that ranges
between 0 and 1. Finally, a number parameter specifies how many pulses there
are in each period. Any time left over between the end of the pulse group and
the beginning of the next period is filled with zeroes. The pulses themselves
are sine-squared curves, which is equivalent to one cycle of a negative cosine
wave raised up to the axis. After the pulse group is specified, it is simply
repeated at the desired frequency and multiplied by an amplitude envelope.
Note that the time occupied by the group is in absolute terms independent of
the period. Thus, the "blank" time between pulse groups will vary with the
period, but the pulse group itself will remain constant. If the period becomes
smaller than the group width, the group is simply truncated and restarted,
although this is normally kept from happening.

Figure 13-28 illustrates some of VOSIM's properties. Figure 13-28A
shows a reference VOSIM waveform (decay = 0.8, width = 1 msec, number
= 6, period = 10 msec = 100 Hz), along with its normalized harmonic
spectrum and spectral envelope. Figure 13-28B shows a wave with the same
parameters but with its period increased to 20 msec. Note that the overall
spectral envelope is essentially unchanged; there are just more harmonics
filling the space under it. Thus, the position in frequency of major spectral
envelope features remains constant as fundamental frequency is varied, a
desirable property not possessed by the digital synthesis techniques discussed
so far. Figure 13-28C shows that reducing the width parameter to 0.67 msec
increases the frequency of the broad spectral peak to about 1. 5 kHz. In Fig.
13-28D, the decay parameter is reduced to 0.5, which makes the spectral
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Fig. 13-29. Combination of two VOSIM generators

peak broader, whereas in Fig. 13-28E rhe number of pulses is reduced ro
two, which also broadens the peak but in a different way. All of these sounds
have a strange vocal-like timbre, although it is unrecognizable in terms of
specific vowels.

It is also possible to combine two or more VOSIM generators to
produce rwo or more prominent peaks in the spectrum as was done in Fig.
13-29. Here, two prominent peaks, one ar about 700 Hz and rhe other at
1,700 Hz, have been produced by adding the outputs of two VOSIM
generators with identical parameters except for the pulse width. With
suitable selection of values, specific vowel sounds can in fact be produced. Of
course, any or all of the parameters are easily manipulated while the tone is
sounding for dynamic timbre effects. In fact, if the width parameter is made
to vary randomly at a rapid rate, the effect of filtered noise is produced with
center frequency roughly equal to the reciprocal of the average width.

As with FM, implementation of the VOSIM algorithm is straightfor
ward and efficient. In rhe simplest case, a single table-lookup routine using a
one-shot table scanner into a table containing the raised-cosine shape is
sufficient. At the beginning of a period, a pulse counter is reset, an
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amplitude factor is set to unity, and the table pointer is teset to zero. The
pointer is then allowed to advance through the table at a rate determined
solely by the pulse-width parameter. After the pointer has advanced
completely through the table, the pulse counter is incremented and the
current value of the amplitude factor is multiplied by the decay parameter.
Then, if the pulse counter is still less than the number parameter, the table
pointer is reset and allowed to run another scan. If all pulses have been
generated, the table pointer is left at the end, thus producing zeroes until the
beginning of the next period. Accuracy requirements are not severe for any of
these calculations including the table lookups. The actual algorithm is
complicated somewhat if the pulse widths are not a multiple of the sample
period and even more if the total period is not a multiple. Even so, the
technique remains a highly efficient means of producing tones with
stationary spectra as the pitch is varied.

Waveshaping

This technique is somewhat of a misnomer when applied in a digital
context because any waveshape desired can be produced in a straightforward
manner simply by placing it into a waveform table. However, dynamic
variation of the waveform is difficult and requires either constant rewriting of
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the table content or time-varying interpolation along a sequence of waveform
tables. The more specific term, "nonlinear waveshaping synthesis," is
actually nothing more than subjecting a sine wave to a nonlinear distortion
process such as that described in analog form at the beginning of Chapter 2.
By simply varying the amplitude of the input sine wave, the spectrum of the
output waveform will vary in a complex fashion. What makes the technique
much more useful in digital form is that very precise arbitrary transfer
functions are easily implemented, using, guess what, a table. By contrast,
the analog equivalent is generally limited to clipping and rectification
operations or, at best, piecewise-linear approximations to curves using a
small number of segments.

Fig. 13-30 shows a standardized representation of a nonlinear transfer
function. As with Fig. 2-1, the input sine wave is applied in the X direction,
and corresponding Y points on the curve represent the output. For easy and
consistent application in digital circuitry, the input signal is restricted to the
range of - 1 to + 1, and the output signal is similarly restricted. Since the
input is always a sine wave, it is usually not shown while the output and its
spectrum are shown. It is not necessary for the curve to pass through the
origin, but, if it doesn't, there will be an output dc offset for no input, which
could lead to audible envelope thumps and other problems in subsequent
processing. Thus, it may be desirable to shift the curve up or down so that it
does pass through the origin. Using this representation, it becomes easy to
put the shape into a table with the X values representing successive table
entries and the Y values representing the value of the entries. Although this
requires the curve to be a single-valued function, analog hysteresis effects
could probably be simulated by using two tables and keeping track of the
slope of the input sinusoid.

While any kind of curve can be used for a distorting function, even one
drawn by hand, mathematicians like to use polynomials to describe arbitrary
curves. With such a description, they can then predict what the output
spectrum will be without actually simulating the process on a computer and
then using the Fourier transform. Explaining that process here won't be
attempted, but some of the properties of polynomial curves are easily
understood. One desirable property is that the highest harmonic present in
the output is equal to the highest power of X used to construct the curve.
This aids tremendously in predicting and avoiding alias distortion.

One specific class of polynomials that has other desirable acoustic
properties when used to construct nonlinear distorting functions is called
Chebychev polynomials of the first kind. Figure 13-31A-H shows equations for
these polynomials up to the eighth order, their corresponding distortion
curve, the output waveform when the input is a sine wave of unity
amplitude, and the harmonic spectrum of the output. Note that, in effect,
each of these polynomials multiplies the frequency of the input sine wave by a
factor equal to its order. Or, in other words, a Chebychev polynomial of order
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128XB - 256X6 + 160X4 - 32X2 + 1. (I) Combination of fourth
and seventh-order Chebyshev polynomials, Y = 0.5 [T4(X) +
T7(X)]. (J) Combination of first eight Chebyshev polynomials, Y =

0.28 [T,(X) + 0.72T2(X) + 0.36T3(X) + 0.57T4(X) + 0.42T5(X) +
0.25T6(X) + 0.16T7(X) + 0.12TB(X)]. (K) Contrived transfer func
tion, Y = 0.42X + X3 exp (X - 1) sin (14 'ITX).

N will produce only the Nth harmonic of the input sine wave. Note that
when the curve describes an odd function (the shape to the left of the Y axis is
the negative image of the shape to the right) only odd harmonics are created.
Likewise, when it is an even function (the shape to the left is a positive image
of the shape to the right), only even harmonics are created.

Figure 13-311 and J shows that two or more Chebychev polynomials
can be added together to get a controlled mixture of harmonics in direct
proportion to the amount of each polynomial included. Note that, in this
case, the resulting polynomial must be scaled to restrain the output waveform
amplitude to unity. In Fig. 13-31K, an arbitrary mixture of polynomial,
exponential, and trignometric functions is used to create the curve. Its
spectrum has harmonics out to the 30th and a desirable gently rolling
spectral envelope. Thus, it is apparent that nonlinear waveshaping can
produce any arbitrary amplitude spectrum just as direct waveform table
scanning could. In fact, one could consider the process as simply scanning a
waveform table with a sine wave rather than a sawtooth wave as in the direct
procedure.

The preceding analysis only holds when the input sine wave is of unit
amplitude. If the amplitude is reduced, the spectrum will change. Generally,
the upper harmonics will decline more rapidly than the lower ones as the
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Fig. 13-32. (A) Spectrum of Fig. 13-31G as input amplitude varies. (8)
Spectrum of Fig. 13-31H as input amplitude varies. (C) Spectrum
of Fig. 13-311 as input amplitude varies. (0) Spectrum of Fig.
13-31J as input amplitude varies. (E) Spectrum of Fig. 13-31 K as
input amplitude varies.

input amplitude is reduced, which is exactly how most conventional musical
instruments operate. A trumpet played softly, for example, has weaker upper
harmonics than one played loudly. A plucked string's high harmonics decay
more quickly than the fundamental and lower harmonics. Thus, a relatively
realistic simulation can often be obtained simply by applying the amplitude
envelope before the nonlinear shaping operation. It will usually also have to be
applied again afterwards if Chebyshev polynomials are used, since the output
amplitude may not begin to decline until the input amplitude is quite small.
Figure 13-32A-E illustrates this effect using the nonlinear functions given
in Fig. 13-31G-K, respectively. The graphs show the changing waveshape
and how the amplitude (on the Y axis) of each harmonic varies as the input
amplitude (on the X axis) varies. Note the extremely complex, although
definitely structured, harmonic evolution pattern in Fig. 13-32E. For the
patterns to show up, it was necessary to plot the fundamental at one-quarter
of its true amplitude and also show only the first 16 harmonics. Using an
interactive program in which transfer curves can be drawn with a digitizer or
light pen should be exciting to say the least.
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Fig. 13-33. Nonlinear waveshaping synthesis calcuations

OUTPUT

Figure 13-33 diagrams the calculations needed for digital nonlinear
waveshaping synthesis. Two tables are required; one with a permanent sine
wave and the other with the desired nonlinear function. As with digital FM
synthesis, the sine wave table lookup must be very accurate to avoid
undesired audible distortion. This is because, near the peak of the input sine
wave, small changes in the sine value can produce large changes in the output
from the nonlinear function. This can be seen by looking at the left or right
edges of the curve in Fig. 13-31H in which the slope is very steep. Likewise,
the nonlinear curve table must be large for the same reason. Linear
interpolation into both tables is a must for high-quality synthesis.

Which Is Best?

In this chapter, five distinctly different methods of synthesizing sound
digitally have been covered. Also available are several less well-known and
generally less-useful techniques that have been described in research papers.
There is, of course, no "best" technique for all purposes. Direct waveform and
spectrum synthesis methods are the most general but are difficult to control
and require a lot of computing power to implement. The reduced parameter
methods are easy to control but can be difficult or impossible to adapt to
specific arbitrary requirements. In fact, it is usually advantageous to simply
play with the variables to see if a sound adequately close to the desired result
can be obtained and then either go from there or try a different technique.
Another advantage of reduced parameter methods is that computational
effort, at least theoretically, is reduced. However, the theoretical advantage
may not necessarily be true in practice due to increased accuracy require
ments. In the final analysis, if a synthesizer or program is to rely on just one
technique, it should be one with greater generality such as waveform table
scanning. A really comprehensive synthesis system would ideally provide for
all of those discussed in this chapter plus provision for easily adding others as
they are discovered.



14
DigitalFiltering

In analog synthesis, filtering is used almost exclusively for modification of
the severely limited oscillator waveforms available. However, as was just
discussed, digital oscillators and tone generators are considerably more flexi
ble and are themselves capable of virtually any spectral effect desired.
Nevertheless, tone modification by filtering is still an important technique if
for no other reason than convenience. In the digital domain, such modifica
tion may be achieved directly by giving each harmonic its own amplitude
envelope, thereby simulating the effect of a varying filter. However, use of an
actual filter may require far fewer varying parameters to achieve the desired
result. This is particularly true if the user has had experience with analog
systems because the desired result will usually be thought of in terms of
filtering.

Also, some types of sounds require the use of filters in their synthesis.
For example, it is difficult to generate "random" noise with a specified
frequency spectrum directly; however, one or more filters can easily shape a
flat noise spectrum into what is required. Also, in sound modification appli
cations in which one has no direct control over the source material, filtering
is the only reasonable way to modify the spectrum. Frequency-sensitive time
delay (dispersion) and frequency-sensitive phase shift are functions that are
useful in chorus and reverberation simulators and that are normally regarded
as "all-pass" filtering. Finally, as we shall see in the next chapter, digital
filter ringing is a very convenient method for generating percussive sounds.

Just as a digital oscillator can generate any waveform subject to the
constraints of sampling, a digital filter can be designed to have any frequency
and phase characteristic qesired with only two limitations. One is the high
frequency limit imposed by sampling. For example, a digital high-pass filter
cannot be expected to provide a high-pass characteristic up to infinity like an
ideal analog filter would. Instead, the response is undefined beyond one-half
the sample rate and may be distorted somewhat just below one-half the
sample rate. Another limitation is that filters cannot be expected to predict
the future! While this may seem obvious, a low-pass filter specifimtion with

481
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Fig. 14-1. Analog R-C filters. (A) Passive implementation. (B) Active im
plementation.

zero phase shift at all passband frequencies is asking exactly that. For exam
ple, if the filter were presented the first three samples of a low-frequency yet
high-amplitude wave, it would have no way of "knowing" whether it really
was part of a low-frequency cycle or part of a high-frequency but low
amplitude cycle without further data. Zero phase shift implies that such a
decision is made immediately and the samples either pass to the output or are
blocked. Linear phase shift, which implies constant time delay independent of
frequency, however, is readily available. Note that for filtering outside of real
time this constraint can be effectively overcome by delaying everything else
to match.

Digital filtering, like other aspects of digital signal processing, can be
highly mathematical. After all, a digital filter is nothing more than a
mathematical function that accepts a string of input numbers and provides a
string of output numbers. In this chapter, however, digital filters will be
discussed as a natural outgrowth of fundamental analog filtering circuits.
Later, an intuitive approach will be used to discuss filters with an arbitrary
amplitude response shape. It should be noted that many of the filtering
concepts mentioned here are equally applicable to analog filtering and some
in fact were not mentioned in the sections on analog filtering.

Digital Equivalents of Analog Filters

The simplest analog filters consist of just two components: a resistor
and a capacitor. These can be configured in two ways to provide single-pole
(6 dB/octave) low-pass or high-pass filters. For the moment, we will concen
trate on the low-pass circuit.

Back in Chapter 6, it was shown that the exact same R-C low-pass
response could be obtained with an op-amp and an R-C feedback circuit such
as in Fig. 14-1. Careful examination of this circuit reveals a standard analog
integrator with a "leak" resistor placed across the capacitor. The resistor
causes the capacitor charge to leak away and thereby puts an upper limit on
the very low frequency and dc gain of the circuit. In fact, the 3-dB attenua
tion point is the frequency at which the capacitive reactance equals the leak
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.000 .000
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(A)
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(8)

Fig. 14-2. Filtering action of a digital integrator. (A) Response to sine wave
samples at 0.05 Fs. (B) Response to sine wave samples at 0.1 Fs.

resistance. The dc gain is simply the leak resistance divided by the input
gain-determining resistor.

In the previous chapter, it was mentioned that a digital accumulator
acts like an integrator when nu~bers are repeatedly added to it. This is just.
as true when the numbers being accumulated are samples of some arbitrary
waveform as when they represent a constant "current" in a digital oscillator.
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Fig. 14-2. Filtering action of a digital integrator (cont.). (C) Graphs for Fig.
14-2 (A). (D) Graphs for Fig. 14-2 (8).

Therefore, inasmuch as an integrator is a type of analog low-pass filter, an
accumulator is a type of digi tal low-pass filter.

As an example, consider the tables and plots of Fig. 14-2. A digital
integrator is implemented by simply adding input samples to an accumulator
and providing output samples that are the present content of the ac
cumulator. As an experiment, two different strings of sine wave samples are
tried. The first string represents a sine wave with a frequency 1/20 of the
sample rate, while the second string has a frequency of 1/10 Fs. The
amplitudes of both input waves are identical. The resulting tables and graphs
give the response of the digital integrator to these strings of samples. Note
that the lower frequency wave comes out with approximately twice the
amplitude of the higher-frequency wave. Also note that the output wave lags
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the input wave by 90°. This behavior is just what would be expected of a real
analog integrator. Even the de offset at the output would be expected, since
the input was suddenly applied at zero-crossing time. Although not apparent
in the figure, the integrator does not contribute any noise or distortion to the
signals passing through but may alter the signal-to-noise ratio due to its
filtering effect.

Digital R-C Low-Pass Filter

Returning to the leaky integrator equivalent of an R-C low-pass filter,
let us see how the same effect can be accomplished digitally. It should be
obvious that the magnitude of the leakage current is proportional to the
voltage across the capacitor and the direction is such that the capacitor is
discharged. Since the capacitor voltage is the same as the output voltage (the
capacitor lead connected to the op-amp's inverting input is at virtual
ground), the leakage current is proportional to the instantaneous output
voltage. This same discharging effect can be simulated by subtracting a con
stant proportion of the accumulator's content from the accumulator every sam
ple period. In fact, the percentage of accumulator "charge" that should be
subtracted is exactly equal to the percentage that would have leaked through
the leakage resistor during one sample period in the analog filter.

It is well known that the capacitor voltage during discharge follows an
inverse exponential curve: E=Eoexp(-T/RC), where E is the voltage after
time T, Eo is the initial voltage, and Rand C are the component values in
ohms and farads. Since the cutoff frequency is l/2nRC, a substitution can be
made in the equations, and it is found that E =Eoexp(21TFcT), where Fe is the
cutoff frequency of the filter. Converting the sample period, T, to the sample
rate, Fs, makes the final result: E=Eoexp(-21TFc!Fs). Thus, the proper
percentage to subtract from the accumulator each sample period is:
l-exp( - 21TFc!Fs) which can be designated K. A BASIC statement for im
plementing the digital filter then would be:

1000 LET A=A-K*A+I

where A is the accumulator content, K is the leakage constant, and I is the
input sample. This statement is executed for each input sample and succes
sive values of A are the output samples.

One could also simply multiply the accumulator contents by l-K,
which can be called L, and put the product back into the accumulator with
the input added in. In BASIC, the result would be:

1000 LET A=A*L+l

which is about as simple as one can get. Note that L can never be greater than
1.0. If it were, the filter would be unstable and eventually overflow even
floating-point arithmetic. (Imagine, a universe full of energy circulating in
this little filter!)
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Note that the expression for finding K or L depends on the ratio of
cutoff frequency to sample frequency. This should have been expected, since
the same string of sample values can represent entirely different signal fre
quencies if the sample rates are different. Thus, it is customary in digital
filter work to always specify frequency as a fraction of the sample rate rather
than in hertz. Amplitude response plots, therefore, have the frequency axis
calibrated from zero (or some lower limit if a log scale) to 0.5.

There is still one undesirable effect in the digital filter. It has a substan
tial amount of passband gain. In fact, as K is adjusted for lower cutoff
frequencies, the gain increases in inverse proportion to K. This is of no
immediate concern with the floating-point arithmetic in BASIC but later,
when the filter arithmetic is converted to integers for increased speed, it can
become a real headache. The amount of dc gain is easily determined by
noting that for a constant input of 1.0 the output will rise until the amount
removed from the accumulator each sample period via leakage is equal to the
amount added via the input. Thus, the dc gain is 11K or 1/(l-L). The best
way to counteract the gain is to multiply the input samples by the inverse, K,
before adding. The final filter statement therefore is:

1000 LET A=A*L+K*I

Note that two multiplications and one addition are required for each
sample processed. By rearranging constants and allowing large numbers in
the accumulator, one of the multiplications can be eliminated:

1000 LET O=K*A
1001 LET A=A-O+I

0
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Fig. 14-3. Measured response of digital low-pass filter
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where 0 is now the output of the filter. Although this is certainly slower in
BASIC because of the extra statement, it is likely to be much faster in
assembly language because of the elimination of a multiplication operation.

At this point one can repeat the Fig. 14-2 experiment with several
different frequencies to observe the typical R-C low-pass characteristic,
which was done to create Fig. 14-3. Note that near the O.SF} point the
-6 dB/octave cutoff slope decreases somewhat. This is due to actual aliasing
of the filter response, since it is not zero at or beyond Fs/2. As digital filters
are studied, it will be found that their amplitude response always tends to
depart from the ideal as the Nyquist frequency is approached.

One can also apply digital square waves to the filter and observe that
the output samples show the same kind of leading edge rounding that the
analog filter exhibits. In fact, the samples of the square-wave response (step
response in general) are exactly the same as ADC samples from the response of
an analog R-C low-pass filter would be. A digital filter having this property
is said to be impulse invariant, which for our purposes means that the time
domain response is the same as the corresponding analog filter.

Signal Flow Graphs

Although the calculations involved in a digital filter can be represented
as equations or program fragments, they do not give a very clear picture of the

AMPLIFIER WITH GAIN OF 0314
MULTIPLIES INPUT SAMPLES BY 0314

MIXER OR ADDER
ADO SAMPLES A AND B TOGETHER AND SuBTRACT C TO PRODUCE
THE OUTPUT SAMPLE

-[J-
ONE SAMPLE PERIOl) DELAY
SAVE THE INPUT SAMPLE FOR ONE SAMPLE PERIOD AND THEN PASS
ON TO THE OUTPUT

Fig. 14-4. Symbols used in signal flow graphs
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Fig. 14-5. R-C low-pass digital filter diagram

"strucrure" of the filter. Signal flow graphs give such structural information
and at the same time are readily converted into program segments. The three
symbols used to construct such graphs are shown in Fig. 14--4 and with them
any kind of digital filter can be represented. The amplifier symbol represents
a multiplication operation that is really the same as an amplifier with a
specified gain. By counting up the number of such symbols in a filter
diagram, the exact number of multiplications needed to process an input
sample is determined. The summer symbol can have any number of inputs,
and each individual input may either add to or subtract from the output as
denoted by plus and minus signs at the arrowheads. The number of
additions/subtractions per sample is equal to the count less one of summer
inputs for all summers in the filter diagram.

The delay element is perhaps the most difficult to understand. In
essence, the box is a register or memory word that holds a sample value for
use the next time the digital filter is evaluated. The Z-1 symbol inside is
optional and merely designates the mathematical meaning of a one sample
delay. A typical digital filter may have several delay boxes, often connected
in series. Such a series connection behaves just like a shift register that is
shifted every sample period. If a common digital filter subroutine is being
used to simulate several different filters, a word of storage will be required for
each delay element of each filter. In many digital filters, each delay operation
is roughly equivalent to a reactive element in an analog filter.

Figure 14-5 shows the R-C low-pass filter drawn in signal flow graph
form. Converting such a diagram into a series of program statements consists
of two major steps. In the first step, the input sample and the outputs of all
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Fig. 14-6. Analog and digital state-variable filter

delays are multiplied by the specified constants and added/subtracted in the
indicated ways to produce the output sample and inputs to the delays. In the
second step, the delay block inputs that were just computed are stored into
the registers corresponding to the delays. When the next input sample is to
be processed, the values just stored in the delays become the new delay
outputs.

State-Variable Digital Filter

The analogy between analog and digital filters can be extended to cover
the state-variable type as well. Recall from Chapter 6 that the state-variable
or integrator loop filter was exceedingly versatile because of a number of
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desirable properties. First, it was a second-order filter with independent con
trol of center frequency and Q. Next, a single circuit simultaneously provides
low-pass, bandpass, high-pass, and notch outputs from a single input. Fi
nally, it could be tuned over a very wide range of both frequency and Q
merely by varying just three resistors (two for frequency and one for Q) or
alternatively, three gain factors. Precise matching of the two frequency
determining controls was not necessary unless a deep notch was desired.
Since all second-order response functions are available from this one circuit,
it is an ideal building block for sharper and more complex filters.

Figure 14-6 shows the analog state-variable filter in terms of amplifiers
and integrators. Taking this and the diagram of a digital integrator, the
digital state-variable filter follows almost trivially. (Note that the configura
tion of the first integrator has been altered somewhat. It is necessary to have a
delay inside the overall feedback loop for the network to function.) All of the
desirable characteristics of the state variable have been retained. The four
different outputs are still present and frequency and Q are independently
adjustable. A count of arithmetic operations reveals that five additions (six if
the notch output is needed) and three multiplications per sample are re
quired. Although more efficient structures are possible for single-function
filters such as bandpass, they are not nearly as flexible and give up indepen
dence between center frequency and Q control.

Using the rules just discussed, let us convert this diagram into a series
of BASIC statements. Before starting, the names of variables must be estab
lished. For convenience with the limited names allowed in BASIC, the
following will be arbitrarily assigned:

I Input sample
L Low-pass output sample
B Bandpass output sample
H High-pass output sample
N Notch output sample
F 1 Frequency control parameter
Q 1 Q control parameter
D1 Delay associated with bandpass output
D2 Delay associated with low-pass output

The first task is to compute all of the outputs. The sequence of compu
tation is important in order to minimize the statements and to avoid having a
variable depend on itself in the same time period. Careful examination of the
diagram reveals that if the low-pass output is evaluated first, everything else
falls into place. Thus, the first step is accomplished by the following
statements:

1000 LET L=D2+Fl*D1
1001 LET H=I-L-Q1*D1
1002 LET B=F1*H+D1
1003 LET N=H+L
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Next the inputs to the delays must be computed and stored:

1004 LET Dl=B
1005 LET D2 =L

491

This completes the computarion for the sample period. Note that two
statements may be saved by realizing that the current content of the two
delays is the same as the bandpass and low-pass outputs.

Tuning Relationships

In order to use the filter, it is necessary to know the relationship
between the frequency- and Q-determining factors, Fl and Ql, and the
corresponding actual physical parameters. The first logical step is to look at
these relationships in the analog filter. Referring back to Fig. 6-25, the Q of
the state-variable filter is seen to be simply the inverse of the RQ gain path
from the bandpass output through the input summing amplifier to the
high-pass output. The same behavior can also be expected from the digital
state-variable. Thus, Q1= I/Q which has a useful range from 2, correspond
ing to a Q of 0.5, to zero which corresponds to infinite Q.

In fact, infinite Q is a reasonable situation with most digital filters.
When excited by a pulse, the infinite Q filter will ring forever with a perfect
digital sine wave neither gaining nor losing amplitude for as long as one
wishes to let the program run! Actually, the roundoff errors in integer and
some floating-point computer arithmetic cancel out each cycle so that there is
no net accumulation of error. Thus, a ringing infinite Q digital filter is one
way to obtain high-quality sine waves without interpolating in a sine table.
Only two multiplies and two adds per sample generated are required, since
Q1 is zero and there is no input. Thus, it is a highly efficient method as well.

The center frequency relation is a little more difficult and a little less
ideal. For the analog state-variable filter, it was given as F = 1/(21TRFC)
where RF was the integrator input resistor and C was the feedback capacitor.
It is interesting to note that at this frequency the gain of each analog
integrator is 1.0, since R =Xc= 1/(21TFC). Thus, we would expect that
resonance would occur in the digital equivalent at the frequency at which the
integrator gain cancels the loss due to the F 1 amplifiers thereby producing a
net path gain of 1.0. The gain of the digital integrator alone is approximately
Fs/21TF, where F is the test frequency and Fs is the sample rate. Thus, the
frequency of unity integrator gain is Fs/21T. Factoring in the Fl parameter,
the unity-gain frequency becomes F=FlFs/21T and conversely Fl=21TF/Fs,
where F is the filter's center frequency.

Unfortunately, this relationship is not exact with the error getting
worse as the center frequency approaches one-half the sample rate. The root
cause is the digital integrators whose gain at high frequencies is greater than
it should be. This is one manifestation of amplitude response aliasing that
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Fig. 14-7. Tuning error of digital state-variable filter

was mentioned earlier. Figure 14-7 gives an idea of the magnitude of the
error for different center frequencies. For use at less than one-tenth the
sample rate, which is 5 kHz in a 50-ks/s system, rhe tuning error is about
1.6% or about one-quarter semitone.

One can derive a frequency correction factor, however. The ideal gain of
the digital integrators is Fs/21TP but the actual gain is greater than this by
a factor ohrF/sin(1TF). The frequency correction factor, therefore, is the recip
rocal or sin(1TF)/1TF. This factor varies from 1.0 at low frequencies to 0:6366
at one-half the sample rate. When combined with the approximate center
frequency formula, the result becomes: F1=2sin(1TF/Fs), where F is the
center frequency and F 1 is the exact value of the frequency parameter for that
center frequency. Since the correction is relatively small and a fairly smooth
monotonically rising curve, a correction table with linear interpolation be
tween the entries is an alternative to evaluating a sine function. In fact, one
could simply use the sine table that is almost certainly incorporated some
where in the synthesis program that is using the digital filter.

Multiple Feedback Digital Filters

With active analog filters, there are circuits available that perform a
specific low-pass, bandpass, or high-pass second order filtering function with
fewer components than the state-variable type. In exchange for their
simplicity, Q and center frequency are tied together and related to circuit
components by complex, usually nonlinear equations. Furthermore, the
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circuits make great demands on the amplifier and component characteristics
and consequently are limited to low Q factors. It seems only proper that
digital filters with the same mix of characteristics exist.

Figure 14-8 shows low-pass, bandpass, and high-pass versions of the
multiple-feedback digital filter along with design equations and program
segments. Like their analog counterparts, the best application is in fixed
filter banks for spectrum shaping. However, they can be retuned as often as
desired by recomputing the constants. Note that for low center frequency
and high Q that the A and B constants get quite close to 2.0 and 1.0,
respectively. Small errors in the constants can therefore have a great effect on
the filter's characteristics. It is important to realize, however, that only the
amplitude response curve is distorted; no harmonic or intermodulation dis
tortion is ever added to the signal because of inaccurate multiplying con
stants.

The alert reader may have noticed a degree of similarity among the
various multiple-feedback designs. There exists in fact a single digital filter
structure that can be used to implement any second order filtering function
merely by altering the constants; something difficult if not impossible to do
with analog circuitry. The structure in Fig. 14-9 is called a cannonical second
order filter because of its generality. The structure requires only five multi
plications and four additions per sample and uses just two storage locations.

INPUT-.~8------1---.OUTPUT

- ~l----+

(
- rr F)A = 2 COs(21TF) exp -0-

(-2nF)B=exp \-0-
C = 1- A + B (FOR UNITY PASSBAND GAIN)

REM I = INPUT, 0 = OUTPUT, 01,D2 == DELAY REGISTERS
LET 0 = A*D1 - 8*02 + C*I
LHD2 = D1
LET 01 = 0

(A)

Fig. 14-8. Multiple-feedback digital filters. (A) Low-pass.
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INPUT-.~81------"'-----i:·1

rL<J------+-------'

F 0 CENTER FREQUENCY

Q=FH~FL
WHERE FH = UPPER 3 dB POINT

Fl = COWER 3 dB POINT

(-•F)'A "'- 2 Cos(2rrF) exp -0-

(-2.F)B = exp Q-

C =' cos (rr F) "V1-=-A+Ei
GAIN AT F IS APPROXIMATELY Q FOR 0>3

(B)

rNPUT-.~8r------~--~-~--:1 L

rL<J-------+-[>-J

F = CUTOFF FREQUENCY

(-rrF)A = 2 COS(21TF) exp -0-

(- 2.F)
B=exP------a--

(C)

OUTPUT

+

OUTPUT

Fig. 14-8. Multiple-feedback digital filters (cont.). (B) Bandpass. (C) High-pass,

For ease of implementation, the summers are shown with all inputs positive
acting; negative inputs are obtained by making the corresponding constants
negative.

Examination reveals two feedback paths and twofeedforward paths. Gen
erally, the feedback paths are responsible for any peaks or poles in the
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Fig. 14-9. Cannonical second order digital filter

OUTPUT
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amplitude response curve, while the feedforward paths cause response dips or
zeroes. Note that the same design equations for the filters given earlier can be
applied to the cannonical form with any unused constants set to zero. Because
of its generality, this structure is ideal for use in a genetal-purpose filtering
subroutine or hardware implementation as a digital filter module.

All-Pass Digital Filter

One important type of filter that has not yet been discussed is the
all-pass filter. As its name implies, it is not a frequency-discriminating filter
and in fact passes all frequencies equally well with unity gain. Instead, its
purpose is frequency-sensitive phase shift. All filters shift phase in varying
amounts as a natural consequence of frequency discrimination, but the all
pass filter exhibits phase shift alone. Consequently, an all-pass network can
be used to correct for the phase shift of a regular filter without disturbing its
amplitude response. In synthesis applications, however, it is used to intro
duce a time-varying, frequency-sensitive phase shift to otherwise stationary
sounds, thereby imparting added richness to the sound.

Before looking at the filter itself, the relation between phase shift and
time delay should be understood. Either parameter can be plotted as a
function of frequency as in Fig. 14-10. One type of all-pass filter is a simple
delay line. As shown in Fig. 14-lOA, an ideal delay line has constant delay
independent of frequency. Its phase shift, however, is a linear function of
frequency as shown in Fig. 14-lOB. This can be explained by noting that at
very low frequencies the 500-1LSec delay is only a small fraction of a cycle. At
500 Hz, which is a 2,000-J.Lsec period, the 500-J.Lsec delay becomes a quarter
cycle phase lag or -90°. At 1 kHz, the delay becomes a half cycle and so on.
At higher frequencies, the phase-shift magnitude continues to increase, but
it is customary to plot the principal value of the shift. Thus, the curve shifts
up to 180° leading and continues its decline from there.

In mathematical terms, the delay curve is the derivative (proportional
to slope) of the phase curve or, conversely, the phase curve is the integral
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Fig. 14-10. Phase and delay graphs. (A) Delay versus frequency of 500-fl-sec
delay line. (8) Phase versus frequency of 500-fl-sec delay line. (C)
Delay of a highly dispersive filter. (D) Phase of a highly dispersive
filter.

(proportional to area under a curve) of the delay curve. As a result, only one
curve is needed to fully characterize the delay/phase behavior of the filter.

For musical purposes, the most useful all-pass filters exhibit nonlinear
phase shifts and therefore time delays that vary with frequency. This means
that a sharp transient, which contains a wide range of frequency components,
will exit from the filter with the frequency components separated and
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INPUT~8~~~~~---.-~_.~ =

+ r
A

~ +r

~1--+---"""'8> I

F = TURNOVER FREQUENCY

o ~ _F_ WHERE Frl "'- UPPEA 90~ POINT AND
FH-L Fl = LOWER 90° POINT AND

FH- FL IS TRANSITION WIDTH

(- rrF)A '" 2 cos (21TF) exp -0-

(-2rrF)B = exp -0-

Fig. 14-11. Digital all-pass filter
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smeared out in time. The effect is called dispersion and is quite analogous to
the effect of a prism on white light. Figures 14-lOC and D illustrate an
extreme case of dispersion. Usually, high frequencies are delayed least, which
means that the transient is converted into a quickly descending frequency
sweep having a "thunk"-like sound. Such an extreme case gives the auditory
illusion of the sound being sent over a lOO-foot stretched wire and in fact is
heard frequently on long-distance telephone circuits. Such a large amount of
dispersion requires many filter sections in combination to emulate.

Figure 14-11 shows a second order all-pass filter that is a useful build
ing block. Like all other second order digital filters, it is an adaptation of the
cannonical form; however, due to symmetry of the constants and unity gain,
three of the five multiplications can be bypassed. Examination of the con
stants reveals that the feedforward and feedback paths are completely comple
mentary. Essentially, the zeroes cancel the poles to produce a"flat amplitude
response, but since phase shifts add rather than multiply, the frequency
sensitive phase shift is reinforced.

The phase and delay characteristics of the basic second order all-pass
filter section are shown in Fig. 14-12. At low frequencies, the phase shift is
near zero and at high frequencies it is 360° with a monotonic, though
nonlinear, transition between. Two parameters describe the filter. One is the
"turnover frequency" at which the phase shift is 180°. The other is called the
"transition width" and is related to the sharpness of the transition from 0° to
360° shift, quite analogous to the Q of a bandpass filter. The edges of the
transition zone are where the phase shift is 90° and 270°. The delay curve
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Fig. 14-12. (A) Phase response of two-pole all-pass filter. (8) Delay response.

shows near zero delay at the frequency extremes and maximum delay at the
turnover frequency.

More complex phase and delay characteristics may be created by cascad
ing all-pass sections. The dispersive filter mentioned earlier may be simu
lated by cascading a number of all-pass sections with successively higher
turnover frequencies. Since the maximum time delay is inversely related to
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the turnover frequency (at a constant "Q" value), the delay of the cascade is
inversely proportional to frequency.

The audible effect of fixed all-pass filters is generally subtle, but
dynamic variation of the filter parameters can have a dramatic effect. Con
sider, for example, a cascade of four all-pass filters each with the same
turnover frequency and a relatively broad transition width. Next, assume a
I-kHz sine wave tone fed through the filters. If the filter turnover frequen
cies are high, such as 10 kHz, the tone will be phase shifted very little. If the
turnover frequency is allowed to rapidly decrease, the tone will experience a
constantly increasing phase shift up to a maximum of 1,440° or four cycles
when the turnover frequency has decreased to 100 Hz or so.

During the turnover frequency transition, however, the tone coming
out of the filter had a lower instantaneous frequency! Reversing the sweep
will produce a momentary higher frequency. The speed of the transition
determines the peak frequency deviation. If the signal entering the filter has
numerous harmonics, the temporary frequency shift will "ripple" audibly
through the harmonics as the turnover frequency shifts. By driving the
turnover frequency parameter with a low-frequency periodic or random sig
nal, a chorus-like effect can be obtained.

OUTPUT

~tvvv~
o O.5/T 1.5/T 2.5/T

FREQUENCY

(A)

OUTPUT

~:VVyy
liT 2/T 3/T

FREQUENCY

( B)

Fig. 14-13. Cosine (A) and sine (8) comb filters

Digital Notch Filters

Although a standard notch filter response can be created by suitable
setting of the cannonical digital filter constants, other more interesting and
useful variations are possible. The comb filter mentioned in Chapter 2 is one
of these that is very simple to produce in a digital synthesis system. The filter
is consttucted by splitting the signal into two paths, inserting a time delay in
one of the paths, and mixing the signals together in equal proportions as
shown in Fig. 14-13. The filtering effect is produced by phase cancellation
between the delayed and undelayed signals. At very low frequencies, the
delay line in Fig. 14-13A has essentially no effect on the phase of the signal
so it reinforces the undelayed signal in the mixer. When the frequency
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increases such that the delay introduces a 1800 phase shift, the delayed
signal cancels the undelayed signal in the mixer producing zero output.
Higher frequencies are passed in varying amounts until the phase shift
through the" delay reaches 3 X 1800 which produces another cancellation
and so forth. The filter in Fig. 14-13B works the same way except that the
first notch is at zero frequency.

If the delay time is slowly varied while filtering a broadband signal
source, the distinctive sound of flanging is produced. In a digital synthesis
system, the delay is very easily produced with a small memory buffer, the
size of which determines the delay. Such a technique can only give delays
that are a multiple of the sample period, which results in some choppiness in
the flanging effect. This may be overcome, at some sacrifice in noise level, by
interpolating between adjacent samples at the end of the simulated delay line
to provide essentially continuous delay variation.

Filters with an Arbitrary Response

One of the advantages of digital signal processing is that any filter
response can be obtained in a straightforward manner. Furthermore, the
response may be changed as often and as much as desired concurrent with the
filtering action.

In the previous chapter, one method of arbitrary filtering was men
tioned. In use, one first ·takes the Fourier ttansform of the signal to be
filtered. Next the spectrum is modified according to the filter characteristic
desired. The modification involves multiplying the amplitude of each spectral
component by the filter's amplitude response value at the corresponding
frequency. If phase is important, the phase of each spectral component is
added to the filter's phase response value at the corresponding frequency. The
modified spectrum is then converted into the filtered signal via inverse
transformation.

Of course, with the FFT, the continuous stream of samples to be
filtered must be broken into records, processed, and the results spliced
together again. This indeed can be accomplished without the distortions that
were encountered in direct FFT synthesis, but the process is complex and can
be time consuming. Another method that works continuously, sample by
sample, is called direct convolution. With this method, one can write a sub
routine that accepts a table of numbers describing the filter's time domain
response along with indi11idual input samples to produce individual output
samples. The routine is exceedingly simple and can be quite efficient when
written in assembly language or implemented in hardware.

Before describing the algorithm, it is necessary to become familiar with
a filter's impulse response because that is the table of numbers used by the tilter
subroutine. The transient response of high-fidelity components is usually
characterized by noting their response to square waves. If the square-wave
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frequency is low, the result is essentially the step response of the component.
Although few manfacturers care to admit it, hi-fi components act like
bandpass filters and the step response reveals a lot (in fact, everything) about
the "filter's" characteristics.

The same idea applies to the impulse response, but the test signal is a
very narrow pulse rather than a voltage step. In theory the pulse should have
zero width, infinite amplitude, and finite energy content. In practice, an
analog impulse has a width that is small in comparison to the fastest respond
ing element of .the filter under consideration and a height small enough to
avoid distortion. In a digital system, the impulse is quite simple: just a
single 1.0 sample surrounded by a sea of zeroes. The spectrum of an isolated
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Fig. 14-14. Impulse response relations
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impulse is equally simple: an infinite number of frequency components all of
equal amplitude and all with zero phase angles.

The filter's output in response to an impulse input tells everything
about its amplitude and phase response but in an easy to use form. Since the
input spectrum is flat and has zero phase, the output spectrum will directly
represent the amplitude and phase response of the filter under test! This
means that the characteristics of a digital filter can be plotted merely by
taking the Fourier transform of its impulse response. This, in fact, is how
many of the filter response curves in this book were plotted. Conversely any
amplitude and phase response may be inverse Fourier transformed to get the
corresponding impulse response. These are very important points and are
illustrated in Fig. 14-14.

If two widely separated impulses are fed to a filter, one would expect to
see two copies of the impulse response. If the first impulse is twice the height
of the second, the first response will have twice the amplitude as well but the
same basic shape. If the impulses are moved closer together, they start to
overlap. Since filters are linear, the composite output is simply the point
by-point sum of the responses due to each impulse. This applies to any
number of impulses at any spacing.

Although it is already being taken for granted, sampled analog signals
are really strings of impulses, the height of each being proportional to the
sample values. According to the previous paragraph, the output of a filter
receiving such impulses as input is equal to the sum of the responses to each
individual sample impulse as illustrated in Fig. 14-15. This then is the crux
of direct convolution digital filtering.

I mplementatwn

The first step in implementing the algorithm is to obtain the impulse
response in usable form. For digital filtering, samples of the impulse response
are needed, The samples must be taken at the same sample rate as the signal
to be processed. If the rate is different, all filter response frequencies will be
altered in direct proportion to the ratio of the sample rates. Any stable
impulse response will be bounded on both sides by zeroes, which can then be
discarded. Unfortunately, most responses do not suddenly cut off, so a
truncation decision must be made. Since the computation time is directly
proportional to the number of response samples retained, there is an incen
tive to retain as few as possible. Very broadly speaking, if all of the response
samples omitted are less than 0.01 of the largest response sample, then only
filter attenuation beyond 40 dB is likely to be disturbed to any significant
degree. Accordingly, retaining samples down to 0.001 will not disturb
attenuation curves less than 60 dB. In any case, the impulse response be
comes a string of numbers.

The calculations involved are quite simple. Assuming that some data
has already gone through the filter, the Ith output sample is equal to the Ith
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INPUT
S

Fig. 14-16. Basic structure of transversal filter

input sample times the first impulse response sample plus the (/- l)th input
sample times the second impulse sample plus the (/- 2)th input sample
times the third impulse sample, etc. for the entire set of impulse samples.
Thus, every sample processed through the filter requires N multiplies and
adds, where N is the number of impulse samples kept.

Figure 14-16 shows a conceptual structure of the filter that is very easy
to program. Essentially, the input samples are entered into a shift register
with a tap at every stage. The output at each tap is multiplied by the
assClciated impulse response sample and the product is summed with other
products to produce the output sample. When a new input sample is en
tered, all of the old ones are shifted one position right and the sum of
products is evaluated again. This is often called a transversal filter because
each signal sample traverses the tabulated impulse response. Because of its
simple, highly repetitive structure, such a filter lends itself well to hardware
implementation. In fact, specialized Ies using charge-coupled circuitry have
been built to implement filter functions useful in the telephone industry.

SUBROUTINE TO IMPLEMENT A TRANSVERSAL FILTER
INPUT SAMPLE IS Sl, OUTPUT SAMPLE IS S2
IMPULSE RESPONSE OF FILTER IN IN ARRAY R, FIRST ELEMENT IN
R(O), SECOND IN R(l),. ,.,
N IS NUMBER OF IMPULSE RESPONSE SAMPLES
ARRAY S HOLDS PREVIOUS SIGNAL SAMPLES, MUST BE ALL ZEROES
WHEN THIS ROUTINE IS FIRST USED
P IS POINTER FOR S ARRAY, IT TOO MUST BE INITIALLY ZERO

2000 REM
2001 REM
2002 REM
2003 REM
2004 REM
2005 REM
2006 REM
2007 REM
2100 S2=0
2110 S(P)=Sl
2120 J=P
2130 FOR 1=0 TO N-1
2140 S2=S2+R(I)*S(J)
2150 J=J-1
2160 IF J<O THEN J=N-1
2170 NEXT I
2180 P=P+l
2190 IF P=N THEN P=Q
2200 RETURN

Fig. 14-17. Transversal filter subroutine in BASIC
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When programming according to the diagram, actually shifting the
data is very inefficient. Instead, a pointer to the current sample is maintained
and references to stored previous sample values are made relative to the
pointer. Figure 14-17 is a program in BASIC that implements the transver
sal filter. The R array contains the impulse response, the S array contains
previous signal samples, and N is the number of impulse response samples.
The input sample is S 1 while the output sample is 52.

In order to make maximum use of the algorithm, it is helpful to know
some additional impulse response properties. First, if the filter has zero or
linear phase its impulse response will always be perfectly symmetrical. If
such a phase response is acceptable, the number of multiplications needed per
sample can be essentially cut in half by adding the symmetrical parts to
gether before multiplication as shown in Fig. 14-18.

There are limits to the technique too. Filters with low-frequency dis
crimination, sharp cutoff slopes, or narrow peaks and dips in their amplitude
response tend to have long duration impulse responses and therefore will
require a lot of calculation. Thus, a simple bandpass or low-pass function is
better performed with one of the previous techniques. On the other hand, if
the amplitude response has a lot of peaks and dips, only the narrowest or
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Fig. 14-18. Simplification of Fig. 14-16 for symmetrical impulse response
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lowest frequency "feature" significantly affects the duration of the impulse
response. This means that the other features essentially ride along free.
Figure 14-19 shows several response curves and their associated impulse
responses, which should aid in understanding these properties. Note in
particular that, while an ideal low-pass or bandpass filter characteristic can be
achieved with this technique, the extremely long, slowly decaying impulse
response makes its application impractical. Any attempt to shorten the re
sponse by truncation or smoothing off destroys the ideal cutoff shape. Be
cause of the long impulse response, the FFT filtering method should be used
when such idealized filtering functions are needed.
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Fig. 14-20. Simple echo simulators. (A) Single echo. (B) Multiple echoes.

Reverberation Simulation

Perhaps the simplest, yet most effective, digital signal-processing func
tion is the simulation of reverberation. One particularly nice feature of
digital reverberation simulators is that virtually any type of reverberation is
possihle, and it is easy to switch or gradually evolve among the types.
Perceptual studies have demonstrated that listeners judge their environment
and distance from sound sOllrces primarily by analyzing the accompanying
reverberation. Reverberation simulation is such a difficult problem with
conventional analog circuitry that designers usually turn to mechanical de
vices such as springs and special metal plates. Even the latest "analog"
devices for reverberation (analog charge coupled res) actually work with a
sampled representation of the signal.

The simplest digital reverberator is nothing more than a delay of 30
msec or greater inserted into the signal path with provisions for mixing
delayed and undelayed sound as shown in Fig. 14-20. Actually, "echo
simulator" would be a better name because the audible effect is that of a
single echo. The magnitude of the delay and the relative amplitudes of direct
and delayed sound are parameters for the echo. Multiple echos may be
simulated by feeding a portion of the delayed output back into the input of
the delay element. This then creates a string of echos. The closer the feedback
factor, F, is to unity the larger the number of echos before they become
inaudible. One advantage of a digital delay over tape or other analog delay in
this application is that no signal fidelity is lost in multiple trips through the
delay line. Thus, feedback factors close to 1.0 are possible without fear of
some minor amplitude response peak exceeding unity feedback and causing
oscillation.
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Even with a perfect delay line, the string of equally spaced echos
produced is not at all like concert hall reverberation. In an empty concert hall
a clap of the hands produces not a series of echos but what sounds like white
noise with a smoothly decreasing amplitude. The amplitude decrease approx
imates an inverse exponential function, which if plotted in decibels would be
a constant number of decibels per second. The rate of decrease is generally
specified by stating the time required for a 60-dB reduction in reverberation
amplitude. This figure is used because under normal circumstances the re
verberation has become inaudible at that point. Typical reverberation times
for concert halls are in the 1.5-sec to 3-sec range, although values from near
zero to somewhat more than this may be useful in electronic music.

Echo density is another parameter that can be used to characterize a
reverberation process in general terms. The single delay line teverberator
suffers from a low (and constant) echo density of 0.03 echos/msec. In a
concert hall, the echo density builds up so rapidly that no echos are per
ceived. One measure of the quality of artificial reverberation is the time
between the initial signal and when the echo density teaches 1/msec. In a
good system, this should be on the order of 100 msec. Furthermore, there
should be a delay of 10 msec to 20 msec between the signal and the very first
echo if a sense of being far away from the sound is to be avoided. Finally, if
the reverberation amplitude decrease is not smooth, a somewhat different yet
distinct echo effect is perceived. A plot of the impulse response of the
reverberator is a good way to visualize the buildup of echos and the overall
smoothness of amplitude decrease.

A natural consequence of any reverberation process is an uneven
amplitude response. For example, if the amplitude response of the single
echo generator described earlier were measured, it would be found to rise and
fall with a period (in frequency) equal to the reciprocal of the delay time. In
fact, examination of the signal flow reveals that it is the same as that of a
comb filter! However, since the ratio of delayed to direct signal is normally
less than unity, the notch depth is relatively shallow. The feedback delay line
has the same properties except that the feedback results in a series of reso
nances. As the feedback factor approaches unity, the Qs of the resonances get
quite high, producing a very uneven amplitude response.

Concert hall reverberation also has an' uneven amplitude response, but
the peaks and valleys are closely spaced, irregular, and not excessively high or
deep. It is not unusual to find several peaks and valleys per hertz of bandwidth
with an average difference between peak and valley of 12 dB. It is possible to

have high echo density combined with a low resonance density. An excellent
example is an empty locker room at even a metal garbage can. The small size
of the reverberant chamber precludes resonant modes spanning a large
number of wavelengths of moderate frequency sound. The converse situation,
a high resonance density but low echo density, can be produced by the
feedback delay line reverberator with a very long delay time, which does not
sound like reverberation at all.
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Fig. 14-21. Tapped delay line digital reverberator

A Practical Filter for
Concert Hall Reverberation

In theory, it is possible to exactly duplicate the acoustics of a particular
concert hall by recording its impulse response and then applying the trans
versal filter technique to the sound to be reverberated. Typical reverberation
times of 2 sec, however, mean that the filter is 50K to lOOK samples long,
which is clearly impractical. On the other hand just about any assemblage of
delays, summers, and multipliers will produce some kind of reverberation if
it doesn't oscillate instead. Some, of course, are much better at simulating
convincing concert hall reverberation than others.

In order to increase the echo density, it is necessary to use several delays
of unequal length. The structure in Fig. 14-21 is the digital equivalent of
the multiple-head tape reverberation simulator mentioned in Chapter 2. The
placement of the taps and the values of the feedback constants are very
important in determining the sound of the system. Generally, the taps
should be approximately exponentially distributed but placed at prime
number locations. This insures a maximum rate of echo buildup. The feed
back constants strongly interact with each other and in fact there is no easy
way to tell if a particular set will not cause sustained oscillation. Typical
values are around 0.8 with the long delay taps being somewhat more and the
short taps somewhat less. In any case, experimentation with the number,
placement, and gain of the taps is necessary to achieve the type of reverbera
tion required.

Another approach is based on the concept of cascading simple reverber
ation modules. One could use the Fig. 14-20B setup as a module and cascade
two or more of them in order to improve the echo density. One problem that
can arise is that at certain frequencies the peaks and valleys in the individual
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amplitude responses may coincide to produce an exceptionally strong peak or
valley. One way to avoid the problem is to very carefully choose the delays of
the modules so that peaks or valleys do not coincide. However, doing this
while also scrambling the delays for good echo density would probably
require an iterative search program, and the results would not allow very
much adjustment flexibili ty.

A better way is to modify the multiple-echo module so that it has a
uniformly flat amplitude response. Actually, all of these reverberation dia
grams are equivalent to familiar digital filters, the only difference being that
the delay is hundreds or thousands of samples long rather than one. A slight
rearrangement of the summers can convert the multiple echo diagram into
the equivalent of an all-pass filter. Since the notches introduced by the
feedforward path cancel the resonances created by the feedback path, the
overall ampli tude response is flat.

Figure 14-22 shows an all-pass reverberation module. Two parameters
characterize the module. The delay, D, determines the echo spacing for the
module, while (he feedback factor, F, determines the reverberation time for
the module. Cascades of as few as three modules can give a reasonable
simulation of concert hall reverberation, although upwards of seven give
noticeably better results. As with the tapped delay line reverberator, the
delay parameters should be approximately exponentially distributed but in
all cases must be a prime number of samples. An easy way to come up with a
first approximation is to give the first stage the longest delay, which is in the
50-msec range, and then successively multiply it by a constant somewhat less
than 1.0 such as 0.78. Thus, if the longest delay were 50msec, then the
succeeding ones would be close to 39,30.4,23.7, etc. The shortest delay
should not be much less than 10 msec if a distant, hollow sound is to be
avoided.

Appropriate values of the feedback factor tend to be similar for all
stages, although they should not be identical. The feedback factors and the
delays combine to determine the reverberation time. The reverberation time
of a single stage is the number of delay recirculations required to attenuate
the signal 60 dB times the delay time. Thus, Rt=-6.9D/Ln(F), where Rt is
the reverberation time in seconds, F is the feedback factor, and D is the delay
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in seconds. For practical purposes, the reverberation time of a cascade of
sections is equal to the longest section time. Thus, if the delays get succes
sively shorter and the feedback is approximately constant, the longest delay
section determines what the feedback factors should be.

After the initial values for each stage are determined, further refine
ment can be performed by plotting the impulse response and making slight
adjustments to maximize the echo density and minimize any periodicity or
unevenness in the decay envelope. Figure 14-23 shows a stereo reverberator.
The subtle but significant differences between the channels insures that the
reverberation will be perceived as coming from all directions, while the
original signal retains its normal directivity.

Chorus Effect
In some ways, a chorus effect is similar to reverberation. Both are very

helpful in adding complexity and realism to simple (relative to natural)
synthesized sounds. As was detailed in Chapter 2, there are two different
approaches to implementing a chorus effect. One attempts to directly simu
late N instruments all playing the same notes. The other seeks to simulate
the acoustic effect of a number of players. The first is most successful for
relatively small multiplicity factots, while the latter, with sufficient effort,
can give the impression of thousands of sound sources.

Direct simulation of multiple sources is the simplest. The premise is
that the basic sound of each instrument is identical to the others, but slight
differences in timing, intonation, and vibrato are what contribute to the
chorus effect. Figure 14-24 shows a diagram of a chorus simulator suitable
for a moderate multiplicity. Each of the parallel delay lines has a different,
randomly varying delay. In addition, each delayed channel undergoes a small
amount of amplitude modulation, again randomly. The varying delays in
troduce phase and frequency modulation, which simulates differences in
timing and intonation. The amplitude modulation is of secondary impor-
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Fig. 14-24. Direct chorus simulator

tance but tends to emphasize momentary enhancements and cancellations of
the multiple sources.

The random control signals are white noise that has been low-pass
filtered with a cutoff in the range of 10 Hz to 20 Hz. It is important that the
noise used for each channel be uncorrelated (taken from a separate generator),
which is easily done with a digital noise generator (to be discussed in Chapter
15). If naturalness is desired, it is important that the peak frequency
modulation caused by changing delay times be held to 1 Hz or less for
midfrequencies. Because of the numerous variables, adjustment is best done
by ear.

The system shown with a half-dozen delays is remarkably effective in
simulating a small chorus. Although a fair amount of computer memory is
necessary for the delay lines (much of it can be shared by programming a
single long line and variable taps), very little computation is required relative
to the results obtained. Because of the numerous parameters available for
experimentation, many weird and whacky effects should also be possible.

The other method of chorus simulation is considerably more involved
but much simpler than hundreds of the sections just discussed. Basically, the
idea is to use a collage of randomly varying delays, phase shifters, frequency
shifters, and frequency selective filters. Figure 14-25 is a block diagram! of
the system that was originally implemented with purely analog circuitry.
Because of its complexity, it is a good candidate for digital implementation.

This system differs from the one described earlier in that the input
spectrum is split into several bands and that differences in intonation are
simulated primarily with spectrum (frequency) shifters rather than phase or
delay shifters (although these too are used extensively). As was mentioned in
Chapter 3, a spectrum shift destroys harmonic relationships among compo
nents of the shifted spectrum, whereas a delay shift does not.

IThe block diagram was raken from nores gathered from a technical paper delivered by
Robert Orban at the 55th convention of the Audio Engineering Society.
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Fig. 14-25. (A) Parametric chorus simulator. (8) Spectrum shifter block dia
gram.

Figure 14-25B diagrams a spectrum shifter consisting of three major
parts. The first and most critical is a 90° phase difference network. The
purpose of the network is to produce two output signals from a single input
such that the phase difference between the outputs is 90° independent of
frequency. Such a network is constructed from two multisection all-pass
filters as shown. Although the input-to-ourput phase shift of each filter alone
varies considerably with frequency, the phase difference is reasonably con
stant over a fairly wide frequency range. More sections in the filters broaden
the frequency range of accurate 90° phase difference. Phase errors generally
cause incomplete suppression of the unwanted spectrum copy. Note that
since the input spectrum is split into fairly narrow bands that the 90° phase
difference network can be simpler than it would otherwise be.
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Fig. 14-25. (Cont.). (C) 90 degree phase difference network detail.

The other elements are exceptionally easy to implement in digital form.
The frequency of the sine and cosine waves entering the multipliers deter
mines the amount of spectrum shift hertz for hertz. As shown, the spectrum
is shifted up, but inversion of the driving oscillator phase will cause a
downshift instead. The oscillator is easily implemented with a sine table and
two pointers one-quarter the table length apart. Smooth transitions from
upshift to downshift are accomplished by letting the table increment go
negative, thereby generating "negative" frequencies.

The entire system is operated much like the simpler chorus synthesizer.
Essentially, all of the variable elements are fed independent, slowly varying
random signals. Again, adjustment is best done by ear, although many
strange effects are possible by misadjustment.

Interpolation

Virtually everyone was taught in junior high school (before the advent
of pocket calculators anyway) how to interpolate in a table of logs or trig
functions in order to get an extra digit or two of precision. However, in
digital music synthesis, interpolation between waveform table entries or
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waveform samples is of interest and has, in fact, been mentioned in passing
several times so far. In this section, such interpolation will be looked at more
closely.

In general, the interpolation problem can be stated as follows: Given
one or more tabulated points (X and Y coordinates) describing some sort of
curve and an arbitrary value of X, determine as "accurately" as possible the
corresponding Y. Accurately was quoted because unless an equation is known
that exactly describes the curve in the region from which the tabulated points
were taken, there is nothing to compare the interpolated result to. In cases in
which such an equation is not known, interpolation only gives a guess of
what the untabulated value should be. One can, however, evaluate the guess
by how close it comes to the "most likely" untabulated value. Clearly, a
procedure that painstakingly evaluates all of the points in the table (or
record) should be able to make a good guess. For our purposes, an interpola
tion algorithm can be characterized by how many data points and how much
calculation is used to make the guess and how good it is likely to be relative
to an exhaustive procedure.

The general approach to performing interpolation is to first find an
equation that "fits" the data, that is, a plot of the equation would pass
through the data points being considered. After this is done, the X for which
a value is needed is plugged into the equation and out comes its correspond
ing Y. The accuracy of this Y depends entirely on how well the "interpola
tion function" models the physical process that created the data points in the
first place. This is important because there are many different equations that
will pass through the tabulated data points. Note that in the general case the
tabulated points need not be equally spaced. In synthesis applications, how
ever, they usually are, which simplifies the calculations.

Generally speaking, the interpolation will be most accurate when the
unknown point is in the middle of the cluster of known points. If it is
completely outside the tabulated points, the process is known as extrapola
tion, which is sheer speculation as to what the point might be if the curve
continued to behave as it did in the tabulated interval.

One class of equations that can be used in interpolation is the standard
algebraic polynomials. In general an N -lth degree polynomial can be found
that will exactly pass through N data points. Once found, the polynomial can
be easily evaluated at the unknown point. The higher the degree of the
polynomial, that is the more data points that are considered, the better the
interpolation results.

The simplest example, which is what most people call interpolation, is
linear interpolation. Here, a first-degree polynomial, which is a straight line,
is fit to two data points; one on each side of the unknown point. The
procedure for doing this was described in detail in the previous chapter. One
could also fit a quadratic curve through three points and so forth. When a
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Fig. 14-26. Third- and fifth-degree interpolation polynorr,ials
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cubic is used with four data points, the procedure is called a cubic spline,
which is detailed in Fig. 14-26 and compared with a fifth-degree interpola
tion polynomial.
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Interpolation Filters

In digital synthesis, one most often needs to interpolate between
sample points in a single string of samples. One excellent application, which
will be used throughout the remaining discussion, is sample-rate conversion.
This is the case in which one has a string of samples taken at, say, 25 ksls and
wishes to convert it to, say, 28.371 ks/s. If it is true that the 25 ks/s samples
captured all of the information in the originallow-pass-filtered signal, then
the conversion should be possible with no degradation of the signal
whatsoever. Downward conversion is also possible provided the signal is low
pass filtered to less than one-half the new sample rate.

Ptobably the first indination in solving the rate-conversion problem is
to linearly interpolate between the input samples as required to obtain the
output samples. Unfortunately, this simple method generates an unac
ceptably large amount of noise. Cubic and quintic splines are better, but the
noise is still excessive when high-frequency signals are being converted.
These simple procedures fail primarily because the sample points are sparse
compared with the variability of the curve before it was sampled, even
though we know that they are dense enough for accurate reconstruction of the
curve by a low-pass filter.

Figure 14-27 illustrates another samp1e-rate-changing process based on
reconstruction of the original waveform and resampling at a different rate.
The digital sample stream is converted into analog form at the original
sample rate by the DAC and filtered by the low-pass filter. The filtered
waveform is then resampled at the converted sample rate to provide the
result. The low-pass filter cutoff should be less than one-half of the lower of
the two sample rates. By studying the diagram, it is apparent that the filter
actually does the interpolation and the digital-analog-digital conversion is
just overhead. What is desired is a way to simulate this sample-rate
conversion system completely in the digital domain.

Earlier it was learned that the output waveform of a filter is actually the
superposition of impulse responses, one for each input sample. Figure 14-28
shows the ideal low-pass impulse response, where the cutoff frequency is
exactly one-half of an arbitrary sample frequency. Note that the response is
zero at all sample times except the one that corresponds to the input impulse!
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Fig. 14-28. Impulse response of ideal low-pass interpolating filter

Figure 14-29 shows in detail how the impulse responses to a string of
samples combine to produce a very smooth curve that exactly passes through
the sample points that are being low-pass filtered. In this respect, the filter
output satisfies the requirements for an interpolation function of the sample
points.

At this time, we can write the equation of the smooth curve connecting
the data points. If we ignore the filter's delay and call the point at the center
of the cluster point 0 (X = 0, y = Yo) and scale the X axis in units of the
sampling period, the impulse response, 10, due to point Xo,Yo is:
10=Yosin(7TX)l7rX. Continuing, the response due to the point Xl, Yl is:
It= Y lsin(7T(X -l»/7T(X - 1), where the (X -1) accounts for shifting the
impulse response right one unit so that it is centered about Xl. In fact the
response due to a general point Xi, Yt is: 1i=Yisin(7T(X-i))/7T(X-i). The

INDIVIDUAL
IMPULSE
RESPONSE

"'..
/' INTERPOLATED

/ CURVE

Fig. 14-29. Action of low-pass interpolating filter
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Y i [sin 1T (X - i) ]
1T (X -i)

y

overall response due to all of the points' is simply the sum of the individual
responses, which can be written as:

+00

22
= -00

This resulting equation can now be" evaluated at any desired value of X
(which can be a mixed number) to obtain a corresponding interpolated Y. For
sample rate changing, one simply increments X according to the ratio of the
new sample period to the old sample period and the string of Ys is the new
sample string.

The procedure just outlined is ideal, that is, it will give the same
sample values that would have been obtained if the signal was originally
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Fig. 14-30. Effect of truncating ideal low-pass impulse response (cant.). (e)
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tion used.

sampled at the new rate. Unfortunately, the infinity signs in the interpola
tion function make it completely impractical. Since the individual impulse
response curves decrease fairly rapidly on either side of zero, it is possible to

simply cut them off at some point. If this is done, the limits on the summa
tion become finite such as -10 to + 10 (they should be symmetrical),
which means that a cluster of 21 points is examined to determine the interpo
lation function. When the summation is truncated like this, it is important
that the unknown point be close (within an input sample period) to the
center of the cluster.

The truncated impulse response no longer corresponds to an ideal low
pass filter. Instead, the degraded filter exhibits a finite cutoff slope and a
finite maximum attenuation as shown in Fig. 14-30. The finite cutoff slope
means that the data being converted must be somewhat oversampled if
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serious alias distortion is to be avoided. The finite maximum attenuation
means that some noise will be introduced by the interpolation. It is also
possible to "tail off" the ends of the impulse response rather than truncate it.
The effect of this is to increase the maximum attenuation at the expense of
decreasing the cutoff slope. This means that if the input data is adequately
oversampled, either the interpolation noise may be reduced or fewer points
may be used in the interpolation. Tailing off will be discussed further in
Chapter 16.

The Table Method of Interpolation

Even when the number of points is reduced to a reasonable value, the
sine functions and divisions necessary to apply the method are very time

SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5 SECTION 6
ADDR DATA ADDR DATA ADDR DATA ADDR DATA ADDR DATA ADDR DATA

0 .00000 32 .00000 64 .00000 96 .00000 128 .00000 160 .00000
1 .99833 33 -.02819 65 .01157 97 -.00527129 .00211 161 -.00062
2 .99333 34 -.05422 66 .02247 98 -.01023 130 .00407 162 -.00119
3 .98504 35 -.07801 67 .03263 99 -.01483 131 .G0587 163 -.00169
4 .97349 36 -.09952 68 .04198 100 -.01905132 .00748 164 -.00213
5 .95878 37 -.11870 69 .05047 101 -.02286 133 .00891 165 -.00251
6 .94099 38 -.13554 70 .05805 102 -.02624 134 .01015 166 -.00282
7 .92022 39 -.15004 71 .06470 103 -.02918 135 .01120 167 -.00308
8 .89662 40 -.16220 72 .07039 104 -.03167 136 .01206 168 -.00328
9 .87032 41 -.17207 73 .07511 105 -.03371 137 .01274 169 -.00343

10 .84150 42 -.17968 74 .07887 106 -.03530 138 .01322 170 -.00353
11 .81032 43 -.18510 75 .08165 107 -.03644 139 .01354 171 -.00358
12 .77698 44 -.18840 76 .08349 108 -.03715 140 .01368 172 -.00358
13 .74168 45 -.18967 77 .08441 109 -.03744 141 .01366 173 -.00355
14 .70464 46 -.18902 78 .08444 110 -.03732 142 .01350 174 -.00348
15 .66607 47 -.18654 79 .08364 111 -.03684 143 .01320 175 -.00339
16 .62621 48 -.18237 80 .08203 112 -.03599 144 .01277 176 -.00326
17 .58528 49 -.17663 81 .07967 113' -.03482 145 .01224 177 -.00311
18 .54354 50 -.16956 82 .07663 114 -.03336 146 .01161 178 -.00295
19 .50121 51 -.16099 83 .07297 115 -.03163 147 .01090 179 -.00276
20 .45854 52 -.15138 84 .06875 116 -.02967 148 .01012 180 -.00257
21 .41577 53 -.14077 85 .06404 117 -.02751 149 .00928 181 -.00237
22 .37312 54 -.12931 86 .05891 118 -.02519150 .00841 182 -.00216
23 .33084 55 -.11716 87 .05344 119 -.02273 151 .00751 183 -.00194
24 .29814 56 -.10446 88 .04769 120 -.02019152 .00660 184 -.00173
25 .24824 57 -.09137 89 .04174 121 -.01757 153 .00568 185 -.00151
26 .20834 58 -.07801 90 .03565 122 -.01493 154 .00477 186 -.00129
27 .16964 59 -.06455 91 .02951 123 -.01229 155 .00388 187 -.00107
28 .13232 60 -.05111 92 .02337 124 -.00967156 .00302 188 -.00085
29 .09655 61 -.03781 93 .01728 125 -.00711 157 .00219 189 -.00063
30 .06248 62 -.0247994 .01132 126 -.00463 158 .00141 190 -.00042
31 .03026 63 -.01215 95 .00555 127 -.00255 159 .00068 191 -.00021

192 .00000

Fig. 14-31. Interpolation table
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~6 -.1 204 .0 .0
-5 .3 172 ~.00358 -.00107
-4 .9 140 .01368 .01231
-3 1.0 108 -.03715 -.03715
~2 .4 76 .08349 .03340
-1 .8 44 -.18840 -.15072
o .6 12 .77698 .46619
1 -.2 20 .45854 -.09171
2 -.4 52 -.15138 .06055
3 -.8 84 .06875 -.05500
4 -.6 116 -.02967 .01780
5 .1 148 .01012 .00101
6 .2 180 -.00257 -.00051

.25510 = Interpolated Y

Fig. 14-32. Interpolation table use example

consuming, particularly on a microcomputer. Applying a tailing function
(instead of truncating) takes even longer. The answer to this dilemma is the
maxim: When in doubt use tables! As it turns out, a very simple table
lookup algorithm can be derived that requires N multiplications, table
lookups, and additions, where N is the number of points considered. These
numbers are the same even if a tailing function is used to reduce interpolation
nOIse.

The basic idea is to store the impulse response in a table. Since the
impulse response is symmetrical, the table needs to be only half the size it
would otherwise be. Fig. 14-31 shows how the data is placed in the table.
First, we will assume that N is odd. The table area is then divided into
(N - 1)/2 sections and, fot convenience on a binary computer, each section
contains a power of two number of points. The time span of a section is the
same as the input stream sample period. In the example, N = 13 and there
are six sections with 32 entries each for a total of 192 entries. It is also
necessary to include or imagine 16 zeroes preceding the first and following
the last section.
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Using the table for interpolation is really quite simple. First we will
restrict the unknown point to be within one-half of a sample period, either
side, of the middle tabulated point as shown in Fig. 14-32. This middle
point will be designated So while those on the left are numbered S- 1, S- 2,
etc., and conversely for those on the right. Next, the position of the un
known point with respect to the central point will be expressed to the nearest
1/32 of a sample interval and will be called A. Thus, in the example, A will
always be between -16/32 and + 15/32 inclusive. To compute the unknown
sample value, one simply iterates i through the 13 tabulated points from -6
through +6 multiplying each point value by the contents of the table at A +i
and adding up the products. The sum is the interpolated value! When
looking into the table the sign of the argument is ignored, which imple
ments the symmetry. If the argument is greater than 6 or less than -6, zero
should be returned.

Note that the location of the unknown point is quantized to 1/32 of a
sampling interval. Abiding by this restriction limits the variety of sample
rate ratios. One could reduce this restriction by increasing the size of the
table or by linear interpolation in the table, which is now allowable because
the tabulated function is densely sampled. One could also apply the table to
compute two interpolated samples, one on either side of the arbitrary un
known sample and linearly interpolate between them, thus reducing interpo
lation effort. This is permissible because now the waveform is grossly over
sampled (by a factor of 32 in the example) and linear interpolation will not
add nearly as much noise as before. The two methods are in fact exactly
equivalent but the second only requires one linear interpolation rather than
13.

Actually writing a sample-rate-conversion program is somewhat tricky
because both "future" and "past" input samples are needed and because of the
different input and output sample rates. The problem is generally solved by
using an input buffer, an output buffer, and a simulated shift register for the
samples used in the interpolation. The routine would also accept a sample
rate ratio, R, which would be a mixed number either greater than or less than
unity.

In practice, the routine would initially be given a full input buffer, an
empty output buffer, and a shift register full of zeroes. It would also keep
track of a time variable, A , which corresponds to the A used in the interpola
tion example and which is constrained to the range of - o. 5 to +o. 5. To
generate the next output sample, R is added to A. If the sum is between
-0.5 and +0.5, an interpolation is performed and the computed sample is
put into the output buffer. If the sum is greater than +0.5, the shift
register is shifted one position, the next input sample is taken from the input
buffer and put into the vacant shift register slot, and 1.0 is subtracted ftom
A. This is repeated if necessary until A is less than +0.5, at which point an
interpolation is performed generating another output sample and so forth.
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When the output buffer becomes full, a dump routine is called to transfer it
someplace. Likewise, when the input buffer becomes empty, a load routine is
called to refill it.

Note that, if the sample rate is being converted downward (R> 1), the
data must be separately low-pass filtered (or have been adequately oversam
pled in the first place) prior to the sample-rate conversion. The interpolation
filter described cuts off at one-half the input sample rate and therefore does
no bandlimiting itself.





15
Percussive Sound

Generation

Up to this point, discussion has concentrated on the synthesis of basically
periodic tones. Percussive sounds, however, are quite important as well and
may in fact have even more variety than periodic types of sounds. Whereas
tones can be fairly well described by giving a few parameters, many percus
sive sounds defy simple description. As is the case with tones, direct digital
techniques offer considerably more freedom in the synthesis of percussive
sounds than do analog techniques. Percussive sound generation is such a
large topic that only a brief introduction can be offered here. Nevertheless,
the techniques discussed should be suitable for a wide variety of percussive
sounds.

Types of Percussive Sounds

Out of the infinite variety of percussive sounds, it is possible to define
roughly four categories. Type 1 sounds are those that are basically sine wave
tones with a suitable amplitude envelope. Any of the synthesis techniques
covered previously are quite adequate for generation of the tone component of
the sound, while direct computation or table lookup is suitable for the
envelope. Nearly all sounds in this group have a moderate to strong sense of
pitch due to the periodic foundation. Familiar instruments producing sounds
in this group are wood blocks, daves, orchestral bells, and bongo drums.

Type 2 is similar, but the underlying "tone" consists of several,
nonharmonically related sine wave components. Most free (without snares)
drums produce sounds in this category when struck with moderate force by a
padded drumstick. Unlike sttings and metal bars, the various vibration
modes of a drumhead do not correspond to integrally related frequencies.
Again, the previous synthesis methods can be used to produce the basic tone
to which an amplitude envelope is added.

Type 3 sounds are best described as filtered, enveloped noise. In many
cases, the instrument physics are basically the same as for Type 2, but the
number of frequency components is so large that the sound resembles random
noise. In other cases, the instrument operates by means of scraping or rat-
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tling, thus producing random noise directly. Synthesizing such sounds basi
cally amounts to determining the amplitude response of the filter and the
shape of the amplitude envelope. Cymbals, drums with snares, and sand
blocks produce sounds that are excellent examples of this type of percussion.

The last class most resembles the first but has great potential for a wide
variety of distinctive percussive sounds. These are sounds made by a non
linear vibrator such as a ruler held over the edge of a table. The difference is
that the basic parameters of the vibration such as frequency and waveform
change as the amplitude of the vibration changes. In the case of the ruler, the
nonlinearity arises from the fact that the effective vibrating length is less on
the downstroke, where it bears against the table edge, than on the upstroke,
where it is restrained by the player's hand. The relative time spent in each of
the two states varies with amplitude, until at low amplitude the table edge
becomes dominant and the vibration expires with a Type 1 characteristic.

Damped Sine Wave Generation

Most sounds in the first two categories can be quite adequately simu
lated with one or more exponentially damped sine waves. Although a sine
wave tone generator can be given an amplitude envelope for this purpose, the
very fast attack characteristic of these sounds requires that the attack begin at
the zero crossing of the sine wave. Otherwise, audible dicks may be gener
ated, particularly when the wave being enveloped is of low frequency.

A convenient way of obtaining damped sine waves with the required
attack phase continuity is to ring a high Q filter! The center frequency
determines the wave frequency and the Q determines the decay rate. Because
of the precision and stability of digital filters, even very slow decay rates are
easily handled.

The filter-ringing technique is very common in the analog world for
simulating the sounds of all kinds of percussive instruments. Its use is most
popular in electronic organs, where up to a dozen different percussion "in
struments" are driven by digital logic to provide rhythm accompaniment to
the standard organ sound. For example, a fairly high-frequency (1-2 kHz),
high-Q (50) ringing filter is used to simulate daves. A lower-frequency (500
Hz), lower-Q (10-20) filter makes a convincing wood block sound. Even
lower frequencies (100-250 Hz) and moderate Qs do a surprisingly good job
of simulating tom-tam's even though a real tom-tom is a Type 2 percussive
sound. Much lower frequencies (50 Hz) have all of the oomph of a bass drum
when played through a good speaker system.

To these rather common-sounding percussion "instruments," one may
add many others by manipulating the frequencies and Qs. In particular, if a
number of dave-like instruments with pitches on a musical scale are defined,
a tune can be played that the average person almost invariably associates with
falling raindrops. And who has not heard a melody "played" by a coffee
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Fig. 1!H. Digital ringing filter

percolator or corn popper? The tuned percussive sounds in this case are in the
wood block frequency range but with somewhat lower Qs. And then we can
have all kinds of tuned thuds, bottle pops, and little pings to work with as
well.

Although any resonant digital filter of the recursive type (one that has
feedback paths) can be rung, probably the digital state-variable type is the
easiest to work with because of the essentially linear relation between the
filter parameters and digital constants. Since no input signal is required, the
structure can be simplified to one of the two shown in Fig. 15-1. To start the
filter ringing, one initializes the left delay element with a value of A and the
right delay element with zero. Following this, every iteration of the filter
will produce an output sample on a damped sine wave starting at zero and
initially going positive. The first positive peak amplitude will always be
slightly less than A depending on the Q parameter. Since the filter is a state
variable, the center frequency may be varied without affecting the Q. This
means that the damping time increases as the center frequency is reduced.

The second form of the filter shown has a ringing time that is constant
as the ringing frequency is changed. Besides being a trifle simpler in struc
ture, the constant ring time may be more useful musically. The equation
given in the diagram gives the time required for the ringing amplitude to
decay 8.7 dB or to about 37% of its original value. Since the decay is a
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constant number of decibels per second, the decay time to other endpoint
values is easily determined.

One function that is easily performed with a digital ringing filter is
dynamic variation of the filter parameters while the filter is ringing. In
particular, variations in frequency can turn a nice "ding" into a "doioing"
that sounds a lot like a ringing glass with water sloshing around in it. One
interesting property, however, is that the ringing amplitude decreases when
the frequency is raised and increases when it is lowered. This is not particu
larly noticeable unless the frequency change is large and the Q is high.

Type 2 percussive sounds are also easily done with the filter-ringing
method simply by using several ringing filters. The various drums men
tioned earlier can be more realistically simulated using the method along
with published figures for the vibration modes of uniformly stretched
drumheads. This can be important if one is synthesizing a drum solo in
which the instrument is clearly heard. A particularly effective ringing-filter
application is in the synthesis of tympana (kettledrums). The ability to tune
the filters while they are sounding means that a realistic simulation is possi
ble.

A "Perfect" Digital Oscillator

When the Q is allowed to go to infinity, the two filter structures
become identical and one has a digital oscillator. If integer arithmetic is
used, the resulting sine wave will run forever with no noticeable amplitude
increase or decrease. In fact, such an oscillator using only 8-bit arithmetic
was set up and allowed to run overnight with no change in amplitude. This
was particularly interesting because there was a nonintegral number of sam
ples per cycle of the waveform. Apparently, because of the circular nature of
the oscillation, the roundoff errors cancel after a number of iterations leaving
exactly the same two numbers in the delay registers as an earlier iteration.
The perfection of the waveform is limited only by the noise inherent in the
N-bit representation of the samples generated.

The content of the other delay also describes a "perfect" sine wave but
out of phase with the first wave. In fact, the phase angle is nearly 90°
depending on the oscillator frequency. For very low frequencies (relative to
the sample frequency), it is quite close to 90°. Often a quadrature oscillator
whose outputs are exactly 90° apart is useful. The simple modification of
the infinite Q filter shown in Fig. 15-2 makes the phase difference exactly
90° independent of frequency at the expense of two additional multiplica
tions per sample. Still this is much faster than computing a sine and cosine
from a series approximation and is much more accurate than looking in a sine
table. The restriction, of course, is that the sine/cosine values are generated
in sequence and at equal spacing. An application of the oscillator is in a FFT
program, particularly for a large number of points. Examination of the FFT
butterfly reveals that the calculation sequence is easily arranged such that the
W function uses equally spaced sines and cosines in ascending order.
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Digital Noise Generation

Type 3 percussive sounds are primarily based on filtered random noise.
Therefore, to generate such sounds digitally, a source of sampled white noise
is needed. The filtering then can be accomplished with the same filters used
in other applications.

If one were to connect an ADC to an analog white noise generator, the
resulting samples would appear to be random numbers with a gaussian
amplitude probability distribution. Actually, if the ADC included an an
tialias low-pass filter, the noise samples would be somewhat correlated.
However, for noise sampling the filter is not really needed, since the alias
noise will also be white and indistinguishable from the rest of the signal.

Fortunately, it is not necessary to sample analog white noise if the goal
is a string of samples that sounds and behaves like white noise. Instead, one
simply uses a random number generator with each number from the
generator being a noise sample. There are numerous random number al
gorithms available but only two will be discussed here.

In general, a random number generator provides an N-bit binary
number every time it is called. Each of the 2N possible combinations should
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be equally likely, and there should be no perceivable correlation from one
number to the next. Finally, if these conditions are truly met, each bit or any
subset of the bits in the numbers should also be random. This last condition
implies that a random bit generator can be made into a random number
generator simply by forming groups of N random bits each. No algorithmic
random number generator complerely meets all of these criteria but any
imperfections are or can be made completely inaudible.

Most random number generation algorithms are actually numerical
functions that accept their previous output as input and generate a new
output. Although the output is related to the input in an obscure way, it
seems to be completely unrelated to it in the end application. The initial
input used when the generator is started is called the seed and can usually be
any number except zero. If the same seed number is used on two different
occasions, the series of numbers generated will also be the same.

The numerical function Lltilized by the generator almost always uses
integer arithmetic, and the function is carefully chosen according to the word
size of the computer. Since the output numbers are also integers with a finite
number of bits, it is obvious that at some point in the sequence the seed will
pop up again. From this point forward, the sequence repeats itself. An
efficient random number generator will generate all or nearly all of the 2N

different numbers that can be represented by an N-bit word before repeating.
Thus, in a 16-bit computer, about 65,000 random numbers can be generated
with single-precision arithmetic. Even at a 50-ks/s sample rate, which gives a
repetition period of a little over I sec, such a generator produces perfectly
acceptable white noise for human consumption.

Linear Congruential Method

One of the most popular random number algorithms is called the linear
congruential method. The basic function is: Rnew=(AxRold+B)mod M,
where A and B are carefully chosen constants and M is the largest possible
number plus one for the chosen word length. The arithmetic is assumed to be
unsigned integer and ignoring overflow neatly implements the mod func
tion. The generator is completely specified by giving values for A J B J and the
word length. For any given word length, there are values for A and B (besides
the trivial ones A = 1 and B = 1) that give M values before repeating. One of
the references gives an extremely detailed analysis of how to determine good
values for these parameters for general random number use. The following
table summarizes A and B values that are suitable for white noise generation
with different word lengths.

The method is quite efficient if the computer has an unsigned multiply
instruction. It does have one important shortcoming, however; the less sig
nificant bits are not very random. If random bits or short random words are
desired, the most significant bits should always be used.
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Word length
8

12
16
24
32

Sequence length
256

4096
65536

16777216
4294967296

A
77

1485
13709

732573
196314165

B
55

865
13849

3545443
907633515

Shift Register Method

Another method that is superior to the linear congruential method in
some respects can be called the feedback shift register random bit generator.
As the name implies, the method generates random bits that are grouped to
form random numbers. A feedback shift register similar to that discussed in
Chapter 10 is used. By proper selection of the taps to be exclusive or-ed and
fed back, the register can generate a sequence of 2N - 1 bits before repeating.
To form an N-bit random integer, where N is equal to or less than the
register length, one simply iterates the register at least N times and then
reads the result directly from the register.

One advantage of the method is that all of the bits are random and
therefore can be used indiscriminately for random control functions. Another
advantage is that only logical operations are needed. On the other hand, the
method as presently formulated is not as efficient at generating numbers with
large N compared with the previous method even if the computer does not
have a multiply instruction. Also, when set up for iterating N times to get an
N-bit number, it fails some statistical randomness tests. This fault may be
minimized by iterating somewhat more than N times. On the other hand,
quite satisfactory white noise samples are generated with only a few itera
tions, such as five, for full 16-bit noise samples.

The shift register method is ideally suited for hardware implementa
tion. With very little logic (three IC packages costing less than three dollars),
one can set up a random number peripheral that will pass anyone's test for
randomness including nonrepeatability of results. The circuit in Fig. 15-3
shows a 26-stage shift register with feedback logic that would be iterated by
the microcomputer's clock. Up to 14 '(8 are shown) of the register bits are
available for connection to an input port. If the clock phase used to trigger
the register is chosen properly, there is no danger of the register changing
while the computer is reading it. The 226 sequence length would run over 30
sec alone, but variations in program execution time make it highly unlikely
that any repetition could ever be detected. Skeptics can substitute a type
4031 64-bit register for the type 4006 18-bitter and have a period of nearly
150 million years at 1 MHz.

Digressing for a moment, such a circuit makes an excellent analog noise
generator as well. One simply clocks it at 400 kHz or more (an R-C oscillator
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is fine) and runs one of the register bits through an R-C low-pass filter with a
cutoff around 20 kHz. The output sound and waveform are indistinguishable
from diode noise sources and are much less susceptible to hum pickup. Also,
the output amplitude is repeatable and stable, a virtue not shared by diodes.



PERCUSSIVE SOUND GENERATION 535

A modification to the shift register method will greatly increase its
efficiency as a white noise subroutine. Essentially, the register and
exclusive-ors are turned inside-out, which results in several of the register
bits changing in an iteration rather than one. Assuming that the register
length is the same as the word length, the following steps are performed for
an iteration:

1. Shift the register left bringing in a zero on the right and putting the
overflow bit into the carry flag.

2. If the carry flag is off, the iteration is complete.
3. If the carry flag is on, flip selected bits in the register. This may be

accomplished by exclusive-oring a mask word with the register con
tents. The iteration is now complete.

In a 16-bit machine, these steps may require as few as three instructions to
generate a sample of quite acceptable, if not statistically perfect, white noise.
The table below lists mask words for common computer word lengths.

Word length Sequence length Mask in hexadecimal
8 265 ID

12 4095 ID9
16 65535 ID87
24 16777215 ID872B
32 4294967295 ID872B41

Using the Random Numbers

The output of the random number generators just discussed is a string
of unsigned integers. However, since they are random, one can interpret
them as standard twos-complement numbers as well or even as binary frac
tions. Since twos complement is slightly asymmetrical (there is one more
possible negative value than possible positive values), the mean of the se
quence will be -0.5 of the least significant bit rather than O. This almost
never causes problems unless the sequence is integrated for long periods of
time.

Although the output of a random number generator when sent through
a DAC sounds like white noise and in fact gives a white Fourier transform, it
does not look at all like natural white noise. The difference is its probability
density function, which is uniform rather than gaussian. As was mentioned
in Chapter 10, one can easily convert uniformly distributed random numbers
into near-gaussian distributed numbers by adding up 12 of them (assuming a
range of 0 to 1.0) and subtracting 6.0 from the sum. The mean of the result
will be 0 (except for the error described above) and the standard deviation
will be 1. O. The simulation is not exact because the probability of a result
greater than 6 standard deviations from the mean is 0 when it should be
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about 2 X 10- 9 . Actually, since uniformly distributed and gaussian
distributed numbers sound the same and even may look the same after
filtering, there is little reason to perform the gaussian conversion.

In many synthesis or modification applications, one may need several
uncorrelated sources of white noise simultaneously. If the random number
generator is reasonably good, one can simply distribute successive numbers
to the separate processes requiring them. Thus, one random number
generator can be used to simulate any number of random processes.

Type 3 Percussive Sounds

Now that we have a source of white noise lets discuss how it can be used
to synthesize Type 3 percussive sounds. A pure Type 3 sound may be
generated by filtering the noise and applying a suitable amplitude envelope.
Very simple filters are adequate for many common sounds. For example, a
quite deadly sounding gunshot may be produced by high-pass filtering the
noise with a 300 Hz to 500 Hz cutoff and applying an envelope with zero
attack time and decay ro - 30 dB in 100 msec to 200 msec. Conversely, a
cannon boom is noise low-pass filtered at 100 Hz to 200 Hz with a somewhat
longer attack and decay than the gunshot. Returning to musical instru
ments, high-pass filtering above 1 kHz with a 50 msec to 100 msec attack
and decay simulates brushes (lightly on a snare drum) quite well. Maracas
sound best with a little lower cutoff frequency and shorter attack and decay.
Cymbal crashes have about the same frequency distribution as maracas but a
fast attack and long decay in the O.5-sec to I-sec range as well as high
overall amplitude.

Some sounds are not pure Type 3. A standard snare drum beat is the
best example and consists of a burst of virtually white noise (only the very
lowest frequencies are missing) combined with a Type 1 or Type 2 drum
sound. A very realistic close range (remember how it sounded when one
passed just 5 feet away in a parade?) bass drum sound can be produced by
amplitude modulating 500-Hz low-pass filtered noise with the primary 50
Hz damped sine wave and mixing the two together.

Noise may also be bandpass filtered to simulate other classes of sounds.
Many types of drums are more easily synthesized with filtered noise than
several damped sine waves and sound just as good if not better. The bass
drum, for example, can be done by bandpass filtering in the 50-Hz range as
in Fig. 15-4. Pitched drums such as tom-roms also come out well if some
what higher center frequencies are used. Sometimes it may be necessary to
cascade two bandpass filters to provide greater attenuation of frequencies far
removed from the center frequency, which would otherwise detract from the
naturalness. It should be noted that bandpass filters not only take time to die
out after the input is removed but also take time ro reach full output if the
input is suddenly applied. In some cases, the filter itself may generate a
suitable envelope simply by turning the noise input on and off. Single-pole
R-C low-pass filters also have a finite build-up time, but it is relatively short.
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Many interesting percussive sounds fall into the Type 4 category. The
vibrating ruler mentioned earlier is one example, while a strongly plucked
rubber band is another. To these everyday examples can be added any
number of artificially contrived examples.

Such sounds involve one or more nonlinear vibrating members. One
characteristic of nonlinear vibrators is that the waveform and frequency of
vibration depend to some degree on the amplitude of the vibration. A linear
vibrator, on the other hand, is totally independent of amplitude. While
every natural (and electrical analog) vibrator is nonlinear to some extent, the
effect at normal amplitude levels is small enough to ignore.

The object here is to simulate the behavior, that is, plot the vibration
waveform, of an excited nonlinear vibrator given certain vital statistics about
its components and an expression or a table describing the nonlinearity. Fig
ure 15-5 shows a standard spring-mass vibrator, just as it would appear in a
physics textbook. The position of the mass relative to its stable or neutral
position as a function of time is the variable of interest.

The classic first step in analyzing the vibrator is to note all of the forces
acting on the mass and then apply the conservation principle that requires
these forces to balance out, that is, sum to zero. There are three forces at
work (gravity will be ignored, since it is a static force that has no effect on the
vibration dynamics): the spring-restoring force, the force of friction, and the
force of inertia. The restoring force is normally proportional to the difference
between the present position and the neutral position and always pulls to
ward the neutral position. The force-versus-position relation is what will be
made nonlinear later. The friction force can either be due to sliding friction,
in which case its magnitude is constant (as long as there is movement) or due
to viscous friction with magnitude proportional to velocity. Viscous friction
will be used, since it is better behaved and more "natural." In either case, the
direction is opposite to the direction of movement. The inertia force is
proportional to the mass of the vibrator and the acceleration (rate of speed
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2. Substitute: I(P) + KV + MA ~ 0
. . dp d2P _

3. Get In terms of P. f(P) T K dt + M (jj2 - 0

4. Get in terms of A: HJfA) + KfA + MA = 0

A = ACCELERATION OF MASS
I ~ INERTIAL FORCE
M = MASS
F = FRICTION FORCE
R = SPRING RESTORING FORCE
P = POSITION OF MASS REL TO NEUT.
V = VELOCITY OF MASS
f ~ SPRING RESTORING

FORCE FUNCTION
(LINEAR OR NON-LINEAR)

K = FRICTION COEFFICIENT

(SECOND ORDER DIFF EQUATION)

(SECOND ORDER INTEGRAL EQUATION)

Fig. 15-5. (A) Spring-mass vibrator. (8) Forces on the mass. A, acceleration of
mass; I, inertial force; M, mass; F, friction force; R, spring-restoring
force; P, position of mass relative to neutral; V, velocity of mass; f,
spring-restoring force function (linear or nonlinear); and K, friction
coefficient.

change) it is experiencing. Its direction opposes the sum of the other two
forces.

After the various forces are identified and written in equation form, it is
customary to rewrite the equation in terms of the primary variable, P (posi
tion), instead of velocity and acceleration. This is easily done, since velocity
is the time derivative of position and acceleration is the time derivative of
velocity. The result is a standard second order differential equation.

Our goal, however, is to simulate the physical process described by the
equation, not "solve" it in the mathematical sense. In order to get the
equation into an easily handled form for simulation, it is better to write it in
terms of acceleration, A, rather than position. If this is done, velocity is
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Fig. 15-6. (A and B) Electrical analog of spring-mass vibrator. (C) Digital im
plementation.

replaced by the time integral of acceleration, and position is replaced by the
double time integral of acceleration. The resulting equation then is a second
order integral equation.

At this time, we are ready to construct an electrical analog of the
mechanical vibrating system. The first step is to move the MA term to the
right side of the equation and assign it to the output of an op-amp summer as
in Fig. 15--6. The left side of the equation now sp_ecifies the input to the
summer, which is also shown. The remaining task is supplying IA and
I IA. This can be accomplished neatly by passing the summer output,
MA, through two integrators in series and making the indicated connections
as in Fig. 5-15B. This looks strangely similar to the state-variable filter and,
in fact, is exactly the same if the input is removed and the noninverting
integrators are replaced by inverting ones with the friction-feedback term
flipped to compensate.

Thus, a nonlinear vibrator may be simulated by inserting a nonlinear
transfer function in the feedback path from the low-pass output and then
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Fig. 15-7. Nonlinear vibrator simulation. (A) Increasing slope. (8) Decreasing
slope. (C) Non-symmetrical slopes.
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exciting the filter for results. Although an analog nonlinearity using diodes is
quite possible (and an interesting experiment), with the digital equivalent an
equation or table describing the transfer function can be used instead.

Not just any randomly chosen curve will work for the transfer function,
however. In order for the oscillation to die out completely, the slope of the
curve must always be positive. If the slope tends to increase away from zeta as
in Fig. 15-7A, the oscillation frequency will decrease as it dies out and
vice versa. Symmettical transfer functions lead to odd harmonics only while
nonsymmetrical ones give all harmonics. The position (low-pass) output of
the vibrator tends to have a very strong fundamental relative to the har
monics. The velocity (bandpass) and acceleration (high-pass) outputs have
greater harmonic content.

The position feedback path is not the only one that can be made
nonlinear. The velocity path may also be nonlinear with the general effect of
distorting the decay envelope. Any of the amplifiers in the vibrator structure
can also be made nonlinear. For example, making the value of FCl dependent
on position means that the vibrating mass depends on position such as in the
vibrating ruler case. (The reader should be aware that the ruler sound cannot
be duplicated with just the nonlinear oscillator; the impact of the ruler
hitting the table excites additional resonances in the ruler that require
addi tional filters to simulate.) It is important to note that digital simulations
of nonlinear vibrators can easily generate frequencies above one-half the
sample rate. Thus, experiments should be done at fairly low resonant fre
quencies and without sharp discontinuities in the nonlinear transfer func
tions.





16
Source-Signal Analys,is

One of the great strengths of digital techniques lies in the ability to
thoroughly analyze already existing sounds. These may either be "natural"
sounds such as musical instruments, speech, animal sounds, etc., or they
may be synthesized sounds. In either case, the goal of analysis is to determine
values of the fundamental parameters that characterize the sound and how
they vary with time.

When the ultimate purpose is synthesis, one may do analysis simply for
education. Certainly, a good understanding of the parameters of existing
sounds will aid in the specification of parameters for similar synthetic
sounds. Often, published literature will have the necessary information, but
it may be obscurely presented or applicable only to generalized or overly
specialized cases. Even when published literature is adequate initially, most
synthesis applications can be expected to gradually specialize beyond its
scope. In either situation, firsthand analysis experience is quite helpful.

The most common application of analysis, however, is in sound modifi
cation in which one obtains data from a natural sound and uses it to direct the
synthesis of an artificial sound. Sometimes the distortions introduced by the
analysis/synthesis process alone are sufficient for the desired results. Usually,
though, the analysis data are modified before the synthesis is performed.
Digital processing of the analysis data can usually be performed such that the
useful information is in an easily usable form. For example, if one wishes to
apply the overall spectral envelope of a particular sound to another sound, a
standard spectral analysis can be smoothed so that details about the individual
harmonics are suppressed but the overall envelope is preserved.

Digital signal analysis is a very broad, very complex topic that keeps
research staffs at many universities busy continuously. It is typically highly
mathematical as well and most literature on the subject is quite obscure
without the necessary training. Although one cannot completely escape such
complexities, an attempt will be made in this chapter to discuss the most
important and easily implemented analysis techniques. While these may not
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always be the most efficient or most accurate techniques, they get the job
done. It is much more important for the beginner to actually do some
analysis programming and see the results than to have a thorough mathemat
ical understanding of the underlying principles. Only two types of analysis
will be described in detail. The first is generalized spectrum analysis in
which the time-varying spectrum of the source sound is determined. The
second concentrates on extracting and following the frequency parameter of a
changing sound, a very useful function.

Spectrum Analysis
Most source-signal analysis begins with spectral analysis, since virtually

everything that is audible and important about a sound shows up vividly in a
spectral analysis. The results of the analysis may then be plotted, passed
directly to a synthesis process, or undergo further processing.

A time-variable spectral plot, which is also called a short-time spectral
analysis, is actually a three-dimensional "surface" that shows the relation
between time, frequency, and amplitude variables. Time and frequency are
the independent variables, while amplitude is the dependent variable. When
spectra are computed digitally, all three variables are quantized and two of
them, amplitude and frequency , are also sampled. In effect the "volume"
represented by the allowable ranges of these variables is filled with discrete
points and the spectral surface is defined only at point intersections.

Plotting Methods

Obviously, most computer graphic displays and plotters cannot di
rectly show a three-dimensional surface. This shortcoming has resulted in at
least five distinct methods of representing the data on paper or a CRT screen.
Perhaps most obvious is an isometric drawing of the surface such as illus
trated in Fig. 16-1A. The surface is drawn in a horizontal position with
peaks and valleys much like a land area relief map. Typically, time runs
north/south, while frequency runs eastlwest, although they may be inter
changed. Height always represents amplitude. Such a representation gives a
"spectacular view" of the spectrum to say the least but is very difficult to

draw, since hidden line removal (the surface is opaque instead of transparent)
is necessary to avoid clutter.

A somewhat easier-to-draw representation consists of a stack of stan
dard two-dimensional curves such as illustrated in Fig. 16-1B. Each curve
represents a standard amplitude-versus-time plot at a particular frequency.
Therefore, the horizontal axis is time and the vertical axis is amplitude. Each
graph is displaced vertically upward as well so the vertical axis is also fre
quency. Sometimes the curves are skewed to the right as well as upward to
give an isometric effect.

A third method, which is particularly applicable to digital spectra,
approaches a true three-dimensional representation more closely. With a
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Fig. 16-1. Methods of representing three-dimensional spectral data in two di
mensions (cont.). (F) Optically weighted character set. Spectral plot
using optically weighted characters.

sampled spectrum, amplitude data values are only known at specific incre
ments of time and frequency. Thus, if the two dimension~ of a sheet of paper
correspond to time (horizontal) and frequency (vertical), then the area has
been divided into an array of rectangles, much like graph paper. What is
drawn within the confines of a particular rectangle represents amplitude at
that time and frequency intersection. One could simply draw a bar line in the
rectangle such that the length corresponds to amplitude as in Fig. 16-1C. If
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(G)

Fig. 16-1. Methods of representing three-dimensional spectral data in two
dimensions (cont.). (G) Contour map (voiceprint).

the figure is drawn accurately, this is one of the better quantitative methods
of representing spectral data, since all three variables can be very easily
measured on the plot with a compass and ruler.

One can also fill the rectangle with a patch of gray (or light if on a
CRT). The density of gray or brightness of light represents amplitude as in
Fig. 16---1D. This is commonly called a sound spectrogram, a name coined by a
company that makes analog equipment for drawing such plots. If one has a
color display, then a different color can be assigned to each amplitude quan
tization level. Computer line printers can also be pressed into service as
spectrum plotters by defining time and frequency increments in terms of line
and character positions. The rectangles are then fil1ed in with characters or
overprinted character combinations chosen for their apparent darkness.

In any case, this gives a very-easy-to-interpret visual representation of
the data, but measurement of amplitude from the graph is no longer possi
ble. A very clever compromise is illustrated in Fig. 16-1F in which 16
different "characters" based on the hexadecimal digits are defined. The idea
is to have the area covered by black in the character shape to correspond to its
numerical value. If the amplitude values are quantized to 16 levels, one can
merely read off the values while simultaneously having a "gray-scale" plot to
scan visually.

The final method is the familiar contour map approach to three
dimensional plotting as in Fig. 16---1G. When such plots are made of speech
spectra, they are often called "voiceprints" because of the resemblance in
form to fingerprints (there is some controversy over whether they are nearly
as distinctive as fingerprints). This is perhaps the most accurate method of
representation, particularly if changes in the spectrum are slow. U nfortu
nately, visual interpretation in terms of features valuable for synthesis is
difficult.

Time-Frequency Resolution
In a spectral plot, good frequency resolution is desirable so that indi

vidual har~onics of the sound are clearly distinguishable. Good time resolu
tion is also desirable so that the exact time of significant spectral events can
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Fig. 16-2. Wideband and narrowband spectrograms. (A) Narrowband (45 Hz).
(B) Wideband (300 Hz). Source: Applications of Digital Signal Pro
cessing, Alan V. Oppenheim, Editor, Prentice-Hall, 1978.

be determined. Unfortunately, spectral analysis is limited in the frequency
and time resolution that it can show. This is not due to any particular
shortcoming in the computation or the plotting method but instead is due to
a fundamental law of physics. Since the unit of frequency is "events per
second" and the unit of time is seconds, it should be intuitively obvious that
precise measurement of the amplitude of a frequency component in the pres
ence of other components will take a finite amount of time. In fact, if
frequency resolution of X hertz is desired, a segment of sound lasting a
minimum of l/X sec must be analyzed. Even the human ear is subject to this
limitation. As tone bursts are made shorter, there is greater difficulty in
identifying exactly what the pitches are.

The two spectrograms in Fig. 16-2 illustrate the time-frequency
tradeoff. The first spectrogram is called a narrowband analysis because the
analysis bandwidth is about 45 Hz. This allows individual harmonics of the
sound (a human voice) to show clearly. The waving up and down of the
horizontal lines, which are the harmonics, is the result of changing voice
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Fig. 16-3. Illustration of time-frequency resolution limitation. (A) Actual syn
thesized tones. (8) Narrowband spectral analysis. (C) Wideband
spectral analysis.

pitch. Note that onset and termination of the major features is somewhat
smeared. The second spectrogram is a wideband analysis with an analysis
bandwidth of approximately 300 Hz. Here the time resolution is so good
(approximately 3 msec) that individual cycles of the fundamental frequency
are resolved, which causes the vertical bands. However, only the formants
show up; the harmonics are too closely spaced relative to 300 Hz to be
resolved.

Returning to the array of rectangles that makes up a digital sound
spectrogram, one can consider a narrowband analysis to correspond to rectan
gles that are wide and short, while a wideband analysis uses narrow and tall
rectangles. The area covered by a rectangle remains constant and is equal to
approximately unity (hertz times time). The actual surface area covered on
the plot depends on the scale factor chosen for frequency and time axes. An
analog spectrogram is subject to the same limitation except that the rectan
gles become somewhat diffuse, overlapping ellipses. By using interpolation
in two dimensions, a digital spectrogram can be made to appear identical to
an analog one.

Although it would seem that the narrowband and wideband plots could
be combined into a single figure with both good frequency and time resolu
tion, it is not possible to do so unambiguously. This is illustrated in Fig.
16-3 in which two nearly simultaneous tone bursts are analyzed. The nar
rowband analysis easily separates the two tones but smears the leading and
trailing edges such that it is impossible to tell which occurred first. The
wideband analysis has very sharp leading and trailing edges, but now the two
tones are merged together so it is still not possible to say which came first.
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Data Representation

Most of the spectral plotting methods that have been discussed have a
limited dynamic tange fot indicating amplitude. This is particularly true in
the gray-scale representation. Usually, it is the changes and ratios of ampli
tude that are important rather than the absolute amplitude itself. Therefore,
it is customary to at least partially normalize the amplitude scale so that
overall low-amplitude portions of the signal show up as well as the high
amplitude portions. The normalizing effect can be achieved either with an
automatic gain control mechanism (which can be applied after the signal is
digitized) or by expressing the amplitude of each frequency component as a
percentage of the total spectral power for that time slot. In either case, it is
helpful to know the true overall amplitude which can be plotted as a conven
tional graph below the spectrogram. When pitched sounds are being
analyzed, it is also nice to have a fundamental frequency plot as well, since
this information may be difficult to determine accurately from either a
narrowband or wideband analysis.

Although spectral plots are instructive to look at and, in fact, may be
the goal of educational spectral analysis, the associated data must often be
stored for later use. The most straightforward method of storing spectral data
is in/rames. Each frame represents spectral data at a point in time. Within
the frame there is a byre or word fOt every frequency band used in the
analysis. There may also be one or two additional elements for the overall
amplitude and fundamental frequency if these data are available. With nar
rowband analysis data, the frames would be spread far apart in time and each
frame would have a large number of elements. An example would be a frame
every 30 msec with 165 elements per frame representing 30-Hz bands up to

5 kHz. Frames for wideband analysis data would occur more often, but each
frame would have fewer elements. The corresponding example would be
7.5-msec frames with 40 elements, which gives 130-Hz resolution up to 5
kHz. Note that the amount of data to be stored per second is roughly the
same.

With many types of spectral data it may not be necessary to retain full
frequency resolution in the higher frequencies. For example, a frequency
change from 60 Hz to 90 Hz is interpreted by the ear as an interval of a fifth;
however, a similar shift from 5,000 Hz to 5,030 Hz is a mere lO-cent (0.1
semitone) shift, which is marginally audible if at all. As a result, the analysis
bandwidth can often be widened above a kilohertz or so without loss of
audible spectral features, thereby reducing the amount of data per spectral
frame.

Filtering Methods of Spectral Analysis
The most obvious method of performing spectral analysis is by means of

bandpass filtering. The general idea is to feed the time-varying input signal
to a large number of bandpass filters, each with a different center frequency.
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The amplitude of the filter outputs is sampled periodically to provide the
spectral data. If the center frequencies and Q factors of the filters are chosen
properly, all possible frequencies in the band of interest will excite at least
one filter.

Any number of analog methods for directly realizing or simulating such
a structure have been devised. Probably the most interesting is that utilized
by Kay Electric Company in their Sound Spectrograph. The basic parts of the
machine shown in Fig. 16--4 are the magnetic recording drum, the facsimile
image drum, and a single tunable bandpass filter. The recording drum is
mechanically coupled to the facsimile drum such that they rotate in unison.

In use, up to 2.4 sec of sound can be recorded on the surface of the
magnetic drum. To plot a spectrogram, a piece of electrosensitive paper
(turns dark when current is passed through it) is wrapped around the fac
simile drum and the machine is started in playback mode. The audio signal
from the drum goes through the bandpass filter and then directly to the
writing stylus. High-amplitude filter outputs create a darker trace than
low-amplitude outputs. A leadscrew causes the writing stylus to gradually
move along the length of the drum and at the same time increase the center
frequency of the filter. Thus, the audio signal is serially analyzed at a large
number of center frequencies outside of real time. An amplitude-quantizing
attachment is also available to replace the gray-scale plot with a contour plot.

Most analog spectrum analyzers, however, use a bank of bandpass
filters so that the spectrum analysis is performed in parallel in real time. The
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Fig. 16-5. One channel from a filterbank spectrum analyzer

structure of each channel of such an analyzer is shown in Fig. 16-5. First the
signal is bandpass filtered with a center frequency corresponding to the
channel under consideration. The output of the filter, which is still an ac
signal but with a limited frequency range, is rectified as the first step in
determining its amplitude. This is best accomplished with a full-wave rec
tifier so that the ripple frequency will be high. A final low-pass filter removes
the ripple, giving the short time average of the bandpass filter output. For the
lowest couple of bands, the design of this filter is critical, since roo much
filtering means a slow response, while inadequate filtering lets the ripple
through, effectively adding noise to the channel output.

A Digital Filterbank Spectrum Analyzer

Let's now discuss a digital implementation of the analog filterbank
analyzer. The main advantage of the filterbank method over the Fourier
transform method that will be described later is its simplicity and ease of
understanding. Because of its simplicity, dedicated hardware implementa-
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Fig. 16-6. Digital filterbank spectrum analyzer
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tion is straightforward as well. Even when implemented in software, it is
reasonably efficient if the number of frequency bands is small.

A general block diagram of the structure to be implemented is shown
in Fig. 16-6. This is essentially an extension of the analog channel diagram
into digital form. The input signal is a string of samples at the normal audio
sample rate, which will be assumed to be 20 ksls in this discussion. The
sampled signal passes through a bandpass filter, rectifier, and low-pass filter
in succession, all of which operate at the audio sample rate. The output of the
low-pass filter, however, changes very slowly and therefore can be resampled
at a much lower frequency to provide spectral frames at a reasonable rate such
as 100/sec. As a computer program, the analyzer would essentially accept
samples continuously and return a spectrum frame for every 200 input
samples.

The first element to consider is the bandpass filter. Since only a
bandpass response is needed and the center frequencies are fixed, the cannon
ical form will be used because it requires only two multiplications per
sample.

The next task is to select the center frequencies of the filters. The
spectrum sample period of 10 msec suggests that 100-Hz bands are op
timum, although wider or narrower bands can be used as well. A bandwidth
narrower than 100 Hz simply means that the bandpass filter will respond
slowly to signal changes and, as a result, the channel output will be oversam
pled. A bandwidth greater than 100 Hz means that the low-pass filter and
sampler following the rectifier will limit the channel response speed rather
than the bandpass fil ter.

Let's assume, then, that we wish to minimize the number of frequency
bands yet retain enough data to provide a good representation of significant
audible features. For illustration there will be 30 frequency bands scaled on a
quasiexponential scale with bandwidths ranging from 50 Hz at the low end
to 500 Hz at 7.5 kHz. Frequencies above 7.5 kHz are not considered, since
the low-pass filter used in A-to-D conversion has probably attenuated them
anyway.

It is convenient to specify lower and upper cutoff frequencies for the
filters, especially when using a mixrure of bandwidths. The center frequency,
however, is what is needed to design the filter and it is not exactly midway
between the upper and lower cutoff points. It is, in fact, the geometric mean
of Ph and PI and is given by Pc = VPIFh. where P, is the center frequency.
This formula holds for any definition of cutoff frequency as long as the same
definition applies to both PI and Ph.

Given the center frequencies and bandwidths, the last task is to com
pute the filter Q factors. Since the percentage bandwidths vary from band to
band as well as the bandwidths themselves, each filter will have a different Q.
But before the Qs can be determined, the inevitable overlap between bands
must be considered. Overlap is bound to occur because the cutoff slope at the
band edges is finite. If the Qs are made high in order to minimize overlap as
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in Fig. 16-7A, there will be large frequency gaps that none of the filters
respond very strongly to. On the other hand, excessive overlap degrades
frequency resolution. Overlap can be characterized by noting at what attenu
ation adjacent amplitude responses cross. A good number for the single
section bandpass used here is -6 dB or the 50% voltage response points. The
formula for Q based on a 6-dB bandwidth is: Q = 1.732Fc/(Fh-FI).

Table 16-1 and Fig. 16-8 show the 30-channel bandpass responses
with overlap at the 6-dB points. What is plotted in Fig. 16-8 is the gain
versus frequency for each filter after it has been normalized for unity gain at
the center frequency. This would seem to be the only reasonable way to

normalize filter gains, but a peculiar thing happens if one feeds white noise
into the analyzer. Some channels, notably the high-frequency wide
bandwidth ones, report a higher amplitude than others even though the
input sound has a flat spectrum!

The uneven response is due to the fact that white noise has constant
power per hertz of bandwidth, and the wider bandwidth filters therefore
absorb more power. A typical complex music spectrum would show the
same results. On the other hand, a sound having only a few widely spaced
harmonics would be analyzed correctly! The only way to avoid this dilemma
is to use equal bandwidths for all of the filters. If wider bandwidths are
desired at the higher frequencies, two or more bands can be averaged, which
does not create problems. Even though the spectral data are reduced, compu
tation time soars. The filterbank analyzer, therefore, is best suited for rough
analysis of dense (lots of frequency components) spectra, in which case the
channel gains are normalized for equal response to white noise.

The low-pass filters following the rectifiers must also be specified. As
was mentioned earlier, their primary job is to smooth ripple from the rec
tifier without unduly slowing response to sudden spectrum changes. How
ever, one must be careful to avoid multisection sharp cutoff filters because
their step response includes a lot of ringing, which would distort the
analysis. A reasonable compromise is a resonant low-pass with a Q of around
0.8. Since the spectrum sample rate is 100 Hz, a cutofffrequency of30 Hz or
so is indicated. Acceptable ripple rejection in the lowest band may require a
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Table 16·1. Filter Data for Filterbank Spectrum Analyzer

Channel FI Fh Fe Q

1 50 100 71 2.45
2 100 150 122 4.24
3 150 200 173 6.00
4 200 300 245 4.24
5 300 400 346 6.00
6 400 500 447 7.75
7 500 600 548 9.49
8 600 700 648 11.22
9 700 800 748 12.96

10 800 900 849 14.70
11 900 1,000 949 16.43
12 1,000 1,200 1,095 9.49
13 1,200 1,400 1,296 11.22
14 1,400 1,600 1,497 12.96
15 1,600 1,800 1,697 14.70
16 1,800 2,000 1,897 16.43
17 2,000 2,200 2,098 18.17
18 2,200 2,400 2,298 19.90
19 2,400 2,600 2,498 21.63
20 2,600 2,800 2,698 23.37
21 2,800 3,000 2,898 25.10
22 3,000 3,300 3,146 18.17
23 3,300 3,600 3,447 19.90
24 3,600 4,000 3,795 16.43
25 4,000 4,500 4,243 14.70
26 4,500 5,000 4,743 16.43
27 5,000 5,500 5,244 18.17
28 5,500 6,000 5,745 19.90
29 6,000 6,500 6,245 21.63
30 6,500 7,500 6,982 12.09

lower cutofffor that band, however. Note that aliasing is a secondary concern
when the channel outputs are sampled, since the waveform of the channel
output is of interest.

Improving the Analyzer

Before advancing to Fourier transform analysis, let's discuss some ways
of improving the performance of the filterbank analyzer. The most obvious
improvement is bandpass filters with flatter passbands and steeper cutoffs to
improve analysis accuracy and reduce overlap. In particular, attenuation far
from the center frequency could stand considerable improvement. Such fil
ters' can be realized by cascading simple bandpass filters as was done to get a
supersharp low-pass in Chapter 12. Note, however, that sharp cutoffs in
crease filter ring time just as surely as narrow bandwidths, so minimizing
overlap will incur a penalty in time resolution.

Another improvement is in the rectifier and low-pass filter area. If the
bandwidth is fairly small compared to the center frequency, the bandpass
filter output waveform will appear to be a pure sine wave with a varying
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Fig. 16--8. Individual filter amplitude response curves

amplitude. If instead of the cannonical form, the state-variable bandpass
filter form is used, the filter output and a 90° phase-shifted copy at the same
amplitude are available. The amplitude of the waves can then be determined
instantly without rectification or filtering simply by taking the square root of
the sum of their squares! This then would eliminate the rectifier and low-pass
filter at the expense of a more complex bandpass filter.

The converse is also possible, that is, the bandpass filter can be elimi
nated as in Fig. 16-9. Here, the input signal is split and balanced modulated
(multiplied) by the two outputs of a quadrature oscillator running at the
center frequency of the channel. Recall that balanced modulation produces sum
and difference frequencies but suppresses the original signals. The following
low-pass filter allows only sufficiently low difference frequencies through.
Thus, the modulator-filter combination acts like a bandpass filter with a
bandwidth twice the low-pass cutoff frequency and a cutoff shape either side

SIGNAL

Fig. 16--9. Heterodyne filterbank channel

de
CHANNEL
OUTPUT
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of center identical to that of the low-pass. This setup is called a heterodyne
filter, since it is the beat note between the signal and a "carrier" that is
actually measured. Since the two signal paths are 90° out of phase, they may
be combined by a "square root of sum of squares" element to produce the
final channel output or they may be kept separate to retain phase information
about the signal. The same comments regarding overlap, cutoff slope, and
ringing rime apply to the low-pass filters in this implementation.

One nice thing about either the channel structure just mentioned or the
previous bandpass filter channel is that, when implemented digitally, the
general-purpose spectrum analyzer can be made into a harmonic tracker with
little effort. Obviously, the greatest analysis accuracy occurs when the center
frequency of a channel exactly matches a harmonic frequency. The idea
behind a harmonic tracker is to assign a channel to each harmonic of the wave
being analyzed and then continuously vary the center frequency to remain
locked on the harmonic. A prerequisite, however, is a fundamental frequency
tracker or so-called "pitch follower." Knowing the fundamental frequency,
harmonic frequencies are easily calculated and filters can be tuned to them.
The channel output then gives a time history of the actual harmonic spectrum
of the tone, which is then directly applicable to Fourier series or FFT synthe
sis methods.

Spectrum Analysis Using the FFT

Almost as obvious as bandpass filtering is spectral analysis by means of
Fourier analysis. After all, Fourier and his theorem is what the whole idea of
a frequency spectrum is all about. Applying Fourier analysis to exactly one
cycle of a periodic waveform in order to determine its harmonic makeup is a
theoretically simple task that, for practical purposes, yields an exact result.
On the other hand, applying it to a complex changing sound with arbitrary
frequency content is not as simple and can be far from exact as well. The
CGmputational efficiency of the fast Fourier transform, however, makes
Fourier analysis such an attractive method of high-resolution spectral analysis
that users often go to great lengths to overcome its problems. Spectrum
analysis by digital filtering is attractive only for low-resolution (few bands)
analysis, harmonic-tracking analysis, or where the "intelligence" necessary to
implement the FFT is lacking.

As was mentioned in Chapter 13, the FFT computes the spectrum of a
finite-sized block (record) of samples. It assumes, correctly or not, that the
block of samples represents exactly one period of a perfectly periodic waveform
and in turn gives the exact harmonic amplitude and phase spectrum of the
assumed waveform. The trick in spectral analysis via FFT, then, is to break up
the continuous stream of samples into records for the FFT and to insure that
the necessary assumptions do not cause problems.

The first practical task is to decide the record size, which in turn
determines the maximum frequency and time resolution of the analysis.
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Since the spectrum is averaged over the duration of a record, the time
resolution can be no better than the record duration. And since the FFT gives
harmonic frequencies that are integral multiples of the reciprocal of the
record duration, the frequency resolution can be no better than this either.
Thus, time resolution multiplied by frequency resolution can be no less than
unity. Another consideration is that for maximum efficiency and ease of
programming, the record size should be a power of two.

Continuing the example used earlier (20-ks/s signal sample rate, 50-Hz
frequency resolution, 100-sls spectrum sample rate), we see that the record
size must be at least 400 samples to obtain the required frequency resolution.
The corresponding time resolution is 20 msec, which means that the 100-s/s
spectrum sample rate oversamples the changing spectrum by a factor of two.
We will see later that overlap between successive records is often desirable and
that it results in spectral oversampling as well. After rounding up to the next
power of two, the FFT example used in the following discussion will assume
a record size of 512, which gives a frequency resolution of 39 Hz, and a
spectral sample rate of 78 sis.

Equivalent Bandpass Filter

Since the filterbank and the FFT methods of spectral analysis yield
similar results, it makes sense to talk about an equivalent bandpass filter
corresponding to each of the "harmonics" computed by the FFT. As an
example, let us study the 10th FFT harmonic. Ideally, it should act as a
bandpass filter wi th a lower cutoff of 9. 5 X 39Hz = 370 Hz and an upper
cutoff of 10.5 X 39 Hz = 409 Hz. Conceptually, it is simple to plot the
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Fig. 16-10. Equivalent bandpass filter response of 10th FFT harmonic



560 MUSICAL ApPLICATIONS OF MICROPROCESSORS

equivalent bandpass curve. One simply generates a large number of pure sine
waves of different frequencies (much more closely spaced than 39 Hz), per
forms an FFT (512-sample record) of each one, and plots the amplitude of the
10th FFT harmonic as a function of sine wave frequency (the phase has no
effect). One might think that the equivalent bandpass filter would be ideal,
that is, have a flat tOp and vertical sides. However, the actual plot in Fig.
16-10 is quite the opposite. If one purchased an analog bandpass filter
exhibiting such a response curve, it would probably be returned for warranty
repairs!

Close examination of the curve, however, reveals that the response is
zero at all integral multiples of 39 Hz except 390 Hz, where the response is
unity. Corresponding curves for the other FFT harmonics are similar except
for being shifted up or down by a multiple of 39 Hz. Thus, the analysis of a
periodic waveform having a fundamental frequency of 39 Hz (or an integral
multiple of 39 Hz) will be exact. This should be expected because the FFT
assumes that the sample block is periodic at 39 Hz and, conversely, one
should expect some error if this is not true. The real problem with the
response curve is not its curved top or sloping sides but its poor attenuation
at frequencies far removed from the center frequency. This phenomenon is
termed leakage, which must be reduced to the -40-dB to -80-dB range if
the spectral analysis results are to be meaningful.

The primary cause of leakage is the discontinuity between the begin
ning and the end of the record when the test frequency is not an integral
multiple of 39 Hz. If there were some way to adjust the ends of the record so
that they are continuous, then perhaps the leakage would be reduced. One
way to force continuity is to taper both ends of the record toward zero. Since
the first and last samples are now zero, they are also continuous. This is
accomplished by applying an amplitude envelope to the record with symmetri
cal attack and decay. When used in this manner, such an envelope is called a
window and can have any of a number of shapes. The zero attack-and-decay
window used so far is termed a rectangular window. The shape of the window
has a powerful influence on the equivalent bandpass response shape so the
goal is to find a window shape thar reduces leakage to an acceptable level.

Forrunately, windows can be evaluated more easily than computing a
point-by-point amplitude response with a separate FFT for each point. Al
though the shape of the equivalent bandpass curve was given for the 10th
FFT harmonic, it is exactly the same for any of the FFT harmonics
including the zeroth. Since an amplitude envelope applied to a dc voltage is
simply the amplitude envelope itself, we can perform a single FFT of the
window shape to get the equivalent bandpass response shape. Actually, only
the upper half of the BPF response is computed, the other half is identical
and in fact has been reflected against zero and combined with the upper half.
(This is why the dc component of the FFT must be divided by two before
use.)
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Fig. 16--11. Equivalent half-bandpass filter shapes of common windows. (A)
Rectangular window. (B) Triangular window.

Of course, an FFT of the window shape will only evaluate the equiva
lent BPF at certain discrete frequencies. To get an accurate plot of the curve
shape, a very large FFT must be performed with the window occupying a
small portion at the beginning and zeroes occupying the remainder. For
example, to check the response at eight different frequencies between each
null point, an FFT eight times the window length will have to be computed.
In our example, this means a 4,096-poinr FFT. On the other hand, most all
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(cant.). (C) Half-sine window. (0) Hanning window.

useful windows have the same basic bandpass shape; a large central lobe with
tipples on both sides. The peak of the ripples and therefore the points of
worst leakage occur midway between the nulls, that is, at frequencies half
way between the original FFT harmonics. Thus, the peaks of the leakage can
be plotted by evaluating an FFT only twice as long as the window.
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Some Example Windows

Now that they can be easily plotted, let's evaluate some windows.
Perhaps the simplest is a linear rise and fall, which is called a triangular
window. This window, along with the upper half of its equivalent bandpass
response shape, is plotted in Fig. 16-11B. Two characteristics are immedi
atelyapparent. First, the leakage attenuation is much better than that of the
rectangular window shown for l'eference. Second, the apparent width of the
central lobe, which is the primary bandpass response, is double that of the
rectangular window. This is the price that is paid for low leakage, and the
lower the leakage, the broader the bandpass. Thus, one must decide how
much leakage can be tolerated and choose a window that meets but does not
greatly exceed that figure. For our example, a figure of -40 dB will be chosen
and none of the secondary lobes, even the one closest to the center lobe, will
be allowed to exceed it. According to this criterion, the triangular window is
not suitable, since the first sidelobe is at -27 dB. Nevertheless, the third
and higher sidelobes are less than -40 dB, a figure that seemingly even the
lOath lobe of the rectangular window cannot meet.

A similar window is the half sine wave. It has the advantage of a flat
rather than pointed top. Its characteristics are shown in Fig. 16-11C. Its
central lobe is only 1. 5 times as wide as the rectangular window, yet has even
better sidelobe attenuation (beyond the first) than the triangular window. Its
second sidelobe, which is at the same frequency as the first triangular win
dow sidelobe, is about -32 dB.



564 MUSICAL ApPLICATIONS OF MICROPROCESSORS

Although the preceding windows are continuous with zero at both
ends, there is a slope discontinuity at the ends. One window that provides for
continuity of slope (and continuity for all derivatives as well) is the cosine be!!
or hanning window. Actually, it is just the point-by-point square of the
half-sine window but, due to a trig identi ty, is the same shape as a full cosine
cycle shifted up to the axis and turned upside down. The response curve in
Fig. 16-11D exhibits a double width central lobe and fitst sidelobe of - 32
dB, which is still unacceptable, although the second and succeeding ones are
fine.

The last window shown is called a Hamming window and consists of a
very judicious combination of a hanning and a rectangular window. Essen
tially the relative contributions are scaled so that the first sidelobes cancel
and the rest partially cancel. The result is a curve with all sidelobes at -42
dB or less, which is accomplished with a central lobe only twice as wide as
the rectangular window. For most audio spectral/analysis work, this is the
optimum window. For specialized applications such as signal detection in the
presence of overpowering noise, other windows with sidelobes of -80 dB
and better are available at the expense of an even wider central lobe.

Performing the Analysis

At this point, we are ready to outline the procedure necessary to go
from an indefinite-length sample string to a sequence of spectral frames using
the FFT. For illustration purposes, the example of a 20-ks/s sample rate, 512
point FFT, 39-Hzfrequency resolution, and 78-s/s spectral sample rate will
be continued. The crux of the analysis procedure is how the continuous
stream of samples will be broken up into 512 sampLe records for the FFT. One
possibility is to simply take the 512 samples from the input, transform them,
take the next 512, transform, etc. If this is done, windowing of the records
may greatly attenuate or miss significant waveform detaiLs that occur when
the window amplitude is near zero. Furthermore, only 39 spectrums wilL be
computed per 20,000 samples (l sec).

Overlap can be used to insure that all parts of the waveform are seen and
increase the spectral sample rate as well. The general idea is the exact inverse
of the method outlined in Chapter 13 in which direct FFT synthesis was
discussed. For two-to-one overlap, one would only take 256 samples from the
string for each spectral frame. The other 256 in the record would be left over
from the previous frame. The process can be likened to a 512-sample shift
register. Each frame time 256 new samples would be shifted in and the oLdest
256 wouLd be shifted out and thrown away. Other overlap factors (which
need not pe integers) for both higher- and lower-spectrum sample rates are
possible simply by aLtering the number of samples shifted in.

There are a couple of complications in the computation that can lead to
a lot of partially redundant data arrays. When a window is applied to
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overlapped sample data, it must not alter the data itself because some of it
will be needed for overlapping purposes in the next spectral frame. Likewise,
the FFT will destroy the sample data unless a copy is made and the copy
transformed. For maximum efficiency, one can combine copying, window
ing, and bit-reverse decimation into one program loop that takes little more
time than windowing alone. If memory space is tight, the samples that ate
not needed in the next frame may be destroyed.

In summary, the procedute for converting a stting of samples into a
string of spectra is as follows (512-point FFT and 2: 1 ovetlap):

1. Discard 256 signal samples ftom' the right half of the analysis record.
2. Copy (or equivalent) the remaining 256 samples ftom the left to the

right half of the analysis record.
3. Accept 256 new signal samples from the input string and put them in

the left half of the analysis record.
4. Make a copy of the analysis record.
5. Apply the chosen window to the copy.
6. Do a 512-point real FFT.
7. The 256 sine and cosine components represent one spectral frame. They

may be stored as is or processed further.
8. Go to step 1 for the next spectral ftame.

Note that twice as much output data is generated as input data if phase
information is retained. This is a result of oversampling (overlapping), but as
will be seen later such oversampling simplifies subsequent spectral process
ing. In fact, for analysis-resynthesis applications, it may be necessary to
further oversample the sequence of spectra to obtain good resynthesis quality
after modification.

Spectral Processing

In the previous section, two methods of obtaining the time-varying
spectrum of a sound were presented. We can now assume that the spectrum
is in the form of a sequence of frames at the spectral sample rate and each
frame contains samples (in frequency) of the spectral curve at a point in time.

Three primary applications exist for the spectral data. The first is direct
modification of the spectrum and immediate FFT resynthesis as sound. The
second, which may be considered an extension of the first, is the extraction of
one or more time-varying parameters, such as fundamental frequency or gross
spectral shape. These data may then be used to control conventional synthesis
equipment such as oscillators, filters, etc., rather than direct reconstruction
with the FFT. The third application is display and subsequent study in an
effort to learn more about the processes that created the original sound.

Often, it is convenient to perform some translation of the spectral data
before it is modified. If the FFT was used for analysis, each time-frequency
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sample of the spectrum is represented by a cosine magnitude and a sine
magnitude. We have already seen how this form can be converted into
amplitude and phase form. The amplirude, which is always positive, can be
further co~verted into decibels if desired. Since the human ear has difficulty
in distinguishing amplitude differences much less than 1 dB, the decibel
amplitude data can be quantized to as few as 6 bits without serious degrada
tion.

There may be an inclination to discard the phase data, since they have
little audible effect on the sound. However, the phase data give valuable
information about a sound parameter that is quite important-frequency.
The fundamental and harmonics of an arbitrary tone are unlikely to fall
precisely at the center frequencies of the analysis bands. The results of this
mismatch are twofold. First, since the bandwidth of the Hamming window
is four times the frequency spacing of the analysis, a given signal component
will show up strongly in as many as four adjacent frequency bands. Second,
the exact frequency of the signal is unknown. Even though the analysis seems
imperfect, resynthesis will yield a result essentially equal to the original
signal. It is the phase information that allows accurate reconstruction. We
will see later how phase can be utilized to precisely determine the component
frequencies.

Direct Spectral Modification

Spectral analysis, modification, and resynthesis via FFT comprise the
easiest method of implementing a filter with arbitrary amplitude and phase
characteristics. Often, it is the most efficient method as well, since the
computation effort is independent of the filter's response shape. Another
advantage is that time-varying filters are handled as easily as fixed ones, a
virtue not shared by the transversal method of arbitrary filter implementa
tion. 'Basically, one takes the sequence of spectral frames and multiplies the
amplitude of each spectral component by the amplitude response of the filter
at the corresponding frequency. The resulting sequence of spectral frames is
then converted back into sound via FFT synthesis. When the spectral data is
in sine--cosine form, both components must be multiplied by the filter's
amplitude response.

One can also add two or more spectra together. Since the FFT used in
synthesis is a linear process, the result should be equivalent to individual
resynthesis and conventional mixing of the results. However, there are two
advantages to mixing in the frequency domain. First, there is no phase
cancellation among the combined spectra if just amplitude spectra are used.
Directly combining sine--cosine spectra, however, gives the typical amount
of interference among harmonics of the combined tones. The other advantage
of spectral combination is that only one resynthesis is necessary, thus reduc
ing computation effort.
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Fig. 16-12. Spectrum frequency manipulations. (A) Unmodified spectral data.
(8) Spectrum shift upward. (C) Frequency interpolation. (D) Left:
Linear compression of interpolated spectrum. Right: Resampling
at original center frequencies.

Besides amplitude modification of the spectral components, many
weird and wonderful things can be accomplished by altering their frequencies
as in Fig. 16-12. If, for example, the spectral frequency resolution is 39 Hz,
an upward spectrum shift of 39 Hz can be accomplished simply by shifting
the numbers in each frame upward one slot. The dc frequency band would be
replaced by zero and the highest band would be discarded. Likewise, the
spectrum may be shifted downward without the reflection around zero that
analog frequency shifters suffer from. Circular shifting and spectral inversion
are also easily accomplished.

For maximum flexibility in frequency alteration, it is necessary to
interpolate between the tabulated frequencies. The same techniques used for
time interpolation in Chapter 13 can be used for frequency interpolation in a
spectral frame. With suitable interpolation, the spectral curve can be re
garded as continuous (infinite sample rate in frequency) and frequency shifts
of any arbitrary amount may be performed.

Instead of shifting all frequencies by an equal amount, which usually
converts harmonic tones into inharmonic ones, the spectrum can be linearly
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stretched or compressed. For example, if all of the frequencies were multi
plied by two (with those beyond the high-frequency limit thrown away),
then the pitch of the sound when resynthesized would be raised an octave, but
the timing and waveform (except for high-frequency rolloff due to discarded
components) would remain unchanged! One can also nonlinearly stretch,
compress, and otherwise distort the distribution of the spectral curve without
affecting the amplitudes of the peaks and valleys themselves. All of these
manipulations can, of course, be time varying. After processing, the spectral
curve is resampled at the original center frequencies and resynthesized. Note
that severe compression of the spectrum may lead to local "alias distortion"
when it is resampled for synthesis.

Time alteration of the sequence of spectrum frames is also possible with
equally strange-sounding results. In time modification, each spectral com
ponent in the frame is considered as a time sample of the amplitude curve of
that component. If the entire set of spectral data is viewed as a rectangular
array with time in the X direction and frequency in the Y direction, then this
is equivalent to thinking in terms of rows rather than columns.

The simplest manipulation is horizontal stretching or compression of
the sequence, which amounts to slowing or speeding of the sound events
without affecting the frequency or timbre. Time interpolation between the
spectral values can be used to implement any arbitrary amount of speed
change. When resynthesized, the modified spectrum is resampled ar the
original time points.

The dispersive filter mentioned earlier may be simulated by shifting the
rows of spectral data with respect to each other such rhat the lower-frequency
rows are delayed more than the higher-frequency rows. Reverse dispersion in
which high frequencies are delayed more is also possible as well as nonlinear
dispersion. Small amounts of dispersion are most effective with percussive
sounds, while larger amounts affect all but the most steady of tones. Vocals
in particular are given strange accents by dispersion.

Since the spectral data are being considered as a set of simultaneously
varying waveforms, it is obvious that these waveforms may themselves be
filtered. Uniform low-pass filtering of all of the bands simply blurs rapid
changes in the spectrum, thus making vocals, for example, sound drunk.
High-pass filtering, on the other hand, emphasizes rapid changes and may
produce a "caricature" of the original sound. Resonant low-pass filtering
with moderate Q factors preserves the steady states of the spectrum but gives
any rapid changes a "twangy" quality due to the overshoot and ringing of the
filter. Of course, each frequency band can be filtered differently, which tends
to combine filtering and dispersion effects.

Resynthesis

In Chapter 13, direct synthesis from amplitude and frequency data
using the FFT was described. Basically, the procedure consisted of conversion
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from an amplitude-frequency "source" form into an amplitude-phase and
ultimately sine-cosine "objeer" form that was compatible with the FFT.
However, most of the spectrum modifications that have just been discussed
can be performed directly on the sine-cosine or amplitude-frequency form of
the spectrum. Resynthesis should therefore be simplified over the method
given in Chapter 13.

One desirable property of an analysis-synthesis system is transparency,
that is, no signal distortion in the absence spectral modification. Distortion
less reconstruction can, in fact, be done very simply using unmodified spec
tral data from the analysis. First, each spectral frame is inverse transformed to
recover the windowed sample record that created the frame. Next, the win
dow is divided out giving the original sequence of samples. Finally, the
overlap is removed to obtain the original continuous stream of samples. Any
difference between the original and reconstructed data is due to roundoff
error in the arithmetic, most of it probably from the window removal (divi
sion by small numbers at the edges of the window) step.

However, if modifications are made, two things are likely to happen.
First, the inverse-transformed modified records cannot be expected to butt
together nicely and continuously like unmodified records do. Second, the
inverse transform of a modified frame may show little if any evidence of a
window because the precise amplitude and phase relations necessary for the
window-shaped envelope will have been altered. Inverse windowing, there
fore, is likely to distort the record and actually emphasize discontinuities
between the records.

Thus, the problem of eliminating interrecord discontinuities is similar
to that encountered in FFT synthesis from scratch. The same solution, that
is, windowing and synthesis overlap, used for direct synthesis is reasonably
adequate for resynthesis. The disadvantage of applying this method is that an
unmodified spectrum will no longer provide precisely the original data, since
the resynthesis manipulation itself amounts to a modification. Methods are
available to reduce resynthesis error to zero but they ar.e complex and amount
to essentially infinite overlapping (overlap factor=record length) of the syn
thesis. As mentioned in Chapter 13, a four-to-one synthesis overlap provides
results clearly superior to two-to-one overlap and therefore is preferred in
conjunction with four-to-one analysis or careful time interpolation of two
to-one analysis data.

Parameter Extraction

Instead of immediate resynthesis, one may wish to further analyze the
spectral data in an effort to extract one or more of the fundamental parame
ters of sound. These parameters may then be used to direct a conventional
synthesis process or may be stored for later recall with the advantage that a
handful of fundamental parameters can often replace hundreds of spectral
components without loss of information significant to the application.



570 MUSICAL ApPLICATIONS OF MICROPROCESSORS

I-I [V 1+1 1+2

FREOUENCY (Hz)

Fig. 16-13. Response of spectrum analysis with Hamming window to a single
frequency component

Variations in overall amplitude are most easily extracted. One simply
sums the amplitudes of all of the frequency bands to get the total amplitude
for the frame. This neatly overcomes problems with rectifier ripple experi
enced in analog envelope followers, although the signal processing involved
is certainly much more complex. Another advantage is that some frequency
bands may be weighted more heavily than others. For example, if a result
with good correlation to subjective loudness is desired, the spectrum can be
weighted according to the Fletcher-Munson loudness curves described in
Chapter 1. Since the weighting curve itself depends on amplitude, some
intelligence is needed to seleer the proper curve anyway.

Frequency Analysis

True frequency analysis, in which the sound being analyzed is broken
down into a list of components in which the exact frequency and amplitude
of each is tabulated, is another useful form for analysis data. Note that this is
the "source-spectrum" form used for ditect FFT synthesis in Chapter 13. The
process described there of updating the phase of the object spectrum to
obtain arbitrary frequencies can be reversed to determine what an arbitrary
frequency is from analysis data. One simply looks at the phase of successive
analysis frames and ascertains the magnitude and direction of shift from one
frame to the next. This then gives the difference between the band's center
frequency and the signal frequency. For example, if the phase in band I
advances 45° (17/4) every frame, it can be concluded that the signal frequency
is equal to the band's center frequency plus one-eighth of the speerral sample
rate.

With a Hamming analysis window, a single frequency component will
excite as many as four adjacent analysis bands as shown in Fig. 16-13. One
could compure frequency from the channel with the strongest response
(channel I in the diagram) and ignore the others and get good results.
However, if the spectrum sample rate is sufficiently high, the frequency can
be computed from any of the responding channels. If a good, clean frequency
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component is actually being seen (as opposed to random noise), then all of
the frequency measures will yield the same value. A high spectral sample rate
is necessary because otherwise the phase shift for a distant band such as 1+2
in the diagram may exceed 1800 per frame and give a false result. For the
Hamming window, an analysis overlap factor of four or more would give a
sufficiently high spectral sample rate.

Another constraint is that frequency resolution must be high enough so
that every component of the signal is completely resolved. If the components
are not completely separated, serious errors in frequency and amplitude
measurement are likely. For a Hamming window, this means that frequency
components can be no closer than four times the reciprocal of the analysis
record duration. In our analysis example (20-ks/s Fs, 512-sample analysis
record), this evaluates to about 150 Hz. The only reasonable way to improve
frequency resolution is to use longer analysis records, which, of course,
degrade time resolution. Alternatively, if all of the frequency components are
nearly equal in amplitude, a rectangular window having one-half the
bandwidth of the Hamming window can be considered.

Once the frequency of a component has been determined, its amplitude
must be calculated to complete the analysis. The simplest method is to note
the band with the greatest response to the component and use its response
amplitude. The error incurred when doing this is small enough (1.5 dB
maximum for a Hamming window) that it can be ignored in many applica
tions. For greater accuracy, the curved top of the equivalent bandpass filter
can be considered and a correction factor derived based on the difference
between the dominant band's center frequency and the actual signal fre
quency. One could also rms sum (square root of the sum of squares) the
responding bands to get a single amplitude measurement for the component.
Of course, all of the analysis bands will show some response due to noise or
leakage. However, only those with sufficiently high outputs and reasonable
frequency correlation among adjacent bands should actually be considered as
detecting a valid signal component.

Spectral Shape Anal)'sis

Many natural sounds can be modeled as an oscillator driving a filter as
in Fig. 16-14. The oscillator's waveform is called the excitation function and is
normally rich in harmonics. The filter is called the system function and is
typically rather complex having several resonant peaks and possibly some
notches as well. The spectrum of the output sound is the point-by-point
product of the excitation function ~pectrum and the amplitude response of
the filter as in Fig. 16-14B. In musical applications, the frequency of the
excitation function is the primary variable, since it determines the pitch of
the resulting tone. The waveform may also change some, typically acquiring
additional upper harmonic amplitude as its overall amplitude increases. Al-
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Fig. 16--14. Natural sound modeling. (A) Simple model of natural sound pro
cess. (B) Spectral interpretation of simple model.

ternatively, the excitation function can be white noise, which does invalidate
the pitch parameter but has no effect on anything else. The system function
may be either fixed or variable depending on the sound being modeled.

The range of natural sounds to which this model is applicable is ac
tually very large. Most wind instruments, such as the bassoon, and bowed
string instruments, such as the violin, are well described by this model. The
human voice is a prime example. In these examples, a harmonic-rich excita
tion function is generated by a vibrating element such as a reed, sticky
string, or flapping folds of flesh. Resonators in the instruments, such as the
folded tube of the bassoon, wood panels with odd-shaped cutouts, or oral and
nasal cavities filter the excitation function before it actually escapes into the
air. Musical instruments usually have fixed resonators (notable exceptions are
muted brass instruments), whereas the human voice depends on a highly
variable resonator for its expression. All of these resonators may have a
number of distinct resonant frequencies (peaks in the amplitude response)
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and some, such as the violin, can have significant antiresonant valleys as
well.

In technical terms, the resonant peaks are called poles of the system
function while the notches, if present, are termed zeroes. In speech and
music work, the zeroes are frequently ignored and the poles are called for
mants. The goal of formant estimation is determination of the number of
formants, their resonant frequencies, and possibly their bandwidth or Q
factors. This information represents the characteristics of the filter, which is
usually a majority portion of the analyzed sound's timbre. Musical applica
tions of formant analysis seek the design of a filter with the same formant
structure as the analyzed sound. Different synthesized excitation functions
are then modified by the filter. The resulting sound has the most prominent
characteristics of both. For example, if vocal vowel sounds are used for the
formant analysis and the resultant filter is driven with a square-wave excita
tion function, the vowel quality would be retained but with the characteristi
cally hollow timbre of square waves!

Perhaps the most straightforward method of formant analysis is to scan
the amplitude spectrum and find the center points of high-amplitude clusters
of harmonics. The center points are the formant frequencies. The bandwidths
may be estimated by noting the 3-dB points on either side of each peak. This
method works well only if the harmonics are dense compared to the
bandwidths of the formants, which means a low excitation frequency. This is
because the excitation function harmonics effectively sample the filter re
sponse curve and insufficiently dense sampling leads to aliasing and incorrect
conclusions regarding the response curve. Even if the sampling is theoreti
cally dense enough, interpolation may have to be used to increase it further so
that the center point and 3-dB points of the peaks can be accurately deter
mined. Note that the original spectral analysis need not resolve the har
monics themselves to be useful for this method of formant analysis.

Linear Prediction

A more refined method of formant analysis is called linear prediction
because, by specifying the filter involved in the original sound generation,
one is able to predict what future time samples of the sound are likely to be.
Although originally developed for the efficient transmission of speech signals
over limited bandwidth channels, linear prediction is useful in music synthe
sis because it results in an actual design of the filter represented by the system
function. Unforrunately, the calculations are too involved to be covered here
in simple terms but the general characteristics of linear prediction can be
discussed. Additional reference material is listed in the bibliography.

In linear prediction, the actual filter used to generate the sound being
analyzed is approximated by a filter having a specified number of poles and
zeroes. Often, because of computational difficulties encountered in handling
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the zeroes, an all-pole model is used. The filter resulting from all-pole linear
prediction analysis gives the "best" (least-square error) approximation possi
ble when constrained to the specified number of poles (twice the number of
resonances). Often, the appropriate number of resonances to use can be
determined from a physical knowledge of the natural sound source. In such
cases, the linear prediction model can be expected to give excellent results. In
cases in which the filter is arbi trary, a balance between resonance count and
result quality will have to be determined by experiment. If vocals are being
analyzed, three or four resonances are quite sufficient to capture the intelli
gence of the words. Many more are necessary to characterize the timbre in
sufficient detail for recognition of the singer's identity. Figure 16-15 shows
the results of linear prediction analysis of a vowel sound with different
resonance counts.

An all-poles digital linear predierion calculation usually results in the
set of multiplier coefficients necessary for implementation of the filter in can
nonical form. These coefficients apply only to the feedback paths; the feed
forward coefficients, which implement zeroes, are zero for an all-poles model.
The number of coefficients from the calculation will be 2N +1, where N is
the number of resonances. The extra coefficient is an overall gain factor. The
cannonical form of the filter can be converted into cascade form with N
sections. The conversion is desirable because multiplier accuracy require
ments of the cascade form are much less than the cannonical form.

Note that linear predicti0n just gives the filter design, not the actual
formant frequencies and bandwidths. Although the latter can be determined
by analyzing the filter, they are not needed to utilize the filter for synthesis
with an arbitrary excitation function.

Homomorphic Analysis

In digital music synthesis using the natural sound model of Fig.
16-14, all that is really needed is a plot of the filter's amplitude response.
With such a plot, the methods of arbitrary filter implementation discussed in
Chapter 14 can be used to apply the filter to a different excitation funerion.
However, a typical spectrum plot such as the one in Fig. 16-1GA shows
effects due to discrete harmonics of the excitation function as well as general
trends due'to the system function. In homomorphic analysis, the goal is to
obtain an amplitude response curve of the system function independent of the
characteristics of the excitation function.

From examination of the overall spectrum, it is obvious that what is
desired is a "smoothed" plot of the spectrum that retains the general spectral
shape but suppresses the individual harmonic "noise." This smoothing may
be accomplished by a moving average, which is actually a digital low-pass
transversal filter, or by other low-pass filters applied to the frequency sample
sequence just like they would be normally applied to a time sample sequence.
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In the following discussion, the spectrum will in fact be considered as a time
sequence and terms relating to time-sequence processing will be used.

Unfortunately, applying a linear filter to a raw amplitude spectrum is
not really mathematically correct. In the natural sound model, the final
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spectrum shape is due to multiplication of the excitation function spectrum
and the system function response curve. Our goal is to separate the two
spectra based on differences in their variability or "frequency content" (re
member the spectral curve is being considered as a time sequence) by filter
ing. A filter, however, can only separate components that have been added,
not multiplied, together. Thus, directly filtering the raw spectrum can lead
to incorrect, though not necessarily useless, results.

The problem is solved by remembering from high school math that the
product of two numbers is equal to the antilog of the sum of their logarithms.
Thus, if the amplitude spectrum is converted to decibels as in Fig. 16-16B,
then the resultant shape is the sum of the excitation decibel spectrum and the
filter response curve in decibels. The two curves may now be separated by
filtering using a high-pass to recover the excitation spectrum and a low-pass
to obtain a clean system function response shape. In music synthesis, the
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recovered excitation function is usually discarded, except for its fundamental
frequency, and the recovered system function is utilized.

Of course, the Fourier transform can also be used to implement the
separation filter with the advantage of zero phase shift. Phase shift (delay) in
the separation filter is undesirable because it shifts all of the recovered
frequencies upward (or downward depending on the direction of filtering).
The forward Fourier transform of a decibel spectrum, however, is a
mathematical absurdity and so the word cepstrum was coined to refer to it.
The word is formed by reverse spelling of the first half of the word "spec
trum" and tacking on the last half. It is only fitting, then, to call the
independent variable of a cepstral plot, which has the dimension of time,
quefrency! A cepstral plot is shown in Fig. 16-16C.

Low-quefrency values in the cepstrum are due to the system function
shape, while high-quefrency values are due to the excitation function. To
recover the system function shape, all quefrency values above a certain cutoff
point are set to zero and the inverse Fourier transform is taken. Figure
16-16D shows a cepstrally smoothed spectrum. To recover the excitation
function, low-quefrency values are omitted and the inverse transform is
taken.
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Pitch Measurement

One of the most difficult tasks in source-signal analysis is determina
tion of pitch. Actually, "fundamental frequency" or "period" would be
better terms because pitch is a subjective parameter, whereas frequency and
period are objective parameters. Nevertheless, for musical instrument
sounds, there is a one-to-one correspondence between frequency and musical
pitch.

One reason that acceptable pitch measurement is so difficult is that
errors are acutely obvious. A momentary error of a semitone, for example,
completely changes the character of a musical phrase, whereas a similar error
(6%) in amplitude measurement or spectral shape determination would go
unnoticed. Most pitch detector errors are likely to be much larger yet with
common values of one or even two octaves. With errors being so obvious, it
is much easier to judge the performance of a pitch detectot compared with an
amplitude detector or formant estimator. The net result is an abundance of
pitch detection schemes covering a wide range of complexity and perfor
mance levels. Even so, it is safe to say that none of them is completely
satisfactory, that is, agree with a human observer in all cases. Another
potential problem is that most pitch detection reseatch has been with speech
sounds. In some ways, musical instrument sounds will be easier to analyze,
while in others they may be more difficult.

Typical accuracy specifications for a frequency counter are 0.001% or 1
Hz, whichever is greater. However; anyone who has purchased such a device
and then tried to use it to tune a musical instrument knows that a very clean,
smooth waveform is necessary to avoid gross errors. The reason, of course, is
that the frequency counter responds to zero crossings (a zero crossing is said to
occur when the signal voltage changes sign from plus to minus or minus to
plus) of the waveform and complex musical instrument waveforms may have
any even number of zero crossings per cycle.

Figure 16-17 shows a number of unquestionably periodic waveforms.
The human ear has no problem in determining their pitch, but all of the
pitch detection schemes that will be discussed will fail miserably on at least
one of them. Although the waveforms are contrived, it is reasonable to expect
something like each of them to occur occasionally in musical instrument
tones. The last waveform, which is just white noise, can be a problem as well
because a pitch detector should also give an indication that the sound is
unpitched.

If a pitch detector output is to agree with a human observer, it is
reasonable to first ask how the human performs the task. Unfortunately, that
is not known for sure, but two distinctly different theories have evolved. The
first proposes that pitch is judged by detecting the periodicity of the
waveform. The example waveforms are certainly periodic, and, in fact, care
ful visual determination of their period of repetition would give an accurate
result in all cases. Changing waveforms would give a little more trouble
because the waveshape repetition would not be precise every period. Pitch
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Fig. 16-17. Troublesome waveforms for pitch detectors. (A) Sine wave (only
one frequency component). (S) Flattened sine wave (rounded
peak is hard to detect accurately). (e) Missing fundamental.
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Fig. 16-17. Troublesome waveforms for pitch detectors (cant.). (D) Strong
harmonic. (E) Contrived wave in which peak detection is useless.
(F) Speech sounds.
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Fig. 16--17. Troublesome waveforms for pitch detectors (cant.). (G) Rapidly
changing amplitude. (H) White noise (has no pitch)

detector designs based on finding the period of repetition are time domain
methods, since they directly examine the time waveform.

The second theory maintains that the ear performs a frequency analysis
of each harmonic and then computes the "lowest common divisor" to deter
mine what the fundamental frequency is even if the fundamental component
itself is missing. Such an analysis method also works well for the example
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waveforms, but blind application of it can lead to errors with rapidly chang
ing waveforms and unpitched sounds.

In truth, human hearing probably utilizes both kinds of information. It
is unlikely that the pitch of high-pass (I-kHz) filtered 60-Hz buzz is deter
mined from a frequency analysis because of the resolution necessary to ac
count for the very precise judgments people are capable of. On the other
hand, waveforms are easily contrived in which the periodicity is not easily
spotted visually yet they are also accurately judged. Then we have the case of
bells and chimes, which are decidedly nonperiodic and therefore nonhar
monic yet produce a strong sensation of pitch. Last, but not least, the
existence of a tone that sounds as if its pitch is continuously rising
forever I-underlines the fact that human pitch perception is a very complex
topic indeed.

Time-Domain Methods

The simpLest pitch detection methods work in the time domain, where
the waveform itself is examined for periodicity. In fact, it is the period that is
measured that requires a division to determine the corresponding frequency.
Most time-domain methods were developed for analog implementation;
however, they can be readily implemented as a program for processing sam
pled data. One problem with sampled data is that the period determination
is normally made in terms of an integer number of samples. This can lead to
significant errors unless the sample rate is high or interpoLation is used, both
of which increase processing time.

In order to improve pitch detector performance, it is common practice
to preprocess the signaL. Typically, this consists of low-pass filtering to remove
high-frequency harmonics and noise that may contribute to jitter or confuse
the detection algorithm. An obvious question, then, is what the cutoff
frequency should be. If the sounds being analyzed have a strong (but not
necessarily dominant) fundamental, then it is appropriate to set the cutoff
just above the highest fundamental expected. Often, dynamic filters are
utilized, in which case the cutoff can track just above the current fundamen
tal frequency. If the fundamental is dominant, as it often is in direct string
pickups and mouthpiece microphones, such preprocessing may be sufficient
to allow a simple zero-crossing detector to do the actual period detection.
Even if the fundamental is not dominant, repeated integration can make it
dominant. U nforrunately, the integrators emphasize low-frequency tran
sients and may actually blank out the zero-crossing detector for hundreds of

'This is usually demonstrated as a continuous upward sweep or an ascending musical
scale that never stops. [n reality, the effect is much like the stripes on a barber pole,
and, in fact, a spectrogram of the former example is an endless series of upwatd
sloping diagonal bars. For a scale, the continuous rise is simply quantized at musical
scale pitches.
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Fig. 16-18. Simple time-domain pitch detector. Source: Electronotes Newslet
ter # 55, July, 1975.

milliseconds following a transient. Of course, if the fundamental is absent as
in Figs. 16-17C and F, low-pass preprocessing may filter our the entire
signal and leave nothing to process further. Thus, with more sophisticated
pitch detectors, the preprocessing filter cutoff should be fairly high, such as 1
kHz, and used primarily for reducing noise.

Experience with typical instrument waveforms and examination of Fig.
16-17 reveals that in all cases bur one the location of waveform peaks contains
sufficient information for determining periodicity. In fact, a simple positive
peak detector with dynamic threshold performs infinitely better than a zero
crossing detector. A dynamic threshold is implemented by setting the
threshold for peak detection to some fraction of the amplitude of the last
detected peak. The trick is to make this fraction small enough so that sounds
0f decreasing amplitude, such as Fig. 16-17G, are followed properly yet
high enough to avoid double peaks from waveforms such as Fig. 16-17F.
When double peaks are unavoidable, the detector can be blanked for some
fraction of the currently measured period. Peaks would not be detected
during the blanking interval. Of course, any peak detector scheme will fail
on the waveform in Fig. 16-17D, which has two equally spaced positive
peaks of equal amplitude. However, Fig. 16-170 has only one negative peak
so perhaps two detectors, one for positive and one for negative peaks, would
work better. Where there is disagreement between the two, the one teport
ing the longest period would be selected for output.

Let's examine a fairly simple pitch detector based on peak deteerion2

that has been reasonably successful as an analog implementation and should

2This pitch detector was designed by B.A. Hutchins and was described in Elecrronotes
53-55.
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work quite well in digital form. Before starting, though, the reader should
be aware that it will surely fail on the waveforms in Fig. 16-170 and E and
may be temporarily confused by Figs. l6-17F and G. Nevertheless, its
simplicity is attractive and its performance adequate for "data taking" where
errors can be edited out later.

Figure 16-18 is a block diagram of the detector. Input processing
consists of a two~section Butterworth low-pass followed by a 30-Hz cutoff
high-pass to suppress low-frequency noise. The low-pass is tunable via a
feedback path from the detector output and during normal operation is set to
pass only the fundamental. In cases in which the fundamental is weak, the
tuning could be adjusted to allow the lower harmonics through (if the
fundamental is absent at least two harmonics are required to determine the
pitch). The diode following the high-pass, although not actually present,
emphasizes that only positive peaks are processed by the system.

The downslope peak detector is an improvement over the standard type
in that dynamic thresholding is automatic. Figure 16-19 is a simplified
schematic of the detector with typical analog waveforms. The ideal diode and
storage capacitor form a peak-holding circuit that holds the highest voltage
reached by the input. The leakage resistor serves to slowly discharge the peak
holder to allow proper response to changing input signals. A buffer amplifier
followed by slight (1 % to 5%) artenuation passes a large fraction of the most
recent peak voltage to a comparator, which compares this voltage to the raw
input. When the peak reverses and starts back down, the comparator output
goes positive. When the input re-reverses and crosses the (decayed) held peak

IN PU T ----C>-----l---.l--+-_----,

ATTENUATION

~
PEAK
DETECTED

OUTPUT ~

Fig. 16-19. Downslope peak detector
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again, the comparator goes negative. If the leakage current is low, the circuit
is capable of responding exclusively to the highest peak in the presence of
orher peaks of nearly equal height. However, too little leakage inhibits
response to decaying signals entirely. In a digital implementation, the pre
cise point of comparator switching can be determined by interpolation at the
switching point only, thus avoiding a significant increase in computation
elsewhere.

In an analog implementation, single-shot number 1 simply indicates
the beginning of a new period. The output converter is a period-to-voltage
converter followed by a reciprocal element. In a digital implementation, one
would simply count samples between peak detections for the period and do a
digital division or table lookup.

The adaptive control processor looks at the current frequency and sets
three detection parameters accordingly. The preprocessor filter cutoff is set at
about 1. 2 times the current frequency, while the blanking single shot is set
for 80% of the current period. The peak detector discharge rate is normally
set fairly high to allow tracking of decaying signals. During startup from
silence, however, it is set for little or no discharge. Startup also requires that
the low-pass filter revert to a high cutoff frequency and that the blanking
time be set to a low value. As soon as two peaks are detected, whi(Oh then
gives a preliminary period estimate, the parameters are set accordingly. If the
first estimate is erroneous due to multiple peaks, the filter cutoff and blank
ing will continue to favor high frequencies until the peak detector has
charged to the absolute highest peak in the signal. At this point, a longer
period would be found and the feedback would adjust to favor it. The
processor also detects long dead periods and resets to the startup mode in
response.

One way to improve the performance of the detector is to construct a
duplicate that processes negative peaks. As before, if the two disagree, the
final pitch output should the lower of the two estimates. With this im
provement, about the only waveforms that it would consistently fail on
would be Fig. 16-17E and a backward version of Fig. 16-17F, the latter of
which is unlikely to occur unless the speech had been subjected to severe
dispersion.

The idea of using multiple detectors and taking a majority vote has
been carried to the limit in a scheme proposed by Gold and Rabiner. The
general idea is to make several (six) estimates of the period using individual
peak and valley (negative peak) amplitudes as well as differences between
peak and valley and peak and previous peak. These six estimates along with
the preceding two estimates for each are combined in a decision tree to obtain
the final estimate. If there is a significant lack in consistency among the 18
values, no decision is made and the sound is declared to be unpitched. A full
explanation of the algorithm is quite involved and would require too much
space to reproduce here. Although seemingly complex, the programming is
straightforward and efficient.
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Fig. 16--20. Autocorrelation analyzer

The algorithm actually settles on the correct period for each of the
sample waveforms and flags the noise as well. There is a potential problem
with the waveform in Fig. 16-17B whose very broad, nearly flat peak would
make any kind of pitch detection based on peak analysis susceptible to noise.
Also, if the amplitude of the crook in Fig. 16-17E was reduced so that the
peaks around zero disappeared, the method would fail. The interested reader
is referred to the bibliography for references giving exact implementation
details.

Autocorrelation

The most sophisticated of time-domain techniques is termed autocorre
lation analysis. Autocorrelation means literally that a section of the waveform
spanning several cycles is compared with a time-delayed version of itself as in
Fig. 16-20. In practice, the delay starts at zero and is increased until the
correlation reaches a high peak, which, in theory, indicates a full-cycle delay.

In true autocorrelation, the raw and delayed signal samples are com
bined by taking their sample-by-sample product, adding up the products for
enough samples to cover at least two pitch periods, and dividing by the
number of samples processed to get the value of the autocorrelation function
for a particular delay value or lag. This process is repeated for different lags
until the largest peak is found. If none of the peaks is very large, then the
sound is unpitched.

A related technique combines the two signals by adding up the
sample-by-sample magnitude of their difference. When the signals remesh at
a lag equal to the period, the differences will tend toward zero, which means
that a large dip in the correlation function is being sought.
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Quite obviously, eithet method involves a lot of calculation, approxi
mately M X N operations, where M is the number of samples in the
waveform section being analyzed and N is the number of lags tried in the
peak/dip search. It can be reduced substantially by only evaluating lags that
are close to the last measured pitch period.

In theory, true autocorrelation is guaranteed to produce maximum
height peaks only at multiples of the true period. Thus, any perfectly
periodic waveform will be correctly analyzed by the autocorrelation method.
A changing waveform, however, is a different story. When the waveform
changes, the peak corresponding to the pitch period is smaller than it would
otherwise be because of the inexact repetition. There ate also additional peaks
that may be due to strong harmonics, formants, etc. If the pitch peak
attenuation due to waveform change is great enough, these secondary peaks
will cause an error.

Frequency-Domain Methods

Pitch detection in the frequency domain is fairly simple to understand
but does imply a lot of computation to obtain the spectrum. However, if the
spectrum is used for formant analysis, then the additional processing neces
sary for pitch detection is relatively minor.

The most straightforward frequency-domain pitch-detection scheme is
an extension of frequency analysis mentioned earliet. The idea is to take the
measured frequency of each significant component found and determine the
greatest common divisor. For example, if components were found at 500 Hz,
700 Hz, 1,100 Hz, and 1,500 Hz, the fundamental would be 100 Hz
because it is the highest possible frequency for which all of the measured
frequencies are harmonics. In real life, though, the frequency measurements
will not be exact because of noise, a changing spectrum, etc. Thus, classic
greatest-common-divisor algorithms will have to be extensively modified to
allow some slop. Also, confining attention to the strongest half-dozen or
fewer components will lessen the likelihood of confusion. If the least com
mon multiple turns out to be a ridiculous number such as 20 Hz (any value
less than the spectrum analysis bandwidth is suspect), then an unpitched
sound should be assumed.

The primary difficulty with the frequency-analysis method is the re
striction on harmonic spacing so that accutate analysis is assured. When low
fundamental frequencies are to be analyzed, this leads to very long analysis
records and the possibility of significant frequency content changes over the
duration of the record, which in turn can lead to errors.

Homomorphic spectral analysis leads to a very good pitch detector, in
fact one of the best available for speech sounds. In a cepstral plot, the
low-quefrency values correspond to the spectrum shape, while high
quefrency values correspond to the excitation function. For harmonic-rich
tones, there will be a single sharp peak in the upper part of the cepstrum that
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corresponds to the fundamental frequency of the sound. The reciprocal of the
quefrency of the peak is the fundamental frequency. This peak will be present
even if the actual fundamental and several lower harmonics of the analyzed
tone are missing, a situation that confuses pitch detectors using low-pass
preprocessing.

However, confusion is possible in certain cases. For example, if the
excitation function has only odd order harmonics such as a square or triangu
lar wave, the cepstrum will give a fundamental frequency twice its correct
value. This is because the cepstrum essentially responds to periodicity of
harmonic spacing, and the spacing of odd order harmonics is twice the fun
damental frequency. A pure sine wave, which all other schemes discussed
handle beautifully, gives a pitch estimate equal to the reciprocal of the record
length used in analysis! These failures could be a problem with certain kinds
of musical instrument sound such as a clarinet or a flute. Thus, cepstral pitch
detection should be augmented by other pitch-detection schemes for
maximum accuracy.



17
Digital Hardware

At this point, we are ready to start discussing actual implementation and use
of some of the digital sound synthesis and modification techniques that have
been described. There is, however, a natural division between hardware and
software implementation techniques. Either can perform any of the functions
that have been studied. A hardware approach performs the data movement
and calculations considerably faster than software. In fact, the usual goal of
hardware implementation is real-time operation. Software, on the other
hand, is cheaper, easier, and more flexible but much slower. Finally, the $5
MOS microprocessor and high-speed bipolar microprocessors make possible a
third category that behaves in a system like a hardware implementation but
is designed, and for the most parr, built like a software implementation.

Hardware implementation and real-time operation seem to be of
greatest interest to most people at this time. Digital synthesis hardware can
be integrated into an overall computer-controlled system in several ways,
however. At the lowest level, one can build modules that on the outside act
just like analog modules but offer greater precision, more flexibility, and
perform functions impossible to do with analog hardware. Along the same
lines, the voice-per-board method of system organization can be done en
tirely with digital hardware and with the same advantages. One may define
and construct a modular digital synthesizer that conceptually acts like a
modular voltage-controlled synthesizer but is all digital, including the
signal-routing system. It is also practical to consider an actual programmable
"computer" specialized for ultra-high-speed execution of synthesis al
gorithms in an effort to combine the flexibility of software with the speed
necessary for real-time operation. Special-purpose "black boxes" that perform
cerrain useful but time-consuming operations such as the FFT can also be
added as a peripheral to general-purpose computers in order to enhance the
speed of software-based synthesis.

U nforrunately, a complete discussion of all of these options is well
beyond the scope of this chapter. However, those suitable for implementa
tion by individuals will be described in detail, while the others will only be
surveyed.

589
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Analog Module Replacement

In many cases, digital techniques and circuitry can replace analog
circui try wi th the substantial advantages that have been described earlier.
One of the biggest potential advantages in this role, however, is the ability of
digital logic' to multiplex itself among numerous channels. Modern logic is so
fast that in many cases it would just be loafing when used to implement a
single function. The surplus speed along with a small amount of memory can
instead be used to simulate several independent modules using only one set of
somewhat more complex logic. The per-function cost is then reduced, often
considerably below that of an equivalent quantity of analog modules. Digital
oscillators, which will be discussed extensively in the following paragraphs,
lend themselves well to multiplexed operation. It is not difficult to have one
logic board perform the funnion of 16 or more functionally independent
oscillators!

Simple Digital Oscillator Module

Enhanced frequency accuracy and greater waveform variety are the
leading advantages of a digital oscillator over a conventional voltage
controlled type. The oscillator we will be discussing initially accepts a
single-word digital input that controls frequency and produces a single
analog output. The oscillator may be used as a stand-alone oscillator module
or may be part of a larger voice module.

The most fundamental part of the oscillator is the variable-frequency
source. Basically, all digital oscillators share one common trait in this area:
they take a fixed, crystal-controlled, high-frequency clock and divide it down
to a useful range under the control of a digital word. There are at least four
distinct ways of doing this, each with a set of advantages and disadvantages.
For the purposes of illustration, we will assume that the goal is to generate
frequencies in the audio range with infinite frequency resolution and perfect
short-term as well as long-term frequency stability.

Divide-by-N Frequency Generator

The most obvious frequency generator is the divide-by-N counter. The
circuit merely accepts the fixed frequency reference, F, a digital number, N,
and produces an output frequency of FIN Hz. Any number of logic schemes
can be used to implement the divide-by-N, and they are all quite inexpensive
and easy to understand. Figure 17-1 shows one that requires only counter
blocks (plus one two-input gate) and is indefinitely expandable. The idea is
to load N into the counter at the beginning of an output cycle and count up
to all ones on successive clock pulses. When the counter overflows, N is
loaded again and the cycle repeats. The actual division factor is 2M - N , where
M is the number of counter bits. If the twos complement of N is supplied,
however, the circuit indeed divides by N.
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Fig. 17-1. Simple, high-speed divide-by-N counter

The master clock may be as high as 15 MHz 00-40 MHz if "S" or "F"
series TTL logic is used), and the output frequency consists of pulses with a
length of one clock period. N may be changed at almost any time, but if it is
changed within 10 nsec of the end of an output pulse, an incorrect value may
be loaded into the counters and cause a momentary glitch (click) in the
output frequency.

The assumption behind the divide-by-N approach is that, if the clock
frequency is high enough, the frequency increment between adjacent values
of N will be small enough to be inaudible. Let's determine how high the
master clock must be to get a resolution of 5 cents (1/20 of a semitone or
0.3%) throughout the audio range. Taking the low end first, we seek a clock
frequency, F, such that FIN=20.0 and FI(N-1)=20.06, where N is the
division factor for a 20-Hz output. Using the standard procedure for solving
simultaneous equations, F and N are found to be 6.68 kHz and 334, respec
tively. Solving the same equations at the upper end of the audio range gives
an F of 6.68 MHz and N the same as before.

Since the clock frequency must remain fixed, we are forced to use the
6.68 MHz value of F, since using lower values will not provide the required
amount of resolution at high frequencies. Thus, with a master clock of 6.68
MHz, the division ratio varies from 334 for a 20-kHz output to 334,000 for
a 20-Hz output. The counter circuit in Fig. 17-1 will therefore require 20
bits or five 4-bit counters, which could then provide frequencies as low as 6.4
Hz. While the resolution at high frequencies. barely meets specification, the
resolution at low frequencies is 1,000 times better than required. Note that
the high-frequency resolution can only be improved by a factor of two before
counter speed limitations become a factor. Clear!y, the divide-by-N method
of frequency generation performs best when generating low frequencies.

One advantage of the divide-by-N method is that the output frequency
is pure, that is, there is no jitter in the period other than that of the master
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Fig. 17-2. Equal-tempered scale frequency generator

clock. The circuit merely passes every Nth input pulse to the output. A
potential problem with the method, however, is the highly nonlinear, recip
rocal relation between Nand output frequency.

Modern electronic organs use dividers to produce all of the notes on the
12-tone equally tempered scale simultaneously. The heart of these instruments
is an IC called a "top octave divider." This IC (sometimes a set of two)
accepts a high-frequency clock input and produces 12 different output fre
quencies, which correspond to the 12 equally tempered notes in the highest
octave of the organ. Associated with each output internally is a simple
divide-by-N countet with appropriate Ns wired in. Each output in turn
drives a 6-bit binary counter, which provides the lower notes in precise
octave increments as shown in Fig. 17-2.

One example is the MM5555 family from National Semiconductor.
The type 5555 and 5556 ICs accept an input frequency of 2.12608 MHz and
produce outputs from C8 (four octaves above middle C) to B8 (4,186 Hz to
7,902 Hz) plus a C9 output. By judicious selection of the clock frequency,
the maximum output frequency error has been made less than 0.66 cent with
respect to ideal equal temperment. The 5554 hex flip-flop divides these
down as low as C2, which is about 65 Hz. For a programmable oscillator, a
multiplexor (it should be CMOS to match the weird logic levels used by the
5555 family) can be added to select one of the 72 output frequencies under
control of a digital address input. Thus, if only 12-tone equally tempered
note frequencies are desired, they can be selected with a simple 7-bit number
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Fig. 17-3. Rate multiplier

that directly corresponds to the note rather than a 20-bit number that would
have to be looked up in a table. Also, multiple simultaneous outputs can be
implemented by adding multiplexors only.

Rate Multiplier

The rate multiplier is a combination counter and logic network specifi
cally designed for variable-frequency generation. Its basic form is illustrated
in Fig. 17-3. The fixed-frequency clock is fed to a standard binary counter of
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Fig. 17-4. Operation of jitter filter for rate multiplier

M bits that just continuously counts through its 2M possible states. The
gating network compares the content of the counter with the frequency
control word and based on the comparison either allows a clock pulse through
or blocks it. The average output frequency is equal to FN/2 M , where F is the
clock frequency and M and N are as before. Note that unlike the divide-by-N
approach, the rate multiplier produces an output frequency directly propor
tional to N rather than inversely proportional. Note also that by increasing
the number of counter bits that the frequency resolution may be made as
high as desired without altering the clock frequency.

So far this sounds ideal but there is a catch. Examining the gating
structure and truth table for N = 11, it is seen that the output pulses are
erratically spaced, although there are indeed 11 of them per 16 input pulses.
A little further study of the effect of different Ns reveals that the instantaneous
output frequency never varies over a range greater than two to one, although
it is never less than that either unless N is a power of two, in which case it
does not vary at all. The audible effect of such frequency jitter is a very rough
sound to say the least. Thus, it is clear that a rate multiplier alone is
unsuitable as an audio tone source.

One can, however, "digitally filter" the jittery output with a simple
binary counter and reduce the percentage of frequency modulation. Figure
17-4 shows how a divide-by-8 counter smooths the frequency jitter substan
tially from 100% to about 12%. Unfortunately, the clock frequency must be
increased by a factor of 8 to compensate for the frequency division of the jitter
filter. By adding stages to the filter counter, the jitter may be made as small
as desired, subject only to the clock-frequency limit of the rate-multiplier
counter. A divide-by-256 filter counter, which leaves only a trace of rough
ness in the sound, is probably adequate in most cases. Thus, if the rate
multiplier is to be used to produce frequencies up to 20 kHz, the clock
frequency must be 5.12 MHz, about what it was with the divide-by-N
approach.

With an overall output frequency relation of FN/2 M +], where} is the
number of bits in the jitter filter, it is seen that frequency is a linear function
of the digital word, N. Thus, frequency resolurion is poorest at low frequen
cies rather than at high frequencies. If one wishes to experiment with rate
multipliers, the 7497 is a 6-bit cascadable unit that functions up to 20 MHz.
Four of these, an 8-bit filter counter (74393), and a 5-MHz crystal oscillator
are sufficient to build a frequency soutce with good resolution at all but the
very lowest audio frequencies (1. 5% at 20 Hz).
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Accumulator Divider
The accumulator-divider method is based on the digital sawtooth

generator discussed in Chapter 13. The basic structure shown in Fig. 17-5
consists of a set of binary adders and a D-type register. The adders sum the
current register contents and the frequency control word together and feed
the result back to the register, which latches it up on the next clock pulse.
Thus, N is repeatedly added to the M-bit register, which overflows whenever
the accumulated sum exceeds 2M - I . The overflow frequency is the output
frequency which can be conveniently detected by monitoring the most signif
icant register bit. As with the sawtooth generator, the output frequency is
FNI2!vl, the same as the rate multiplier. Note that the division ratio must be
two or greater in order to use the MSB as the output.

The circuit can be considered to let every N /2M th clock pulse through to

the output. When this ratio is an integer, which only occurs when N is a
power of two, the output pulse train is jitter-free. When it is not an integer,
it alternates between the integer values on either side such that the long-term
average is exactly equal to the fractional value. For example, if M is 16 (2M is
65,536) and N is 384, the ratio 2M/N is 65536/384 or 170.66667. The
circuit will alternate dividing by 170 and by 171 with the latter occurring
twice as often as the former. Thus, the peak time jitter is never more than one
clock period. The peak-to-peakfrequency jitter in percent is simply the recip
rocal of N. Thus, at low output frequencies the jitter is very small but gets
worse as the output frequency is increased. Contrast this with the rate
multiplier, which has an essentially constant jitter regardless of output fre
quency.

The absolute frequency resolution of the accumulator divider is depen
dent entirely on the register length, M, and can be increased without theoret
ical limit. The relative resolution as a fraction of a particular output
frequency is simply liN for the N required to produce the frequency of
interest. The lowest possible output frequency is F/2 M , while the highest is
F/2 if the most significant register bit is the output. The master clock
frequency determines the time jitter, which is one clock period peak to peak.
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Fig. 17-6. Experimental accumulator divider

As an example, let's assume that an oscillator with I-cent (0.06%)
resolution over a 20-Hz to 20-kHz frequency range and inaudible jitter is
desired. Under normal conditions, 0.5% frequency shift is about the
minimum audible for single tones of moderate frequency. It is reasonable to
assume that this much jitter at 20 kHz would be completely inaudible, while
at midfrequencies the jitter is far less anyway. At 1 kHz, for example, it
would be a mere 0.025%, which is much lower than the wow and flutter
figures for most audio equipment.

The first step is to determine the clock frequency from the jitter re
quirement. The period of the highest frequency is 50 J.Lsec and 0.5% of this
is 250 nsec. Thus, the clock frequency must be at least 4 MHz to meet the
jitter specification. To meet the resolution requirement at 20 Hz, N must be
1/0.0006 or about 1,600. If the output frequency equation is rewritten as
F=6.4 X 109/2M , M can be found by applying M=10g2(6.4 X 109/20),
which yields a figure of 28.2. Thus, the adder and register must be 28 bits
long. Note, however, that N will never be greater than 1,342,178, which
means that only about 20 bits are needed to represent N. The remaining
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Fig. 17-7. Phase-locked-loop frequency synthesizer
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adder B inpurs should be grounded. In fact, the upper eight adder and
register bits can actually be replaced by a simple counter that is enabled to
count when the most significant remaining adder generates a carry out. In
this respect, the "extra" 8 bits in M function as a jitter filter!

If one wishes to experiment with the accumulator divider, the general
circuit structure shown in Fig. 17-6 is suggested. The A version of the type
7483 adder has a high-speed carry generation circuit internally, which be
comes important when several are used for long words. The 74161 is a
synchronous counter that is easily enabled to count when an adder carryout is
present. If, however, the most significant A input to the most significant
adder is zero, then the most significant register bit is guaranteed to flip,
which can then be used to trigger a ripple counter such as a 74393 instead.

Phase-Locked Loop

When using the preceding methods, an output could only be produced
coincident with a clock pulse. Therefore, the frequency resolution and time
resolution (jitter) is limited by how finely time can be divided up by the
clock. The phase-Iocked-Ioop (PLL) method, however, uses a tunable oscil
lator, which generates the output frequency, and a feedback mechanism that
keeps it locked on the correct frequency relative to a second fixed frequency
clock.

The structure of the PLL frequency synthesizer is shown in Fig. 17-7.
Two independent divide-by-N counters are used along with independent
inputs, N land N 2. The N 1 counter reduces the master clock frequency to
some convenient value. The N 2 divider likewise divides the voltage
controlled oscillator output to, when the circuit is stabilized, the same
convenient value. The phase comparator looks at the two frequencies and
produces a dc correction voltage that tends to adjust the veo to equalize the
comparator inputs. In effect, the upper counter divides the clock to an
intermediate frequency, while the lower counter and veo multiplies this up
to the desired output frequency. The output frequency is therefore equal to
F(N liN2) with no theoretical restriction on the values of N land N 2. Thus,
any rational output frequency may be produced.
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The circuit should also, theoretically, have a jitter-free output regard
less of the relation between output frequency and master clock frequency. In
reality, however, the phase-comparator error voltage output has significant
ripple, which is filtered by the low-pass filter. Any remaining ripple will
tend to jitter the YCO. An effective filter, unfortunately, slows the response
to changing digital inputs. This, in fact, is a major limitation of the circuit
as a musical oscillator, although it is useful in precision test equipment in
which frequency changing is by front panel controls and is done infrequently.
There is also a serious range limitation unless the low-pass filter and certain
YCO parameters are altered as a function of final output frequency.

Which is Best?

Of these four techniques, which comes closest to the goals of infinite
resolution and freedom from short-term frequency jitter? The divide-by-N is
the only technique with a totally clean output and, given a suitably high
clock frequency, can have excellent resolution at low- and midaudio frequen
cies as well. As we shall see later, it does not lend itself well to multiplexing,
however. The rate multiplier has no resolution limitation but does exhibit
significant frequency jitter at all frequencies, which must be filtered. Its
main advantage is the availability of specialized rate multiplier ICs, which
reduce parts count. It does, however, multiplex well. The accumulator di
vider has no resolution limit either, and its jitter decreases with output
frequency. It is the most complex, however, but it does multiplex quite well.
The PLL divider was included for completeness; it is not recommended as a
music oscillator except in very limited situations.

The accumulator divider seems to have more good features than the
others, although it is more complex. We will see later how multiplexing can
actually make it the simplest in terms of parts count. The divide-by-N is
probably the best for a dedicated oscillator, where its nonlinear control
characteristic can be tolerated.

Waveshaping the Oscillator Output

The frequency-generation circuits that have been discussed thus far
either put out narrow pulses or square waves at the desired frequency. For use
as a practical analog oscillator replacement, other output waveforms are
necessary. A pulse output is readily converted to a sawtooth wave by the
circuit in Fig. 17--8. The pulse, which may only be 100 nsec wide, is
stretched by the single shot and discharges the capacitor through a transistor
switch. The current source <which can be just a resistor for audio applica
tions) then recharges the capacitor during the remainder of the cycle. Square
waves, such as from the accumulator divider, can also operate the circuit.

There is a problem, however: the amplitude decreases as frequency
increases. While not objectionable for a limited range of two octaves or less,
it must be compensated over a wider range. The charging current could be



(AI

DIGITAL HARDWARE

RAW
SAWTOOTH

599

MOST SIGNIFICANT
10 BITS OF N

REF. IN

CONSTANT>----.....- AMPLITUDE
OUTPUT

( B)

Fig. 11-8. Digital divider waveshaping circuits. (A) Generating a sawtooth
wave. (B) Compensating a sawtooth from a divide-by-N oscillator.

increased at higher frequencies by deriving it from a DAC connected to the
most significant frequency control bits. For a divide-by-N frequency source,
a multiplying DAC could be placed in the feedback path of an op-amp to
provide reciprocal compensation.

Along these same lines, a square-wave output can be integrated into a
triangle wave, and a multiplying DAC can be used to raise the integrator
gain at high frequencies. Two variable integrators in a state-variable low-pass
configuration can filter a square wave into a reasonable sine wave as well. The
2040 integrated voltage-controlled filter can do both of these jobs quite well
and can be driven directly from a current output DAC.

Although these essentially analog methods do work, they seem to
defeat the whole purpose of going digital in an oscillator module. Much more
flexible waveshaping can be had by implementing some of the techniques
discussed in Chapter 13. In the example of accumulator division given
earlier, the most significant 8 bits of the register were implemented as a
binary counter, which counted through everyone of its states every cycle. If
an 8-bit DAC is connected to the counter, a sawtooth wave with amplitude
independent of frequency would emerge. One could also construct logic to
implement all of the direct waveform computation methods detailed in
Chapter 13 such as triangle and sine conversion as well.

Another possibility is table lookup shaping followed by digital-to
analog conversion and filtering to get an analog output. In hardware, this is
accomplished by placing a read-only memory (ROM) between the accumulator
divider and the DAC as in Fig. 17-9. The ROM functions exactly like a
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Fig. 17-9. Digital waveshaping of digital oscillator
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waveform table and simply transforms sawtooth input samples into samples
on any waveform desired.

A particularly convenient type of ROM to use is the erasable and
reprogrammable variety (EPROM) such as the 1702, which is organized as
256 8-bit words. Since this type of EPROM is virtually obsolete for
microprocessor program storage, it can be purchased for $3 or less. The type
2708 EPROM is four times larger with 1,024 8-bit words. A digital
oscillator with four different waveforms may be constructed by connecting
the lower 8 address bits to the frequency divider and using the remaining 2
address bits to select one of four waveforms. Even larger EPROMs such as the
2716,2732, or 2764 with 2K, 4K, and 8K words, respectively, can be used
for up to 32 different waveforms at very little additional cost. An EPROM
programmer connected to the user's microcomputer would allow the wave
forms to be computed in BASIC and then written into EPROM for use in the
oscillator module.

Obviously, read/write memory can also be used to hold the waveform.
If this is done, the control computer can set the oscillator output waveform
and even change it during the course of the music. Figure 17-10 shows how
the RAM is connected between the divider and the DAC. The main item of
interest is the address selector. During normal operation, the accumulator
divider is selected as the source of addresses for the RAM. When a new
waveform is to be written into the RAM, the selector allows addresses from
the first microcomputer output port to reach the RAM instead. A second
output port provides the data to be written, while a third port controls the
wri te enable line on the RAM and the address selector . Up to three
additional oscillators can be serviced with the same interface by paralleling
address and data with the first oscillator and distributing the six remaining
control bits among the other oscillators.

A convenient RAM to use is a pair of 2101s or 51015, which provides
256 words of 8 bits with separate data input and output. Note that gradual
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waveform changes during a note are not really possible because addressing the
RAM for writing thoroughly scrambles the read data going to the DAC. This
can be overcome somewhat by using a larger RAM, such as a 2K x 8-bit 6116
or 8K 6164, which can hold 8 and 32 waveforms, respectively, at once. All of
the waveforms can be written ahead of time and then instantly selected as
desired without glitching the output. Note that data input and output of the
6116 are the same pins, so an 8-bit tri-state buffer and an 8-bit latch will
have to be added to separate them.

Variable and Constant Sample Rate

The oscillator and ROM/RAM waveshaper just discussed is an example
of variable sample rate digital synthesis. Earlier, it was strongly suggested that
the sample rate should remain constant in a digital synthesis system. This in
fact is true if the system is handling several unrelated signals at once.
However, a dedicated oscillator is handling only one signal so the rule can be
relaxed somewhat with important advantages.

Using the Fig. 17-10 system as an example, we ignore for a moment
the fact that the count-up rate of the most significant 8 bits of the ac
cumulator divider is not exactly constant. Therefore, if the raw DAC output
is examined, it is found to consist of exactly 256 steps per cycle of the
waveform and each cycle is identical to the previous one. As the division ratio
and hence synthesized wave frequency is changed, the stepped wave is merely
stretched or compressed, but its step-by-step shape remains constant. The
spectrum of such a wave is exactly harmonic, including all of the alias copies
of the intended spectrum. Thus, the alias distortion is purely harmonic distor
tion rather than intermodulation distortion and white noise. Furthermore,
and this is the crux of the matter, the quantization noise is also harmonic
distortion! This means that perfectly clean sounding tones can be produced
with 8 and even fewer bit DACs.

Since the reader is not really expected to believe the previous paragraph
immediately, let's discuss the meaning of harmonic distortion. In audio
equipment, the most prevalent measure of quality is harmonic distortion.
Literally, this means that any tone entering the equipment will leave with its
harmonic amplitude relationships altered. Even large amounts (several per
cent) of such distortion are inaudible provided the distortion is pure, that is,
no other type of distortion is present, and that the amplitude alteration is
spread out evenly among the harmonics.

However, the mechanism that causes harmonic distortion in audio
equipment does not meet either criteria when several tones are present simul
taneously. First, intermodulation (IM) distortion is inevitable, which causes
easily heard nonharmonic frequencies to occur. In fact, an amplifier with pure
harmonic distortion would be quite an interesting device indeed. Second, the
harmonic portion of the distortion tends to concentrate at high frequencies,
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Table 17-1. Performance of a 64-Word 6-Bit Waveform Table

Harmonic number Desired amplitude Actual amplitude

0 --100 -48.67
1 -3 --3.14
2 -5 -5.13
3 -10 -10.28
4 -8 -8.27
5 -2 -2.02
6 0 -0.16
7 -4 -4.27
8 -10 -10.29
9 -15 -14.88

10 -19 -19.45
11 -10 -10.15
12 -5 -5.09
13 -1 -1.12
14 -6 -6.2
15 -12 -12.14
16 -20 -21.06

17-32 -100 -52.24 best
-36.72 worst

Ideal Actual Ideal Actual Ideal Actual
sample sample sample sample sample sample
values values values values values values

-0.051854 -0.0625 -0.181621 0.1875 -0.005724 0.0
0.249919 0.25 -0.182356 0.1875 0.243738 0.25
0.353100 0.34375 -0.174635 -0.1875 0.470721 0.46875
0.150009 0.15625 -0.383177 -0.375 0.463172 0.46875
0.072522 0.0625 -0.224204 -0.21875 0.248244 0.25
0.460679 0.46875 -0.106272 -0.09375 -0.028076 -0.03125
0.909300 0.90625 -0.463232 -0.46875 -0.353254 -0.34375
0,745635 0.71875 -0.999997 -0.96875 -0.720503 -0.71875
0.068102 0.0625 -0.990784 -0.96875 -0.903528 -0.875

-0.280506 -0.28125 -0.335606 -0.34375 -0.654850 -0.65625
0.090172 0.09375 0.217383 0.21875 -0.086723 -0.09375
0.536646 0.53125 0.136746 0.125 0.389132 0.375
0.334821 0.34375 -0.134930 -0.125 0.526439 0.5

-0.255813 -0.25 0.0744874 0.0625 0.424187 0.40625
-0.407391 -0.40625 0.585016 0.5625 0.319185 0.3125

0.058757 0.0625 0.643670 0.625 0.248252 0.25
0.452688 0.4375 0.0782302 0.0625 0.158014 0.15625
0.213340 0.21875 -0.486549 -0.46875 0.084257 0.09375

-0.364094 -0.34375 -0.559661 -0.5625 0.082703 0.09375
-0.584477 -0.5625 -0330236 -0.3125 0.070032 0.0625
-0.244755 -0.25 -0.151069 -0.15625 -0.058026 -0.0625

-0.177100 -0.1875

where it is easily heard. Historically, harmonic distortion ratings were used
because they were easy to measure and correlate well with 1M readings,
which are a much better measure of subjective distortion. Although direct
1M measurements are now easily performed, tradition requires that harmonic
distortion still be quoted on spec sheets.
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As an example, consider the synthesis of a tone having the exact har
monic makeup (chosen at random) listed in Table 17-1. For the sake of
argument, let's assume that only 64 words of memory (64 samples per cycle)
are available and that each word is a paltry 6 bits long, which means that a
6-bit DAC can be used. Also shown in Table 17-1 are the corresponding
sample values to 16-bit (5-digit) accuracy and rounded to 6-bit accuracy. The
final column shows the actual harmonic spectrum that would emerge from
this low-budget tone generator.

The first surprise is that the difference between desired and actual
harmonic amplitudes expressed in decibels is not very great, at least for the
significant high-amplitude ones. Lower-amplitude harmonics do suffer
greater alteration but are more likely to be masked by the higher-amplitude
harmonics. The real difference is that no harmonic can be entirely absent
because of the quantization "noise." In actual use with a fairly "bright"
harmonic spectrum, the approximation errors would be audible but would be
characterized as a slight timbre alteration rather than distortion; much like
the audible difference between two presumably excellent speaker systems of
different manufacture. The use of 8 bits and 256 steps for the waveform of a
digital oscillator is therefore well justified.

Although the alias frequencies are also harmonic, they should be fil
tered if a high-pitched "chime" effect is to be avoided. Unfortunately, the
filter cutoff must track the tone frequency as it changes. This used to be an
expensive proposition but ~ 2040 VCF driven by an 8-bit DAC connected to
the frequency control word can now solve the problem for under $15. In
many cases, it may be possible to omit the filter. For example, when using a
256-entry waveform table, only fundamental frequencies below 150 Hz re
quire filtering, since otherwise the alias frequencies are entirely beyond 20
kHz. In fact, meilow tones containing few harmonics can be generated
filter-free down to 80 Hz.

A dedicated digital tone generator can, of course, be based on the
constant sample rate approach too. The structure is basically the same as
Figs. 17-9 and 17-'-10 except for the following:

1. The master clock (sample rate) is much slower, such as 50 ks/s.
2. The most significant bi ts of the accumulator divider will be actual

register bits, since the slow clock eliminates the "jitter-filter"
counter (the jitter now becomes interpolation error).

3. The waveform memory will require more words (1,024) and more
bits per word (10-12), since interpolation and quantization error
will now be white noise instead of pure harmonic distortion.

The constant sample rate tone generator is, in fact, a precise hardware
implementation of the software table-scanning technique described in
Chapter 13. In exchange for additional hardware complexity, one has a
structure that can use a fixed low-pass filter (probably no filter at all for 50-
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ks/s sample rate), operates at a much lower clock rate, and can be easily
multiplexed. There is one serious problem that the variable sample rate
approach did not have and that is "harmonic overflow" or alias distortion
caused by generating frequencies beyond one-half the sample rate. This may
be controlled only by cutting back on stored waveform complexity when
high-frequency tones are being generated.

Multiplexed Digital Oscillator
Digital circuitry has the unique ability to be time multiplexed among

several, possibly unrelated, tasks. Although a large time-sharing computer is
the epitome of this concept, quite small amounts of very ordinary logic can
be multiplexed among several similar tasks and made to act like many copies
of itself. Probably the best way to illustrate time multiplexing is to describe a
specific example and then generalize from it. Since digital oscillators have
been under discussion, let's examine the design and implementation of a
multiplexed digital oscillator module having the following general specifica
tions:

CLOCK

LOGIC
ACTIVITY

CLOCK

ACTIVE EDGES~

__f--'7~</-1 1---
STABLE 'IIf... STABLE 'IIf... STABLE

COMPUTATION-I....._.+I.~--IDLE TIME _I
TIME

(A)

LOGIC
ACTIVITY

I--J-....I--..hl
READ WRITE READ WRITE
FROM INTO

MEMORY MEMORY
AND AND

COMPUTE OUTPUT

IOSCILiATORIOSCIL~ATORI

• MINOR "I
CLOCK
CYCLE

•••

I

OSCILLATOR!OSCILLATOR I
N- I 0

I-----MAJOR CLOCK CYCLE ----I

(B)

Fig. 17-11. Timing of generalized digital oscillators. (A) Nonmultiplexed oscil
lator timing. (8) Multiplexed oscillator timing.
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1. Sixteen independent oscillators are simulated.
2, Each oscillator has an independently programmable waveform.
3. Moderately high tonal quality (50 dB SiN) is desired.
4, Waveforms may be dynamically updated without glitching the output.

Although the last feature may be impractical in a single-channel oscillator,
its cost is divided by 16 when multiplexed.

A typical nonmultiplexed digital oscillator has a timing diagram some
thing like Fig. 17-11A. Immediately following the active clock edge, things
happen and signals change. A finite time later, everything settles down and
remains stable until the next active clock edge. The time between settling
and the next clock is "wasted" because nothing is happening.

Multiplexing utilizes this idle time by assigning it to the "data" for one
or more additional oscillators as illustrated in Fig. 17-11B. Such data consist
of the frequency control word, the state of the counter in the frequency
divider, and the waveshaping table. Essentially, the data are read from a
memory, the next state is determined by the logic, and the result is written
back into the memory and an output circuit. The entire sequence for a
particular oscillator takes place during one minor clock cycle. A major clock cycle
consists of N minor clock cycles, where N is the number of oscillators
simulated. There will, in fact, be a minor clock cycle counter that identifies
minor cycles within a major cycle. Thus, the sample rate for each oscillator is
the major clock frequency, while the throughput rate for the computation logic
is N times the sample rate or the minor clock frequency.

Before proceeding further, the implementation technique for the
oscillator must be determined. One thing to keep in mind is that the minor
cycle frequency is N times the effective clock frequency for a particular
oscillator. This eliminates the variable sample rate techniques described
earlier because they all require a clock frequency on the order of 5 MHz. To
multiplex these according to the specs above would require a throughput rate
of 16 x 5 or 80 MHz, somewhat beyond the capabilities of standard logic.
Thus, a fixed sample rate approach will be used. In the example system being

FREQUENCY
CONTROL IN

20

FREQUENCY
CONTROL
WORO
REGISTER

EXTERNAL EXTERNAL
ADDRESS SELECT DATA IN WRITE

SAMPLE
CLOCK

Fig. 17-12. Nonmultiplexed oscillator organization

OUTPUT



o '!10
'\ o 0
'\ ::::: n ~ '1
l ~ n tr1 [f
l

[f
l o ~ [f
l::::: e [f
l n ~ >- '1
l '1
l t n ~ o z [f
l

Yf
(···

r
16

SA
M

PL
E

AN
D

HO
LD

4

10

K
_

I
I

i
i
i

i

16
AN

AL
O

G
O

UT
PU

TS

W
AV

EF
O

RM
CO

NT
RO

L
FR

O
M

CO
NT

RO
L

CO
M

PU
TE

R
A

14

I
AD

DR
ES

S
DA

TA
\

IN
IN

W
RI

TE r' ---,
0 I

W
RI

TE

DA
TA

lbl
AD

DR
ES

S
~

W
AV

EF
OR

M
~

HO
LD

IN
DA

TA
7

SE
LE

CT
O

R
7

M
EM

O
RY

10
RE

G.
p

1
1

0
-8

1
T

AC
CU

M
UL

AT
O

R
OU

T
4

.7
10

3
HI

G
H-

SP
EE

D
M

EM
O

RY
M

S8
7

4
74

15
3

M
K4

11
6

74
17

5
DA

C
16

.2
0

20
57

48
9

I.
'

IN
PU

T
SE

LE
C

T

Irr
l

t
AD

DR
ES

S
4

,
,

IN
C

E
F

G
H

J

20

FR
EO

UE
NC

Y
CO

N
TR

0L
r-

--
-.

::
::

--
../

I
M

EM
O

RY
16

.2
0

57
48

9

A

4
12

0

FR
EO

UE
NC

Y
CO

NT
RO

L
FR

OM
C

O
N

TR
O

L
CO

M
PU

TE
R

A
1

-
-
-

\
AD

DR
ES

S
DA

TA
IN

IN
W

RI
TE

I

F
ig

.
1

7
-1

3
.

M
ul

tip
le

xe
d

os
ci

lla
to

r
or

ga
ni

za
tio

n



DIGITAL HARDWARE 607

discussed, the sample rate will be set at 62.5 ksls, which when multiplied by
16 yields a throughput rate of 1.0 MHz. This equates to a major cycle time of
16 fLsec and a minor cycle time of 1. 0 fLsec.

Hardware Structure

The first step in designing the multiplexed oscillator is to draw a
detailed block diagram of the equivalent nonmultiplexed oscillator as in Fig.
17-12. Note that the data input to the oscillator logic comes from a register
and that the DAC output goes to a sample-and-hold, which acts like an
analog register. The 20-bit word length chosen for the accumulator allows a
frequency resolution of 0.3% at 20 Hz and 0.005% (equal to typical crystal
oscillator accuracy) at 1 kHz. The lO-bit word length for waveform address
and data gives a SiN ratio of greater than 50 dB for the tone.

In converting to the multiplexed oscillator shown in Fig. 17-13, one
replaces all registers with memories, each consisting of N words and ad
dressed by the minor clock cycle counter. In the case of the waveform tables,
an N times larger memory holds all of the waveforms, and a particular section
is addressed by the minor cycle counter. Thus, the frequency control word
becomes the frequency control memory, which is 16 words of 20 bits, and the
accumulator register becomes the accumulator memory, which is the same size.
The waveform memory grows to 16K by 10 if each oscillator is to have a
different waveform. The final outputs now come from 16 SAH circuits,
which are addressed like a 16-position analog memory.

Before determining the timing diagram, components must be selected
for the various blocks. Such a selection must be made on the basis of speed
and cost. Obviously, memories that require a 2 fLsec cycle time cannot be
used, but, on the other hand, a 50-nsec bipolar memory would be overkill for
the waveform tables. For this example, the waveform memory will use 10
type 4116 MOS dynamic RAMs, which are organized as 16,384 words of 1
bit each. Although dynamic RAMs are the cheapest form of memory
available, they require periodic refreshing to retain data. Refreshing is
accomplished simply by reading at least one location in each of the 128
blocks of 128 addresses every 2 msec. Since the oscillators are constantly
scanning through the waveform memory, it will be automatically refteshed
provided that zero frequency (or an exact multiple of 7.8125 kHz) is not
programmed fot all of the oscillators simultaneously.

Frequency control words and accumulators will be stored in 10 type
7489 bipolar memories, which are conveniently organized as 16 words of 4
bits each. The address selector for the waveform memory uses four type
74153 dual one-of-four multiplexors, which simultaneously select between
accumulator and external addresses and between lower and upper 7-bit halves



608 MUSICAL ApPLICATIONS OF MICROPROCESSORS

TIME PHASES
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Fig. 17-14. Multiplexed oscillator timing diagram

as required by the 4116s, 1 The frequency control memory address must also
pass through a selector to allow the control computer to write frequency
control words into the memory, This may be implemented with a single
74157, The 20-bit adder will use five cascaded type 7483A 4-bit adders,

Unfortunately, there are a few timing and design details that require
additional latches to correct, One problem is that the 7489 memories do not
have an edge-triggered write, This means that a race condition is possible
when writing, which can be corrected by inserting a 20-bit holding register
between the adder output and the accumulator memory input. Another
problem is that the 4116 waveform memory only activates its data output for
a short time at the end of a memory cycle, Thus, another holding register

lThe type 4116 RAM actually time multiplexes 14 address bits on 7 addtess pins. Two
clock inputs called row address strobe (RAS) and column address strobe (CAS) trigger
internal latches, which then reconstruct the full 14-bit address, The reader should
consult the manufacturer's data sheet (Mostek Corporation) for full details,
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between the 4116s and the DAC is required. Almost any edge-triggered
latch can be used for the holding registers but the type 74175 will be
specified because of its low cost and ready availability. Figure 17-13 shows a
block diagram of the complete multiplexed oscillator. Excluding the timing
generator and interface to the control computer, the total digital IC package
count is approximately 40.

Timing

Figure 17-14 shows a timing diagram for the events that take place
during one minor clock cycle. The only difference from one minor cycle to the
next is the content of the minor cycle counter, which addresses the various
memories involved. Each minor clock cycle consists of two subcycles that are
termed internal and external subcycles. During the first subcycle, the required
internal oscillator calculations are performed. The second subcycle is avail
able to the external control computer for writing in new frequency control
words or new waveforms if it so desires. Each subcycle is further divided into
four "phases," each 125 nsec in duration. These phases are used to sequence
the various events that take place. All of the necessary timing signals (except
CAS, which utilizes a 30-nsec delay element) can be generated by a 3-bit
counter driven by an 8-MHz crystal-controlled clock.

At the beginning of a minor cycle, which is also the beginning of an
internal subcycle, the minor cycle counter is incremented, which causes an
address change to the frequency control memory and the accumulator mem
ory. Since these are bipolar memories, the newly addressed contents emerge
about 50 nsec later. The adder, which sees a stable input about midway
through Phase 0, produces a stable output by the middle of Phase 1. At the
beginning of Phase 2, the adder output is latched in the adder holding
register and during Phase 3 the sum is written back into the accumulator
memory. While all of this is going on, the previous contents of the ac
cumulator memory are used to address the waveform memory in conjunction
with 4 bits from the minor cycle counter, which identifies which stored
waveform to use. The address selector switches between low 7-bit mode and
high 7-bit mode as required by the 4116s at the beginning of Phase 2. The
RAS spans Phases 1 to 3 while the CAS spans Phases 2 and 3 but with a 30
nsec turn-on delay to allow address switching to complete. At the end of
Phase 3, data from the waveform memory is available and is latched into the
DAC register.

The DAC is allowed to settle during the second subcycle and the
appropriate SAH channel is updated during the first half of the next minor
cycle. Thus, SAH channel I will actually contain the signal from oscillator
1-1 which is corrected simply by relabeling the analog outputs.

This time skew from one minor cycle to the next is an example of
pipelining, which is a very powerful logic throughput enhancement tech
nique. It is applicable whenever a repetitive sequence of operations is to be
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done by logic (or sampled analog) blocks connected in series. Rather than
making the logic fast enough to do all of the operations in one clock period,
only one operation per clock is performed. The data words shift down the
chain one position per cycle and are operated on in assembly line fashion.
Since a given block has a full cycle to "do its thing," slower logic can be
used. Conversely, the throughput rate can be speeded up, often by several
times compared with a nDnpipelined approach. Pipelining is very easy to
implement when strictly repetitive tasks are performed. Fortunately, nearly
all hardware implementations of digital synthesis techniques are sufficiently
repeti tive.

Returning to the oscillator timing diagram, the external subcycle is
used to allow the control computer to access the frequency control and
waveform memories without interfering with the oscillator operation. Fol
lowing address settling in Phase 0, Phases 1 to 3 are available for writing into
the frequency control memory. An and gate connected to the RAM's write
enable input inhibits actual writing unless the control computer specifically
allows it. A similar arrangement is used for writing into the waveform
memory. The waveform memory can also be read exrernally if desired. If
write enable is not exercised, read data is available during Phase 3.

Inteifacing to the Control Computer

The simplest method of interfacing the oscillator is direct connection of
the 50 external input signals to 50 output port bits and suitable software
manipulation of the bits to effect the desired results. Timing requirements
for writing into the frequency control memory are very simple. First, the
write enable pulse must be at least 1 p.sec in duration. Also the 4-bit address
must be set up and stable 30 nsec before write enable is turned on and must
remain stable for 30 nsec after it is removed.

The waveform memory is a little more difficult to handle. Essentially,
none of its inputs are allowed to change during an external subcycle. This
requirement may be satisfied by inserting latches between the computer and
the waveform memory inputs and clocking the latches at the beginning of
minor cycles.

The number of output port bits required may be cut in half by realizing
that simultaneous writing into both memories is not likely to be done. Since
each memory requires 24 bits of information (address + data), only 24 port
bits are needed plus two more for the write enables. Since registers are
required anyway for operating the waveform memory, one may fill the regis
ters 8 bits at a time with only 8 bits needed for the data and 5 bits used for
control as shown in Fig. 17-15.

F onrier Series Tone Generator

The oscillator module just described is certainly quite versatile but does
suffer one shortcoming: dynamic variation of the waveform, that is, smooth
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changes during the duration of a si'ngle note, is not really practical. Although
the logic timing is such that a new waveform can be written without interfer
ing with waveform scanning, it would be very difficult to rewrite a waveform
on the fly and insure that discontinuities due to half-old/half-new waveform
scanning did not occur. One could possibly use two oscillator channels along
with variable-gain amplifiers to alternately interpolate between successive
versions of the waveform. In any case, variable filters would probably be used
for dynamic variation,

What is needed is a Fourier transform or Fourier series tone
generator, which is set up for continuous variation of the harmonic
amplitudes and possibly the phases as well. When one realizes that such a
tone generator is really nothing more than a bank of sine wave oscillators
operating at harmonically related frequencies and having independent
amplitude control, it becomes obvious that a multiplexed oscillator could do
rhe job. Although the previous oscillator could provide up to 16 harmonic
(and inharmonic as well) frequencies, external gain control elements would
be necessary to control relative amplitude. Thus, an optimized Fourier series
tone generator will be briefly described. Note that, although the unit is
multiplexed in order to generate numerous harmonics, it can only generate a
single composite tone, whereas the previous oscillator could generate 16
tones. Many musical situations, however, call for a solo instrument of great
expressiveness with accompaniment in the background. The solo could there
fore be played by the Fourier series generator, while the less critical accom
paniment could be played by the oscillator bank described earlier.

The unit that will be described has the following general specifications:

1. Up to 64 harmonics in an unbroken series from 0 to 63.
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2. Amplitude is independently adjustable.
3. Phase is independently adjustable.
4. Amplitude and phase may be updated at any time without glitching

the output.
5. Fundamental frequency is controlled by a single 20-bit word.
6. The output is a 16-bit word at 62.5 ksls sample rate.

Much of the basic structure and organization of the previous multiplexed
oscillator will be retained. Thus, the Fourier series is evaluated via "brute
force" in which each harmonic is individually computed, scaled, and
summed. Although a computation time savings of 1O-to-1 is theoretically
possible through use of the FFT, the computation logic would be much more
complex. Also, as was seen in Chapter 13, FFT so/nthesis of arbitrary fre
quencies (which is necessary in a fixed sample rate implementation) is even
more complex. Another advantage of brute-force evaluation is that amplitude
and phase changes take effect immediately, between samples, rather than
between FFT records.

Hardware Structure

Following the same development as before, Fig. 17-16 shows the
conceptual block diagtam of a single harmonic channel without multiplex
ing. The first obvious feature is that three control variables are involved:
frequency, amplitude, and phase. Another feature is the inclusion of two
multiplier blocks, one for multiplying the frequency parameter by the har
monic number and the other for multiplying the sine table content by the
amplitude variable. Phase control is implemented by adding the phase shift
parameter to the accumulator contents in a separate phase adder before feeding
it to the sine table. Finally, we have a harmonic accumulator, which sums the
output of this channel with that of the other harmonic channels to provide
the fina.l output, which is then sent to the DAC.

Before continuing further, a few things should be said about the word
lengths of the various blocks. When the 20-bit frequency control word is
multiplied by the 6-bit harmonic number, a 26-bit product is expected.
However, in order to use the same accumulator frequency generator and
sample rate as before, only the low order 20 bits of the product are used.
Thus, product overflow is possible when high fundamental frequencies are
used. While this may seem to be an operational restriction, a little thought
will reveal that product overflow is indicative of serious alias distortion in the
tone anyway. When using the tone generator, the amplitudes of all har
monics that exceed 31 kHz will have to be made zero. The word lengths in
the sine lookup blocks are 10 bits, the same as before. When 64 individual
sine waves are added up, the result is a 16-bit final output word.

Let's now look at these blocks and see how they would be implemented
in the multiplexed case. Since there are 64 harmonics, the amplitudes and
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phases can be stored in two 64-bit by lO-bit memories. The throughput rate
is 64 X 62.5 kHz =4 MHz or 250 nsec minor clock cycle, which means that
bipolar or fast MOS memories will be needed. U nfoftunately, 64 words is a
somewhat nonstandard size for memory ICs and using the 16- X 4-bit type
7489 memory means that 20 packages would be required. Other possibilities
are the 210 1A-1, which has a 200 nsec cycle time, and the 93422, which is a
50 nsec bipolar device. The latter is fast enough to be used directly, whereas
the MOS 210 lA-1 would have to be pipelined. Both of these have identical
pin connections and are organized as 256 words of 4 bits; thus, three-quarters
of their capacity will not be utilized.

When considering 64 channels, each with harmonically related fre
quencies,2 the leftmost four blocks in Fig. 17-16 seem to be redundant. In
particular, it would be nice to eliminate the harmonic multiplier as well as
individual frequency generation accumulators. In order to see how this might
be done, consider the case in which the frequency control word has a value of
1 and the entire module had just been reset, that is, all 64 frequency
generation accumulators set to O. After one sample period (16 f.Lsec), the
fundamental accumulatot has a value of 1, second harmonic 2, third 3, etc.
After a second sample period cycle, they are 2, 4, 6, etc., and after a third
cycle they are 3, 6, 9, etc. After a number of sample periods, overflow of the
highest harmonic is inevitable. This is merely an indication that it has
completed a full cycle and can be ignored. In fact, all of the harmonics will
overflow as they complete full cycles.

These same relationships hold regardless of the value of the frequency
control word. Thus, the content of the fundamental's accumulator can be
multiplied by the harmonic number to obtain what would be in the har
monics' accumulators if they had their own accumulators and adders! This
then eliminates 63 frequency generation subsystems. Only the low 20 bits of
the 26-bit product should be retained to properly implement the overflow
phenomenon mentioned earlier.

Now that the redundant frequency generators are eliminated, let's see
about getting rid of the multiplier as well. If the multiplexing is done in
order of increasing harmonic numbers, then multiplication by 2, 3, 4, etc.,
can be accomplished by successive addition of the fundamental's frequency
generation accumulator into a second indexing accumulator. Thus, the har
monic multiplier is replaced by an adder and accumulator. The substructure
that accomplishes this is shown in Fig. 17-17. Note that this substructure is
not multiplexed, but it does provide multiplexed data to the 64 sine
generators, which, of course, are multiplexed. The frequency-control register

2If one wishes to generate decidedly nonharmonic tones, the 64 frequency generation
subsystems may be retained. The ftequency control words would then come from a
64-word X 20-bit memory rather than a harmonic multiplier. Thus, one has essen
tially 64 independent sine wave generarors and a 64-channel mixer with independent
gain control for each channel. The phase control adders are useless in such an applica
tion and therefore can be omitted.
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and the two accumulators are therefore actual registers rather than memories.
In operation, the frequency-generation accumulatOr is clocked at the 62.5
kHz major cycle rate, while the indexing accumulator is clocked at the
4-MHz minor cycle rate. Note that the indexing accumulator must be
cleared at the beginning of every major cycle for proper operation.

Amplitude Multiplier

The amplitude multiplier is much more difficult to eliminate so let's
see what is involved in hardware multiplication. There are a multitude of
hardware multiplication techniques that would require an entire chapter to
describe in detail. There are, however, basically two ways of multiplying in
hardware. The first is the serial shift and add algorithm or serial multiplica
tion. When an M-bit multiplier is being multiplied by an N-bit multi
plicand, the basic approach is to examine the M bits one bit at a time and
based on the result either add the multiplicand to a product accumulator
followed by a shift or just do the shift (either the accumulator can move right
or the multiplicand can move left). This approach is economical of hardware
requiring just an N-bit adder, an M + N-bit shift register, and an N-bit
latch but is slow, since M clock cycles are necessary to compute the product.
With Schottky TTL logic, shift and add can be done at about a 20-MHz rate,
which means that a 10 X 10 multiplication requires 500 nsee to perform, too
slow for the Fourier series generator as currently specified, although possibly
adequate for a 32-harmonic implementation.

The second approach is called parallel multiplication. Essentially, a large
number of adders and gates is combined to form a massive combinational
logic network that acceprs the factors as static inputs and eventually produces
the product output after the logic states have stabilized. For short word
lengths, it may even be practical to use a ROM as a multiplication table.
Besides much higher speed, the parallel multiplier is much easier to use,
since no clocks or timing signals are necessary. Settling time from when
operands are applied to when the result is stable is in the 150-nsec range for
lO-bit operands and a 20-bit product.
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Each IC manufacturer has its own pet parallel multiplier line. One
approach to parallel multiplication divides the large logic array into a
number of identical blocks, which are then stacked horizontally and
vertically to form the whole array. One type (AM2505, Advanced Micro
Devices) uses a block that implements a complete 2 X 4 multiplication in a
24-pin Ie. These blocks are then interconnected using a column for each two
multiplier bits and row for each four multiplicand bits. Thus, the needed 10
X 10 multiplier would use three rows of five chips each for a total of 15 IC
packages.

A variety of complete parallel multipliers all on a single chip are also
available. One example, the MPY1616 from TRW, includes a 16 x 16-bit
multiplier array and a 35-bit adder/accumulator on the multiplier's output all
in a 64-pin IC package. The total multiply-add time is about 150 nsee. In
spite of the large (1 inch X 3 inch) ceramic package, the unit's 3-5 W power
dissipation requires that a heatsink be glued to its top surface, although it is
still substantially less than what 32 AM2505s would require. Other
organizations such as 12 X 12 and 8 X 8 are also available, and a couple of
recent units even use high-speed CMOS technology to reduce heat dissipa
tion to more manageable levels. Unfortunately, all parallel multiplier ICs
seem to be expensive ($50 to $100 or more), probably because usage volume
is quite low compared to other IC types. In any case, a parallel multiplier is
indicated for the Fourier series tone generator.

Before continuing, let's briefly investigate a method for eliminating the
amplitude multiplier. It is well known that if two sine waves of exactly the
same frequency and unity amplitude but of different phase are added, that
the amplitude and phase of the resultant depends on the phast ~ifference

according to:

2

PI-PZ
A=2 cos P

where A is the resultant amplitude, P is the resultant phase, and PI and pz
are the phases of the individual waves. Thus, the two parameters PI and
pz can be manipulated to give the effect of A and P parameters. The advan
tage, of course, is that multiplication by A and addition to the harmonic
accumulator is replaced by two additions to the accumulator. There are
disadvantages, however. One is that the throughput rate of the phase adder
and sine table is doubled; another is the highly nonlinear relation between
PIIPZ and A,P, which would probably require a translation table to over
come. The most serious disadvantage, however, is that greatly increased
resolution in the sine table is necessary for good control at low-amplitude
levels where the two waves nearly cancel. This means both more words in the
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sine table as well as greater word length. To equal the dynamic range and
noise performance of the 1024 X lO-bit sine table with a true multiplier, one
would have to go to a 4,096 emry sine table with 16 bits per entry.

A complete block diagram of the generator is shown in Fig. 17-18. A
timing diagram for the generator is given in Fig. 17-19. Note that a
pipeline register has been inserted between the sine ROM and the amplitude
multiplier. The purpose is to isolate the propagation delay of the phase adder
and sine ROM from the delay of the amplitude multiplier. The only side
effect is that the phase memory address for harmonic N is N, whereas the
amplitude memory address is N + 1. This can be avoided by inserting another
pipeline register between the amplitude memory and the multiplier. How
ever, for minimum cost the comrol computer can simply take the skew into
account when writing into the memories. The harmonic accumulator adds up
the 64 sine waves during a major cycle. At the end of the cycle, its content is
transferred to the output register, which holds it for the entire duration of
the next major cycle, thus giving the DAC stable data.

All timing is derived from an 8-MHz crystal clock. Two clock cycles
make a minor cycle and 64 minor cycles make a major cycle. All of the clock
and clear inputs to the various blocks are assumed to be positive edge
triggered. The first one-quarter of each minor cycle is devoted to external
access to the amplitude and phase memories and the frequency-control regis
ter. This rapid rate of access allows the generator to be connected directly to
the bus of most microcomputers with no wait states or buffer memories
needed. The remaining three-quarters of each minor cycle, which is about
190 osee, is allowed for memory access, adder delay, ete. The parallel
amplitude multiplier must therefore act in approximately 150 nsee.

Rapid, glitchless updating of phase makes possible a control technique
that can be used to simulate inexact tuning of the harmonics. If the comrol
computer periodically increments the phase parameter of a harmonic, the

I
_MINOR~I

CYCLE

8-MHz CLOCK

MINOR CYCLE CLOCK (A)

MAJOR CYCLE CLOCK (B)

MINOR CYCLE COUNTER

EXTERNAL AOORESS SELECT (C)

EXTERNAL WRITE ENABLE (D)

________----JnL.. _
60

_-'~_-' '-_---' '-_--' "__,IL-lL-ll.-.-

Fig. 17-19. Timing diagram for Fourier series tone generator
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effective frequency of that harmonic will be increased somewhat. Although
the magnitude of frequency shift is restricted to a few hertz, the technique is
useful in simulating a real vibrating string with slightly sharp upper har
monICS.

An Intelligent Oscillator?

The best method of interfacing either of the previously described oscil
lators to a system is the use of a dedicated microprocessor. Actually operating
such an oscillator bank with frequency glides and dynamic waveform changes
to worry about, not to mention other modules in the system such as
amplifiers and filters, may pose a very heavy load on the control computer. It
would be much nicer if the oscillator bank could be given high-level com':
mands such as "increase frequency of channel 7 from C4 to G4 linearly over a
period of 300 msec starting at time point 1230," or "change the harmonic
content smoothly from what it is currently to the following specification over
the next 150 msec."

A dedicated processor to perform such functions would actually add
very little to the module cost. Two-thousand bytes of program ROM should
be sufficient for a moderately sophisticated command interpreter. Read/write
memory is only necessary for miscellaneous programming use and the storage
of parameters; thus, it can be 256 or at most lK bytes in size. Memory and
I/O interfacing would involve abour five additional ICs. A simple logic
replacement microprocessor such as a 6502 suffices quite well for the intelli
gence. The net result is that less than $50 worth of extra parts can be added
to make an intelligent oscillator.

Speaking of the 6502 microprocessor, the observant reader may have
noticed that the 16-channel multiplexed oscillator timing diagram exactly
parallels the 6502's bus timing. In fact, one could drive the 6502 clock with
the internal/external address selector signal. Since the 6502 does nothing
during the first half of its I-JLsec bus cycle, that half would be the oscillator's
internal half cycle. The external half cycle would be devoted to the mi
croprocessor, which could then directly write into the frequency and
waveform memories. In fact, with some attention to detail, these memories
could appear to the micro as regular read/write memory and thereby elimi
nate interface ports and registers altogether!

Communication between the control computer and the oscillator can
now be more casual. This allows techniques such as serial asychronous (RS
232),3 which are normally useless in real-time control applications, to be
effectively utilized. In turn, this means that digital modules can be designed

3This is the method most often used to talk to "normal" peripherals such as terminals,
printers, etc. It is a serial by bit technique that is inherently slow (compared with
microprocessor speed) and usually implemented with little or no busy/done feedback
or error checking. Its main virtue is standardization and minimal wiring complexity
(3 wires are sufficient for bidirectional communication).
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Fig. 17-20. Digital synthesizer organization

with a "universal interface" that can easily connect to any kind of control
computer. Furthermore, interpretive high-level languages, such as BASIC,
can be used to control the oscillators and other intelligent digital music
modules.

Modular Digital Synthesizer

Up to this point, we have been discussing the digital implementation
of analog modules in which an analog output is retained. These outputs are
then interconnected and processed further in the analog domain just as if they
had originated in an analog module. In a modular digital synthesizer, all
signal generation, processing, and interconnection are done in the digital
domain. Only the final two- or four-channel audio output is in analog form.
One advantage of an all-digital synthesizer is the elimination of vast quan
tities of DACs. Another is that multiplexed operation of the component
modules makes available very large numbers of module functions at an
attractive per-module cost. The biggest advantage in the author's mind,
however, is complete interconnection flexibility. As we saw in Chapter 8, a
generalized analog-switching matrix for even a moderate number of modules
can become very large indeed. An equivalent digital matrix using read/write
memory is compact and economical. At this point in history, there are as
many different digital synthesizer organizations as there are digital synthe
sizers in existence. The organization in Fig. 17-20, however, represents an
ideal that most of all them approach to some degree. The entire system
revolves around two major memories. The control memory contains all oper
ation parameters for all of the modules, including interconnection informa
tion. The control computer writes into the control memory, while the mod
ules read from it.
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The signal memory contains sample words of all signals in the system.
Essentially, every module output is associated with a word in the memory.
During each system sample period, the content of the signal memory is
updated by the modules according to their current output samples. Every
module input represents a read access to an address specified by the control
memory. Interconnection then is accomplished simply by specifying read
addresses for module inputs! The modules themselves are normally highly
multiplexed so a single "oscillator board" might actually represent 16 oscil
lator functions. In a truly modular system, one can easily add multichannel
modules simply by connecting them to the memory buses.

A Hard-Wired Digital Synthesizer

Probably the best way to introduce the basic concepts of a digital
modular synthesizer is to briefly describe one fairly simple unit that has been
proposed. The basic idea is to emulate the operation of a large modular
analog system with the advantages of direct computer control, program
mable interconnection matrix, and, of course, extreme accuracy, freedom
from drift, etc. Analog module terminology will be used to describe the
digital modules, since from the control computer's point of view, the whole
system looks just like a multitude of DACs driving analog modules coupled
with a signal routing matrix.

The system as it was originally proposed has the following modules,
although there is certainly room for expansion:

16-way multiplexed oscillator
16-way multiplexed mixer/controlled amplifier
16-way multiplexed state-variable filter
16-way multiplexed contour (envelope) generator
16-way multiplexed universal filter
16-way multiplexed multiinput mixing amplifier
32 "pseudo"-DACs

4 final output DACs
2 white noise generators (uniform and gaussian)
1 reverberation element

The system sample rate is 62.5 ks/s and all signals are 16-bit twos
complement values. Full scale is considered to be 12 bits, however, with the
extra bits used to provide substantial "headroom" in the signal processing.

Figure 17-21 shows the general structure of a module. Up to seven
classes of digital words are handled by the module. "Fixed" controls are
values fetched from the control memory that act just like adjustment knobs
on analog modules. They are called fixed because only the control computer
can alter their values, not other modules in the system. Addresses for signal
memory read accesses are also read from the control memory. One address is
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CONTROL MEMORY

PREVIOUS
VALUE
MEMORY

Fig. 17-21. Typical digital synthesizer module

read for each of the module's signal inputs and is sent to the signal memory,
which teturns a signal input. Since a unique location in the signal memory is
associated with every module output, these addresses serve to define inter
modular connections. Signal output words from the module are wrirten into
the control memory at locations defined when the module is builr. Many
modules require temporary storage from one sample to the next. In multi
plexed modules, this is a small memory, which is called the "save memory."
Usually, the save memory is not a system resource, but rather it is part of rhe
module itself.

In most respects, the module functions parallel the equivalent analog
modules. The oscillator module, for example, has two signal inputs that are
summed and control frequency just like a VCO. The tuning relationship is
exponential with a resolution of 3 cents. In the original proposal, the oscil
lator provided the "basic four" waveforms (sawtooth, triangle, rectangle,
sine) to four locations in the signal memory, but the present low cost of
memory wbuld make a programmable waveform equally practical. Fixed
controls for "octaves per unit" and zero offset would also be included, al
though they were not originally present.

The mixer/controlled amplifier acts just like an analog VCA. Although
the control computer is capable of generating slow contours for envelopes and
so forth, a 16-way multiplexed contour generator with four different curve
segment shapes is provided to relieve it of that function. Virtually any
contour shape can be constructed from the linear, concave, convex, and "S"
curves available.

The universal filter module consists of 16 general second order cannoni
cal digital filters in which each of the five multiplying factors is read from the
control memory. Since the input and output of each filter communicates
with the signal memory, they can be cascaded, paralleled, and even made



DIGITAL HARDWARE 623

into a filter bank spectrum analyzer by suitable setting of control words and
signal memory addresses. The pseudo-DAC module simply serves as a
method for the control computer to write directly into the signal memory.

As might be expected, the system is performance limited by the two
memories. Although the control memory is shown as a system-wide resource,
in reality it is part of the individual modules. Only the control computer
requires access to all of the control memory. Modules need only access the
portion that holds their own control words. Control memory design, then, is
equivalent ro that employed in the multiplexed oscillators described earlier.
Thus, the control memory does not limit performance as modules are added.

The signal memory is a different story, however. Every module must be
able to access any part of it at random. In fact, the total number of read
accesses per sample period is equal to the total number of signal inputs in the
system. Likewise, the number of write accesses per sample period is equal to
the number of signal outputs in the system. The total number of words in the
memory is also equal to the number of outputs. Thus, at first glance, N + M
memory cycles must be performed in a sample period, where N is the number
of inputs and M is the number of outputs. The proposed system had provi
sions for 288 inputs and 288 outputs. A straightforward time-multiplexed
signal memory would need a cycle speed of 27 nsec to get all 576 accesses
accomplished in a 16-f.Lsec sample interval.

The cycle rate can be nearly cut in half if writing is performed in an
orderly fashion. This is quite reasonable, since every word is written each
sample period and write addresses are preassigned to the modules. In order to

save time when writing, the memory array is organized such that several
write ports are formed that can be written into simultaneously. In the
proposed system, the signal memory consisted of 18 blocks of 16 words each.
Only 16 write cycles were therefore necessary to update the entire memory.
By using the block write, the number of memory accesses per 16f.Lsec is cut
down to 304, which allows a 50-nsec read cycle and a lOO-nsec write cycle; a
practical figure for conventional logic.

The number of signal inputs in the system is therefore limited by signal
memory speed. The only way to overcome that limitation without sacrificing
interconnection flexibility is to completely duplicate the memory so that two
real read access ports are available. The same data would be written into the
same addresses in both memories simultaneously. Reading would be inde
pendent with half of the modules reading from one memory, while the
remainder read from the other half. The memory throughput capability
would therefore be doubled. Memory splitting without duplication is also
possible if a communication module is defined that can transfer selected signals
from one-half of the system to the other.

Signal-Processing Computer

In spite of the flexibility of a modular digital synthesizer, nothing
matches the generality of an ordinary computer in sound synthesis and
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modification. However, only the largest general-purpose computers are fast
enough for really significant real-time synthesis, not to mention their enor
mous cost. A specialized signal-processing computer, however, is less general
than a standard computer but more general than the collection of hard-wired
modules described earlier. The primary benefit of a signal-processing com
puter is that the computations, their sequencing, and their eventual disposi
tion can all be specified by programming.

Speed is gained by taking advantage of repetition and using "mac
roinstructions," both of which allow a high degree of parallelism and pipelin
ing. Speed is also enhanced by the virtual absence of conditional branch-type
instructions, which normally bog down a pipelined machine. One simple
type of macroinstruction can be represented by the expression A = A + B +
CD, where A is an accumulator register and B, C, and D are variable
operands. This single instruction replaces two adds, a multiply, and several
data move instructions in a typical computer yet requires little if any extra
hardware to implement because of the nature of multiplication. Such an
instruction is useful in implementing digital filters and performing the fast
Fourier transform. As a matter of fact, an instruction to perform the calcula
tions involved in evaluating an FFT node pair is well within the realm of
practicality. Other macroinstructions might perform linear interpolation,
maximum-value selection, or table lookup (including argument scaling and
table origin offset), again with a single instruction.

Repetition is denoted by arranging data in blocks and then executing a
particular instruction on the entire block. In this manner, a long, highly
efficient pipeline can be kept filled with data a high percentage of the time.
For example, a parallel multiplier array can be pipelined by placing a set of
registers between each level of 2 X 4 multiplier blocks. Although the overall
input-to-output delay is increased substantially, the throughput rate is in
creased dramatically. It is not unreasonable to obtain a new product every 40
nsec with TTL logic. This is possible because in a nonpipelined parallel
multiplier the top levels settle out first and become idle, while the lower
levels continue to settle. Pipelining allows new data to be given to the top
levels as soon as they settle.

More recently, special signal-processing microprocessors have become avail
able. These differ from conventional microprocessors, such as the 6502 or
68000, in several important respects. First, their internal structure is
comparatively simple, consisting of a program memory, data memory, a
couple of registers, an adder, and a parallel multiplier. Program instructions
are even more primitive than a conventional processor's machine language.
They typically consist of several bit fields that together specify exactly what
each internal element should do during the instruction cycle. Thus, it is
possible, after careful study of the problem, to keep most of the elements
busy doing parallel computation on every instruction. Often the program
instructions must be organized into a single long loop where each trip
through the loop processes one sample of the input signal. Decisions are
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made using conditional execution, in which the instruction either does the
indicated operation or does nothing so that the loop time is constant.
Program memory is usually masked ROM right on the chip, although some
models allow for external program memory, often with a speed penalty. Data
memory is also on-chip and typically rather small, such as 256 words or less.
Processing accuracy ranges from 12 to 16 bits, although multiple precision
operations are possible. Speed is respectable with instruction times of
200-300 nsec being common. Each processing element, including the
multiplier, can perform an operation in one instruction time. In general,
signal-processing microprocessors are usually limited to special function
modules, and use of the on-chip ROM requires high-usage volume to justify
the masking cost.

A special case of the signal-processing computer is the array processor.
These are normally hard-wired or microprogrammed to perform a limited
variety of operations on blocks of numbers at very high speed. Normally they
are interfaced to a host computer as a direct memory access I/O device. In
operation, one or more arrays of numbers are transferred to the array proces
sor followed by a sequence of operation commands. Often, these operations
are at a very high level such as computation of the autocorrelation function,
conversion of an array of complex numbers from polar form to rectangular
form and vice versa, or even a complete FFT. It is not unusual for an array
processor optimized for FFT computation to compute a 1,024-point FFT in
15 msec using 16-bit arithmetic! Such a device can require an entire rack full
of logic, however.

Much sound synthesis computation can be effectively performed by an
array processor. For example, one block of samples can be an audio signal,
while a second block can be an amplitude envelope. An array multiplication
(computes element-by-element product) operation will then return an array
of enveloped samples. Transversal digital filtering is another array-oriented
operation that can be performed efficiently on an array processor.

Even with the tremendous speed improvement offered by signal
processing computers and array processors, there is no guarantee that real
time operation can be sustained during highly complex portions of the score.
Nevertheless, such devices are very useful in composing a complex piece
where subsets of the final score can be performed in real time. They are also
valuable in the final run where what might be hours of computation is
reduced to minutes.

Digital Voice-Per-Board System
The voice modular concept of synthesizer organization is also well

suited to digital implementation. In genelal terms, a voice module is noth
ing more than a frequency generator, static waveshaper, optional dynamic
waveshaper (variable filter), and amplirude controller connected in a series
string as in Fig. 17-22. A one or more channel envelope generator controls
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Fig. 17-22. General voice module

the amplitude and dynamic waveshaper. A very wide variety of new and
existing musical instruments can be simulated by suitable setting of
parameters.

We have seen how digital circuitry does an excellent job implementing
the oscillator and static waveshaper and, when multiplexed sufficiently, does
so at low cost. The dynamic waveshaper can be implemented via Fourier
series (in which case the static waveshaper is not needed) or with a digital
filter. The amplitude-control element is simply a multiplier, whereas en
velope generation can be done by the using system or a dedicated mi
croprocessor.

When cost is an overriding factor, the Fourier series approach is out
(remember that the entire unit diagrammed in Fig. 17-18 is just one voice).
A digital filter and amplitude multiplier would only be practical in a highly
multiplexed voice module and even then the hardware for such "simple"
signal processing would dominate the module's cost, mainly because of the
multiplications required. At this time, analog-variable filters and controlled
amplifiers can do the job cheaper, while their inaccuracies are not significant
in this application. Thus, in a voice module, digital techniques are most
effective for frequency- and static-waveform generation, while analog tech
niques are best for economical processing of the tone.

When hybrid techniques are used in a voice module, multiplexing of
the frequency generator and waveshaper becomes less attractive because the
analog portion of the module cannot be multiplexed. In fact, much current
work in this area is with nonmultiplexed "voice-per-board" modules that can
be built, or purchased, one at a time as need (or budget) dictates. This does
not mean that some logic functions cannot be profitably shared. The crystal
frequency standard, for example, can be shared among modules as can the
interface to the control computer.
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A Hybrid Voice Module

Figure 17-23 is a block diagram of a hybrid voice module that is
practical for an individual to build. Very little is present that has not been
discussed in detail previ:msly. The most interesting feature is a "floating
point" method of specifying the frequency parameter. The method allows a
frequency resolution of better than 1 cent throughout the audio range with a
single 15-bit parameter. The idea is to use the most significant 3 bits of the
parameter to specify an octave and 12 additional bits to specify a frequency
within the octave.

The frequency and waveform generator utilizes variable-sampIe-rate
techniques to minimize the size and resolution required in the waveform
memory. Waveforms as coarse as 4-bit resolution and 16 steps have been
successfully used in similar generators, and while a wide variety of timbres
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Fig. 17-23. Hybrid voice module
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum. (A)
Example waveform with no symmetry and spectrum.

was available, waveforms of very low harmonic content were not really
possible.

The frequency generator consists of an eight-stage prescaler followed by
a 12-bit accumulator divider, which drives an II-bit jitter filter and
waveform aeldress generator. The prescaler divides the 17. 145893-MHz mas
ter clock (= 216 times the frequency of middle C) by 2, 4, 8, . . . 256 under
control of the 3-bit "exponent" in the frequency-control word. The ac
cumulator divider uses the 12-bit "fraction" of the control word to divide by
values nominally between 1.0 and 2.0, although much higher division fac
tors are possible with a loss in resolution. The first 2 bits of the postdivider
function as jitter filter, while the remaining 9 bits participate in waveform
table lookup. The highest fundamental frequency that can be generated is 33
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum
(cant.). (8) Waveform with even symmetry added and spectrum.

kHz, whereas the lowest frequency for full resolution is 65.4 Hz,' although
much lower frequencies are possible with less frequency resolution.

The basic waveform generator is a 256-word X 8-bit read/write mem
ory. It may hold either four different 64-point waveforms, two 128-point
waves, or a single 256-point waveform. To increase flexibility and partially
overcome the small size of the waveform memory, particularly when the
four-waveform mode is selected, symmetry logic has been added. Under the
control of a mode word, normal operation plus 4 degrees of symmetry can be
imposed on the tabulated waveform without changing the memory contents.
Figure 17-24 illustrates the symmetry options and their effect on the shape
and harmonic spectrum of the tabulated wave. Option 1 is called even sym
metry and consists of alternately playing the waveform forward for a cycle and
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum
(cont.). (C) Waveform with odd symmetry added and spectrum.

backward for a cycle. The audible effect is a tone with substantially the same
timbre and brillance but an octave lower in pitch. Odd symmetry is created
when the waveform is alternately played right-side-up for a cycle and
upside-down for a cycle. The resulting tone has the same degree of brilliance
and other characteristics as the original but also has the distinctive hollow
quality of odd order harmonics plus octave-lowered pitch. Even symmetry
may be followed by odd symmetry, which gives a two-octave pitch reduc
tion, odd order harmonics, and a weird timbre reminiscent of balanced
modulation or spectrum shifting. Finally, odd symmetry followed by even
symmetry retains the two-octave drop but removes the hollow quality from
the timbre.
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum
(cant.). (0) Waveform with even symmetry followed by odd sym
metry and spectrum.

Fortunately, this kind of symmetry logic is quite simple. Even sym
metry is created by conditionally inverting the 8 address bits entering the
waveform memory. On even scans though the waveform memory, the ad
dress bits pass unalrered, while on odd scans they are inverted by exclusive-or
gates, thus addressing the table backward. Odd symmetry is similarly im
plemented by conditionally inverting the 8 data bits leaving the memory,
which are assumed to be offset binary encoded. The most significant 2 bits of
the postdivider in conjunction with the symmetry selection determines when
address or data should be inverted.

Figure 17-25 shows a logic schematic of the frequency generator and
static waveform generator. The 17. 14-MHz frequency standard is sent to an
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metry and spectrum.

8-bit prescaler counter built with 7415161 counters. The "15" version is
necessary because a timing anomaly of the standard 74161 prevenrs operation
at high clock frequencies. An eight-input multiplexor (74151) selects one of
the eight divided outputs under the control of three frequency control bits.
The multiplexor output is strobed by a D-type flip-flop to suppress glitches
when the frequency control register is changed.

The prescaler output clocks both the accumulator and the postdivider.
The latter is enabled to count only when the adder in the accumulator divider
generates a carry output. Note that the frequency and mode control registers
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are also clocked by the prescaler output. This prevents its content from
changing at inopportune times and glitching the adders or waveform
generator. Since the 74173 is a synchronous load register, it must be enabled
by the control computer long enough to be loaded by the next clock pulse.
Even with the largest prescaler division rario selected, the load delay is never
more than 15 J.Lsec.

Symmetry logic and waveform partitioning logic has been incorporated
into a single 256-word X 4-bit programmable read-only memory. Three of
the ROM address bits are the three most significant bits of the postdivider,
whereas the remaining five address bits are the waveform mode control bits.
Thus, one of 32 different waveform memory operating modes can be
selected. This allows near!y all combinations of waveform table size (64, 128,
or 256), waveform selection when the smaller sizes are used, and symmetry
to be specified. Two of the ROM output bits control conditional com-

Table 17-2. Waveform Memory Scan Control PROM Pattern

Mode Most significant accumulator bits 2 Mode
Number' 0 1 2 3 4 5 6 7 description

0 03 0 0 0 0 0 0 0 64 points, wave 1, no symmetry
1 0 4 0 4 0 4 0 4 even symmetry
2 0 8 0 8 0 8 0 8 odd symmetry
3 0 C 8 4 0 C 8 4 odd-even symmetry
4 0 4 8 C 0 4 8 C even-odd symmetry
5 1 1 1 1 1 1 1 1 wave 2, no symmetry
6 1 5 1 5 1 5 1 5 even symmetry
7 1 9 1 9 1 9 1 9 odd symmetry
8 1 D 9 5 1 D 9 5 odd-even symmetry
9 1 5 9 D 1 5 9 D even-odd symmetry

10 2 2 2 2 2 2 2 2 wave 3, no symmetry
11 2 6 2 6 2 6 2 6 even symmetry
12 2 A 2 A 2 A 2 A odd symmetry
13 2 E A 6 2 E A 6 odd-even symmetry
14 2 6 A E 2 6 A E even-odd symmetry
15 3 3 3 3 3 3 3 3 wave 4, no symmetry
16 3 7 3 7 3 7 3 7 even symmetry
17 3 B 3 B 3 B 3 B odd symmetry
18 3 F B 7 3 F B 7 odd-even symmetry
19 3 7 B F 3 7 B F even-odd symmetry
20 0 1 0 1 0 1 0 1 128 points, wave 1, no symmetry
21 0 1 4 5 0 1 4 5 even symmetry
22 0 1 8 9 0 1 8 9 odd symmetry
23 0 1 C D 8 9 4 5 odd-even symmetry
24 0 1 4 5 8 9 C D even-odd symmetry
25 2 3 2 3 2 3 2 3 wave 2, no symmetry
26 2 3 6 7 2 3 6 7 even symmetry
27 2 3 A B 2 3 A B odd symmetry
28 2 3 E F A B 6 7 odd-even symmetry
29 2 5 6 7 A B E F even-odd symmetry
30 0 1 2 3 0 1 2 3 256 points, wave 1, no symmetry
31 0 1 2 3 4 5 6 7 even symmetry

Notes: 'Most significant 5 PROM address bits expressed in decimal.
2Least significant 3 PROM address bits expressed in decimal.
'PROM contents expressed in hexadecimal.
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plementers on the waveform memory, while the other two are the most
significant waveform memory address bits. The other six waveform memory
address bits are taken directly from the postdivider.

Although the exact ROM contents will depend on personal preference,
Table 17-2 shows one possibility that works well. The chosen combinations
of waveform size, symmetry, etc., are simply arranged sequentially and
assigned mode numbers from 0 to 31, which corresponds to the 5-bit mode
control input. The only omitted waveform combinations are odd, even-{)dd,
and odd-even symmetry with 256-point waveforms.

Final values from the waveform memory are sent directly to an inexpen
sive 8-bit DAC. From this point forward, the tone will be processed by the
voltage-controlled analog circuitry in Fig. 17-26. The four control voltages
required are generated by a 10 bit DAC that is multiplexed four ways using
sample-and-hold circuits. Note that writing into the waveform memory will
generate intolerable noise and therefore must be done while the amplitude is
set to zero. This is one reason for multiple-waveform capability.

One problem with all variable-sample-rate techniques is the need for a
rracking antialias filter. Without the filter, low-frequency waveforms with
little harmonic content will exhibit a "chime-like" effect due to the high
alias frequencies that are unmasked by the absence of strong high-frequency
harmonics (remember that with variable sample rate, the alias frequencies
themselves are harmonic). The filtering requirement is simplified consid
erably by using one channel of the lO-bit multiplexed DAC to drive a 2050
VCF IC connected as a two-section Butterworth filter. Although the filter
control could be slaved to the frequency control word, the latter's floating
point format complicates matters. Thus, for simplicity and maximum flexi
bility (one may want to under- or over-filter the waveform for special func
tions), the antialias filter is independently controlled. Utilization of the
exponential tuning feature of the 2050 allows a 1,000-to-l tuning range
with a step size so small (0.7%) it is inaudible.

The dynamic waveshaping filter can take on many forms, but here the
simple state-variable type is used. Two channels of the lO-bit multiplexed
DAC are used to control center frequency and Qfactor of the filter. Exponen
tial tuning of both parameters at the rate of 100 steps/octave retains better
than 0.7% resolution over a 1,000-to-l range. A 2-bit word and some analog
switches select the filter's operating mode.

A VCA built with a 3080 gain control element uses the remaining
lO-bit DAC channel to control amplitude in steps of 1/10 dB with a theoret
ical range of 100 dB. Note that any nonlinear distortion in the VCA results
in pure harmonic distortion of the waveform, since only one tone is being
handled.

Interfacing to the control computer is not explicitly shown because of
wide variations in computer types, word lengths, and personal bias. When
updating the frequency control words, however, it is important that all 15
bits change simultaneously. When using an 8-bit host, this requirement is
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taken care of with an additional buffer register much like the vector graphics
oscilloscope interface described in Chapter 11. Writing into the waveform
memory and multiplexed DAC memory should conform with the timing
requirements of the RAM chips used.





18
Music Synthesis

Software

With few exceptions, the entire discussion up to this point has concentrated
on hardware-related items, both digital and analog. The key to a successful
computer music system, particularly one utilizing direct synthesis tech
niques, however, is efficient and easy to use software. Actually in the final
analysis, software is the real frontier in computer music regardless of the
sound generation technique utilized. Little of the preceding hardware discus
sion can be considered "new" and almost certainly none of it is revolutionary.
On the other hand, any given programmer with a suitable knowledge of
music and synthesis techniques can create a music-oriented programming
system significantly different from othets that have been done and may
possibly stage a software breakthrough. This is as it should be, since, after
all, the general-purpose computer was conceived as a finite hardware device
with infinite application possibilities through programming.

Computer music "systems," where a system is the combination of
musical I/O hardware with software "glue," can be separated into two easily
distinguishable groups. The first group covers systems designed for real-time
performance directly from manual input devices such as keyboards and
source-signal analysis. The second group covers "programmed" performance,
either real-time or not, in which the sounds are carefully specified prior to

the actual synthesis. While the former type of system has not been empha
sized in this text, it is of interest to a great many people. In terms of
software, however, such systems tend to be specialized for particular combi
nations of input devices and synthesis techniques. The second type of system
tends to be much more general. Often, these develop along classic software
system lines with the concepts of tasks, events, macros, supervisors, and
languages being integral parts.

In this chapter, programming techniques for the programmed perform
ance type of system will be discussed. In addition, the anatomy of a
simplistic but expandable music software system will be described. It is
immaterial whether the synthesis is performed in real time or not, since the
"score" is definitely prepared outside of real time. In most cases, nonreal-time
delayed playback direct synthesis will be assumed because it is more general

639
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Fig. 18-1. Music software system hierarchy

and, in most respects, more difficult than real-time performance usmg
external synthesis hardware.

Organization of Music Software Systems

Like most nontrivial software systems, a music synthesis software sys
tem is organized into a hierarchy of programs and functions. Figure 18-1
illustrates that at least five distinct levels can be identified ranging from the
lowest level sample-by-sample computations to the highest level operating
system functions. The levels are distinguished by the time scale at which
they operate. The lower levels operate in the micro- and millisecond terms of
individual waveform and envelope samples, while the higher levels operate
on the scale of seconds associated with notes and phrases in the musical
performance. Information flow is generally from the higher levels to the
lower levels, although in some cases signaling in the opposite direction may
be done.
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Often, each level is served by a distinct program or set of subroutines
and in fact the programming languages used may vary from level to level.
Overall a music synthesis software system for programmed performance
operates as an interpretive system that extracts information from the user
prepared score and then acts on the information. The higher levels do the
information extraction and organization, while the lower levels do the actual
execution.

The lowest level synthesis routines, which will be called "Levell"
routines, operate at the sample rate of the final sound. This means that a
single "loop" through the synthesis routine generates only one sample of the
final sound. Basically, the routine accepts sound parameters as input and
generates sound samples as output. The output samples may be mixed with
the output of other Level 1 routines or the same routine with different
parameters. Details of the routine, of course, depend heavily on the synthesis
method chosen. If waveform table lookup is the primary scheme utilized,
then each loop involves the computation of a new lookup address based on a
frequency parameter, actual table lookup based on a waveshape parameter,
amplitude adjustment based on an amplitude parameter, and output based
on a location parameter.

Usually, a Level 1 synthesis routine will generate a "block" of samples
before returning to the next higher level. This saves most of the considerable
overhead associated with call and return linkage and the passing of param
eters. In the hietarchical system being outlined, the parameters of the
sound being synthesized are assumed to be constant throughout the block.
Often, a sample buffer is used to hold one or more blocks of samples. As
samples are computed, they are algebraically added to corresponding samples
in the buffer in a manner analogous to the audio bus of an analog voice
modular system. If stereo or quad is being synthesized, there will be a
distinct buffer for each channel of sound.

In some cases, there may be a "Level 0" routine that processes sound
samples from the buffer before playing them through the DAC or writing
them on a storage device. The usual function of such a routine is the addition
of reverberation or a chorus effect to the sound. Parameters from the upper
levels are often required to control the effects produced, particularly when
they are used in a piece for dramatic contrast.

Level 2 routines operate at what can be called the "envelope sample
rate." This is the rate at which the fundamental parameters needed by the
Level 1 routines are updated and is equal to the audio sample rate divided by
their block size. Rates of 50 sis to 2,000 sis are useful, which corresponds to

update periods of 0.5 msec to 20 msec. Level 2 routines accept envelope
parameters from the higher levels and supply sound parameters to the Levell
routines. Envelope parameter descriptions vary widely, however, and a typical
system may use different Level 2 routines simultaneously according to
envelope type and description.
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For example, amplitude envelope needs are often satisfied by the ADSR
shape, which can be completely described by five parameters. It is the
responsibility of a Level 2 routine to generate samples of the shape as needed,
given the parameters, and then pass these samples as parameters to the Level
1 routines. A different Level 2 routine may produce arbitrary contour shapes
using a piecewise linear or curvilinear approximation. With such approxima
tions, the higher-level routine specifies segment endpoints, the amount of
time spanned by the segment, and the segment shape (linear, concave,
convex, etc.). Yet another might interpolate between tabulated samples of a
shape that could be the result of a source-signal analysis, for example.

Level 3 routines comprise the bulk of the coding in the system. Their
job is to accept music language statements, which are character strings,
extract the information contained in them (or flag an error if the statement is
incomprehensible), and supply parameters to Levels 1 and 2 routines. It is
also responsible for setting up waveform and envelope shape tables, if used,
in response to voicing statements in the score. It is hard to pin down the
exact rare of execution for a Level 3 routine, but it is generally at the rate that
notes are played. This is often called the "syllabic rate" from the correspond
ing level in the hierarchy of routines that comprise a typical speech synthesis
system.

Level 4 programming is a superset of Level 3. In most musIc, there Is a
considerable amount of repetition that when added to the many conventions
of standard music notation results in a conventional score much shorrer than
the corresponding computer score expressed as character strings. The concept
of macroinstructions is useful in taking advantage of these properties of the
score to reduce its size. Basically, a macroinstruction is a command to the
maeroexpander (the Level 4 routine under consideration) to convert a
statement such as "repeat the following three-note sequence eight times" into
eight repetitions of the three-note statement, which are then interpreted by
the Level 3 routine just as if the user had actually written the sequence eight
times. Most macroexpanders allow loops, conditional tests, counters, and
procedure calls (subroutines), suggesting their use as a composition tool as
well.

Even though they are not really part of the music software system,
operating system functions on LevelS have been included for completeness.
These are the routines that allow the user to prepare arrd edit the score file,
link and load the music system programs into memory, and control the
reading of the score file and writing of the sample file in a delayed playback
system. Depending on the installation, the operating system may range from
a paper tape editor and loader to a full disk operating system. In a loosely
structured music software system, the operating system is vital in its role of
maintaining the data base.

Implementation of the Leoels

Current thinking in computer science dictates that each of these levels
be independently implemented as a separate program and linked together
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only for execution. In fact, each level should probably be broken down
further into many subroutines. While this book is not the place to discuss
modular and structured programming practices, it is dear that the major
levels need not all be coded in the same programming language. In fact, the
optimum balance between programming effort and music program speed
requires that different languages be used on different levels.

There is a little question that Levels 0 and 1 should be implemented in
assembly language for the machine being used. The reason, of course, is that
they execute at the sound sample rate of 8 ks/s to 50 ks/s. Furthermore, for
almost any personal computer, fixed-point (integer) arithmetic must be used
for the sample calculations. Most programmers are unfamiliar with the fine
points of fixed-point computation, having been spoiled by the floating-point
capabilities of large mainframe computers or high-level languages. Since
integer computation is vital to acceptable speed with microcomputers, it will
be discussed in detail later.

In isolated instances, the lower-level routines have actually been im
plemented in the microcode of a microprogrammed minicomputer. This essen
tially means that new instructions are added to the computer's repertoire that
facilitate sample computation. What is actually happening is that the inter
nal machine registers and logical elements are being directly manipulated
by the microcode at maximum speed without the overhead of reading in
structions from main memory. Although two to three times faster,
microprogramming is even more obscure and difficult than assembly pro
gramming. Also, only the larger minicomputers allow user microprogram
mIng anyway.

Dedicated hardware such as was discussed in the previous chapter can
be thought of as replacing Level 1 routines. If the dedicated hardware is
intelligent, Level 2 may also be replaced. In computer-controlled analog
systems, voltage-controlled oscillators, amplifiers, and filters perform the
functions of Level 1 routines, while envelope generators do the Level 2
functions.

High-Level Languages

Level 3 routines are best implemented in a higher-level language,
particularly in a delayed playback system. This level of the music system
typically handles a relatively small volume of data but does a lot of character
string scanning, data table maintenance, and decision making. Thus, only a
small portion of the computational effort is spent in these routines, while a
large portion of the programming effort is sunk into them. High-level
languages tend to minimize the programming effort required while simul
taneously making the programs easier to read and modify (if adequately
commented). High-level languages for microcomputer systems almost invar
iably have features thar make it easy to link to assembly level routines.

The natural question, of course, is: Which high-level language should
be used in the upper levels of a music software system? Like microprocessor
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selection itself, language preference tends to be more a matter of personal
experience (and taste) than scientific weighing of virtues and drawbacks. The
following, therefore, amounts to nothing more than a summary of the au
thor's biases, which, hopefully, are shared by a majority of readers.

The primary virtue of BASIC, of course, is its nearly universal im
plementation on microcomputer systems. Drawbacks are many but most
serious are the lack of a true subroutine capability and a restricted variable
naming convention. Its formal mechanism for linking to assembly language
leaves much to be desired, although tricks for enhancing it abound. These
shortcomings make writing and implementation of large programs in BASIC
more difficult than necessary. Nevertheless, BASIC is excellent for getting
started, and after all, has been used in programming examples so far.

FORTRAN is the grandaddy of programming languages and is now
available on some microcomputers. For musical purposes, it is very similar to
BASIC but with subroutine and naming restrictions removed. It is, however,
somewhat weaker in the handling of character string data than BASIC is.
Since FORTRAN is compiled, it is faster than a BASIC program, which is
usually interpreted. The best-known direct computer synthesis program,
MUSIC V, is implemented in FORTRAN but is far too big and dependent
on a big mainframe operating system to run on a microcomputer without
extensive modification. FORTRAN would be a good choice for someone
already familiar with it but should probably be bypassed by newcomers in
favor of a more "modern" language.

COBOL, the most widely used big-computer language, is unsuitable
for a music software system.

APL may be available on some microcomputers. While it is an excel
lent problem-solving language for those adept in its use, it is an extremely
self-contained, "isolationist" language. This means that communication
with the operating system, assembly language programs, and data files is
poor or nonexistent. While not suitable for a music performance system, it
may be useful in exploring computer composition techniques,

The remaining are called "block-structured" languages because of the
way that statements are grouped together and the mechanism for variable
storage allocation. These run the range in sophistication from integers-only
subsets such as PLiM to overgrown monsters like ADA. Pascal, or its latest
incarnation, Modula-2, is a fairly well-known language of this type that is
extensively used in computer science education, largely due to the efforts of
the University of Southern California at San Diego (UCSD), who first
implemented it on a microcomputer. Many students are introduced to Pascal
as their first formal language (if they had not encountered BASIC on their
own earlier). A few years ago, Pascal promised to become the dominant
language for large microcomputer software systems such as synthesis
packages. This has not happened because of the lack of efficient optimizing
compilers and largely unspecified methods of I/O and linkage with the
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operating system. The latter defect in turn begat a variety of incompatible
solutions to the problem. Although Modula-2 has addressed this in the
language specification, it is probably too late to help.

C is another structured language born in the commercial world and is
probably the most used in large microcomputer software projects. It was
developed at Bell Laboratories and is often seen in conjunction with UNIX, a
very large time-sharing operating system (UNIX is in fact written in C). It is
available as a stand-alone language for most microcomputer systems from the
Z-80 and 6502 up to the 68000. In fact, a large and comprehensive delayed
playback music synthesis system written in C (the CARL project at UCSD) is
readily available and will be described in the next chapter. As mentioned in
Chapter 5, C has structural features that allow for highly efficient object code
generation-if the compiler takes advantage of them. In particular, the
68000 is a good match for the requirements of C because of its unsegmented
memory addressing and numerous registers capable of holding 32-bit
"double" values. The sos6 family (SOSS, SOlS6, S02S6) is not as good
because of the lack of those same features. In particular, their segmented
addressing will either impose a 64K limit on the size of arrays, which could
be a problem in musical applications, or will exact a severe space and time
penalty if the compiler attempts to overcome it. A big advantage of C is that
I/O and system call conventions are written into the language specification
and thus differ little from one implementation to the next. A potential
drawback of C is its often cryptic appearance, which makes adequate
comments in programs essential.

One programming language property that is taking on increasing
significance is portability. At the current rate of microprocessor evolution, it
is quite likely that the computer being used will become obsolete in the
course of music system development (this has happened three times to the
author). Parts of the system implemented in a high-level language should be
easily transportable to a new system if required. C promises to be very good
in this respect. Although the low-level assembly language routines are not
portable, they can usually be kept small, thus minimizing the effort needed
to reimplement them on different hardware.

Low-Level Programming Techniques

Because they are executed so much, low-level sample computation
routines completely dominate the speed characteristics of a direct computer
synthesis system. Arithmetic operations in turn dominate the execution time
of these low-level routines, particularly on a microcomputer. This is in stark
contrast with most general-purpose assembly level programming in which
arithmetic instructions are among the least used. Unless the reader has access
to a mainframe or supermicrocomputer with floating-point hardware, it is a
sure bet that these arithmetic operations will be of the fixed-point variety.
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Even when floating-point hardware or subroutines are available, rheir speed is
likely to be substantially less. The techniques of fixed-point computation are
rapidly becoming an obscure art, however. In the next few pages these will be
described to the depth necessary for use in digital signal-processing
applications. Reasonable familiarity with the binary number system will be
assumed. If the reader lacks such knowledge, introductory chapters of nearly
any book on microprocessor programming can provide the background.

Adequately illustrating such a discussion requires an example micro
processor. Although Chapter 5 strongly suggested that the 68000 or other
16-bit machine should be used for direct synthesis applications, we will be
using the 6502 microprocessor here for illustration. Such a choice can be
rationalized in a couple of ways. First, programming just about any other
choice would be easier, since the 6502 does not have hardware multiply or
divide or even double byte add and subtract. Thus, understanding the given
examples implemented on a 6502 will make similar implementation on a
better machine seem simple in comparison. Another reason is that the 6502
is the basis of a great number of very inexpensive microcomputer systems.
Later, the FFT subroutine presented in BASIC in Chapter 13 will be
translated into 68000 assembly language to illustrate how integer arithmetic
can be used in that type of algorithm on a processor that has better arithmetic
capability.

The examples would not be very interesting unless actual synthesis and
analysis experiments can be performed. A-to-D and D-to-A boards are
available for most microcomputers, although they are seldom optimized for
audio applications. Micro Technology Unlimited, however, has audio DAC
and ADC systems at both the 8- and 16-bit levels that can be easily interfaced
to most computers. The 8-bit units are designed for 8-1O-ks/s sample rates
and already have the necessary filters included. While these are definitely not
hi-fi, they are indeed capable of illustrating all of the synthesis, modifica
tion, and analysis techniques described in previous chapters. Most experi
mentation will require a large memory buffer to hold a few seconds of
sampled sound, although some real-time operations are possible. A 32K
memory, for example, will hold 3-4 sec of sound at the sample rate for which
these boards were designed. The 16-bit units, however, are truly hi-fi and
include their own 32K sample buffer to simplify I/O programming as well as
stereo and plug-in filter features. Of course, any of the circuits given in
Chapters 7 and 12 can be used to build an audio DAC or ADC at considerable
savings over commercial units.

Properties ofBinary Arithmetic

Before plunging into programming examples, it is wise to review the
characteristics of binary ari thmetic that are important to signal processing.
We will be dealing with two fundamentally different kinds of numbers,
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signed twos-complement numbers and unsigned numbers. In an unsigned
number, the weight of each bit is two raised to the bit number power. Thus,
a single byte in the 6502 can represent any number from 0 through +25 5.
Unsigned numbers are therefore always positive. In programming, they are
normally used to represent addresses but in signal processing they are most
useful as multiplying coefficients in digital filters, etc. Besides doubled
dynamic range compared with signed numbers, the use of unsigned numbers
simplifies the associated multiplications.

Signed twos-complement numbers are probably more familiar to most
readers. The bit weights are the same as in unsigned numbers except that bit
7 (the leftmost) has a weight of -128. The number is negative only if this
bit is a 1; thus, it is called the sign bit. The remaining bits are called
magnitude bits, although it must be remembered that they have been com
plemented in the case of a negative number. A signed single-byte number
can therefore represent quantities between -128 and + 127. In signal proc
essing, signed numbers are used to represent audio signal samples that
invariably swing positive and negative.

A signed twos-complement number can be negated, that is, N converted
to -N or -N converted to N', by complementing every bit in the number
and then incrementing the result by one. This will not work for the number
-128, however, because the increment operation overflows and the result
becomes -128 again. Since negation will be required often in signal process
ing, mere existence of the largest negative number in a sample stream may
cause an overflow that gives rise to a full-amplitude noise spike. Avoidance of
such overflows usually requires an extra bit of precision in the numbers that
may propagate when calculations are chained together. Thus, it is wise to
prevent the occurrence of the largest negative number in synthesized samples
and to search and correct ADC data by converting any - 128s to - 127
(which amounts to slight clipping rather than a full-scale noise spike) or the
equivalent when other word lengths are used.

Fixed-point arithmetic is often equated with integer arithmetic because
memory addresses are usually involved. In signal processing, fractions and
mixed numbers are more common. There are at least two ways to think about
such numbers. One involves the concept of a scale factor. The numbers
being manipulated are considered to be the product of the actual quan
tity and a scale factor that the programmer keeps track of. The scale factor is
chosen so that when it multiplies the numbers being handled, the results are
pure integers, which are "compatible" with integer arithmetic. In the course
of a chained calculation, the scale factors change so as to maintain the largest
range of integers possible without overflowing the chosen word lengths.

The other method, which will be used here, involves the concept of a
binary point. The function, meaning, and consequences of binary-point posi
tion are the same as rhey are with decimal points and decimal arithmetic.
The microcomputer can be likened to an old mechanical calculator or a slide
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rule in which raw numbers are fed in and raw answers come out. It is the
operator's responsibility to place the decimal point. Binary integers have the
binary point to the right of the magnitude bits. Binary fractions have the
binary point to the left of the magnitude bits. For unsigned numbers, this
means to the left of all bits, while signed numbers have the point between
the sign bit and the rest of the bits. Mixed numbers can have the binary point
anywhere in between.

A good way to think of mixed binary numbers is to consider their
resolution, which is the weight of the least significant bit, and their range,
which is the largest number that can be represented. We will also be referring
to their integer part, which is the string of bits to the left of the point, and
their fractional part, which is the string to the right. Thus, a signed number
with the binary points between bits 3 and 4 as illustrated in Fig. 18-2 has a
resolution of 1/16 or 0.0625 and a range of 127/16 or 7.9375 (which can be
called 8 for convenience). The integer part is bits 4-6 and the fractional part
is bits 0-3. Integers, of course, have a resolution of unity and a range
dependent on word size, while fractions have a range just short of unity and a
resolution determined by word size.

The last property of binary numbers is word size or simply the number
of bits allocated to the representation of the number. Arithmetic word sizes
are usually chosen to be integer multiples of the computer's word size, or in
the case of a sophisticated machine, a multiple of the smallest directly
addressable dara element, usually an 8-bit byte. When the word size of a
number is greater than the word size of the machine, the number is said to be
a double-precision or multiple-precision number. Thus, with the 6502 example
machine, 16-bit numbers are double-precision quantities, 24 birs is triple
precision, etc.

Before the advent of microprocessors, visualization of multiple preci
sion numbers on paper and in memory was a simple, unambiguous task. A
double-precision number, for example, would be visualized as consisting of a
high order, more significant parr and a low order, less significant parr. When
written on paper, it is natural and even necessary to write the high order parr
to the left of the low order part. If one listed a portion of memory containing
the number, it would be reasonable to expect it to look the same as it did on
the notepad. However, many of the most popular microprocessors (6502
included) handle double-precision unsigned numbers (namely memory ad
dresses) low byte first! Thus, the address bytes of instructions and indirect
address pointers all appear on a memory dump backward. Furrhermore, since
address arithmetic is done one byte at a time, the programmer must be aware
of this to get these operations done right.

The question, then, is: Should all numbers be stored and manipulated
backward or just addresses) The author has tried it both ways and found
neither to be completely satisfactory on the 6502. However, in signal
processing work, it is recommended that all numbers except addresses be
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SIGNED INTEGER
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= - 3.3125
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SIGNED FRACTION

0

0 1 = - 0.4140625

Fig. 18-2. Binary point placement

stored in natural order. One reason is that data arithmetic will predominate,
which means that confusion will be only partial rather than total. The other
reason is that 16- and 32-bit microprocessors, such as the 68000, directly
handle the word sizes of interest-in natural order.

Addition and Subtraction

At this point, we are ready to discuss the effect of arithmetic operations
on the various kinds of numbers. We will be discussing the four fundamental
arithmetic operations (addition, subtraction, multiplication, and division)
and their effect on the word size and binary point placement in the result.
Rules governing mixed operands such as signed/unsigned and different word
sizes will also be discussed.

Addition is the most fundamental operation and is usually considered
the simplest. The operands of an addition are not distinguished from each
other and are simply called addends. The following is a summary of the rules
of binary addition of signed numbers:

1. The binary points of the addends must line up before addition unless
scaling (multiplying or dividing by a power of 2) of one addend is
specifically desired.

2. The range of the result can be up to twice as large as that of the widest
range addend (one extra bit added to the integer part) and the resolu
tion of the result is equal to that of the highest resolution addend (no
change in the fractional part).

In heeding the first rule, it may be necessary to shift one of the addends
with respect to the other. When shifting left, zeroes should be brought in
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from the right. When shifting right, bits equal to the sign bit must be
brought in. Adding entire bytes to the left of a short number so that it can be
added to a long number is essentially equivalent to shifting right so these
bytes must be filled with sign bits. If an unsigned number is to be added to a
signed number, it is usually necessary to provide a high order extension of
the signed number because of the greater range of the unsigned number.

Rule 2 simply says that to avoid overflow when unknown numbers are
added up, it is necessary to allow for sums larger than the addends. When a
string of equal-length numbers is being added, the word size of the final sum
will not exceed 10gzN more bits than the word sizes of the addends, where N
is the number of numbers added. If it is known that the addends do not cover
the full range allowed by their word size, then the word size allowed for the
sum may be less than that given by the rule.

The usable resolution of the sum may be less than the resolution given
by Rule 2. If the addend with less resolution is an audio signal or other
"approximate" value, the usable resolution of the result cannot be any greater
because of quantization noise.

In subtraction, there is a distinction between the operands. When done
on paper, the top number is called the minuend and the number being
subtracted is called the subtrahend. Twos-complement subtraction is gener
ally accomplished by negating the subtrahend and adding the result to the
minuend. This may be done either by a hardware subtract instruction or by
actually complementing the subtrahend and addi ng. Since signed operands

were assumed for addition anyway, the properties and rules for subtraction
are the same as for addition.

Often, such as in digital filters, a quantity of numbers that partially
cancel each other may be added up. A property of twos-complement arithme
tic is that the order of addition/subtraction is immaterial. This is true even if
intermediate sums overflow! This is a handy property to keep in mind
because it may allow the word size of intermediate results to be the same as
the addends.

Multiplication

The rules of binary multiplication are quite different from addition and
subtraction. In particular, there is none governing location of the binary
points of the operands. Those governing the range and resolution of the
result are as follows:

1. The range of the result is the product of the ranges of the operands.
This means that the number of magnitude bits in the integer part of
the product is the sum of the number of magnitude bits in the integer
parts of the operands.

2. The resolution of the result is the product of the resolutions of the
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operands. This means that the number of fraction bits in the product is
the sum of the number of fraction bits in the operands.

From the foregoing we can conclude that if the operands are of equal
length, the result length is twice as great. Actually, it is one bit shorter when
both operands are signed (provided that largest negative numbers are
avoided). It is also easy to see that when both operands are fractions that the
range of the result is unchanged, although the resolution is increased. Thus,
fractional arithmetic is attractive because a chain of multiplications will not
increase the range of numbers to be handled. Note that, if both operands are
signed binary fractions, the binary point in the result will be two positions to
the right of the sign bit of the result, that is, the sign bit will be duplicated.
Thus, one would normally shift the double-length fractional product left one
position before using it.

One may be tempted to conclude that the excess resolution that may
result can always be discarded without any loss of significant data. This is not
generally true if one of the factors is small. SiN ratio will be lost if the excess
resolution is discarded in such a situation, but the absolute noise level
relative to full scale will remain constant. Ideally, multiplication and other
arithmetic operations are done with word lengths longer than the initial
input samples or final output samples in order to eliminate "computational
noise" from the results. Of course, this must be tempered by a possible
increase in computation time, particularly when using machines like the
6502.

Division

Division is by far the most difficult fixed-point arithmetic operation to
control. Fortunately, it is not needed very often in signal-processing work
and in many of the remaining cases it can still be eliminated. Division
operands must be carefully distinguished. The numerator is called the dil!i
dend and the denominator is called the divisor. Like multiplication, there is
no restriction on the position of the operands' binary points, although there
is definitely a practical restriction. Unlike multiplication, nothing concrete
can be said in general about the range and resolution of a division result. This
should be obvious, since division by very small numbers gives rise to a very
large quotient, while for most operands there is no limit to how far the
fractional part of the quotient can be carried.

Fixed-point binary division is customarily done with a dividend word
length precisely double the divisor word length. The quotient is restricted to
a word length equal to the divisor. With these restrictions, the rules of
binary division are as follows:

1. The upper half of the dividend must be numerically smaller than the
numerical value of the divisor to avoid overflow.
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2. The range of the quotient is equal to the range of the dividend divided
by the range of the divisor. This means that the number of bits in the
integer part of the quotient is equal to the number of integer bits in the
dividend minus the number of integer bits in the divisor.

3. The resolution of the quotient is equal to the resolution of the dividend
divided by the resolution of the divisor. This means that the number of
fraction bits in the quotient is equal to the number of fraction bits in
the dividend minus the number of fraction bits in the divisor.

Examination of these rules reveals that one just can't win with division.
For example, if both operands have the same word size and both are fractions,
the one used for the dividend must be padded on the right by N zeroes,
where N is the fraction size desired in the quotient. Thus, if the desired
resolution is the same as the operands, the dividend must also be smaller than
the divisor so that the range of the result is less than unity. The only way to
cover all possible combinations (except a zero divisor) of two N~bit fractional
operands without overflow or loss of resolution is to use a dividend 4N bits
long and a divisor 2N bits long. The dividend used in the arithmetic opera
tion would be the actual N dividend bi ts padded on the left by N zeroes (or
sign bits if signed) and padded on the right by 2N zeroes. The divisor would
similarly be padded by N zeroes on the right. The 2N quotient bits then
allow N range bits (N -1 for signed operands) and N resolution bits. Fortu
nately, when division is needed in signal processing (usually for computing a
scale facror), the values of the operands will be known well enough to avoid
trouble.

Required Arithmetic Instructions

Regardless of whether hardware instructions are available or an arith
metic subroutine package is being used, there is a certain "complete set" of
operations that is needed for straightforward signal-processing computation,
Such a set is usually built around a particular word length. When hardware
instructions are available, this is usually the machine's accumulator word
length. Some of the operations produce or process double words, which then
require a pair of registers to hold. In fact, classic single-accumulator comput
ers usually had an accumulator extension or multiplier/quotient register,
which was used to hold the low order half of double words.

For illustrating a fixed-point arithmetic package with the 6502, a word
length of 8 bits will be used for simplicity, although 16 bits would be more
practical in high-quality synthesis. Since the 6502 has very few registers, two
bytes are set aside in memory for a double-word accumulator. The other
operand if singl,e byte or its address if double byte is passed to the subroutine
in a register, Following is a list of the arithmetic operations and the operand
word lengths that would be expected in such a package:



MUSIC SYNTHESIS SOFTWARE 653

1. Double-word load accumulator
2. Double-word store accumulator
3. Double-word addition to accumulator
4. Double-word subtraction from accumulator
5. Double-word negation of accumulator
6. Double-word left shifting of accumulator
7. Double-word signed and unsigned right shifting of accumulator
8. Unsigned multiplication 8 X 8 = 16
9. Signed multiplication (uses unsigned multiplication as a subroutine)

8 X 8= 15
10. Unsigned division 16/8=8
11. Signed division (uses unsigned division as a subroutine) 15/8 =8

Double-word addition is necessary for forming sums of products that will in
general be double-word values. Shifting operations are needed for scaling. Of
course, single-word addition, subtraction, negation, and shifting are also
necessary. It is often helpful to have a "load with sign extend" operation,
which is used to translate a single-word signed value into a double-word one.
It is surprising how many computers, both micro and mini, that claim to
have complete hardware arithmetic capability fail to include all of these
necessary operations.

A Fixed-Point Arithmetic Package
for the 6502

Here we will briefly describe the 8-bit arithmetic package for the 6502
shown in Fig. 18-3. A pseudo-16-bit accumulator is assumed to exist in
page zero memory at location ACCH for the high order half and ACCL for
the low order half. All subroutines that require a double-byte second operand
expect the address of the high-order half of the operand, which must be in
page zero, to be in the X index register. Single-byte second operands are
expected to be in the hardware accumulator.

Load and store are trivially simple. Although they can be easily done by
in-line code in the calling program, using the subroutines will make a
signal-processing program easier to read and later convert to a machine with
hardware to replace this package.

Double-precision addition and subtraction are equally straightforward.
Both process the low bytes first and then use the carry flag to transmit carry
information to the high bytes. Note that the 6502 does not have add and
subtract in which the carry flag is ignored. Therefore, it is frequently neces
sary to clear or set the carry before an addition or subtraction, respectively.
Negation is performed by subtracting the pseudoaccumulator from zero,
which turns out to be faster than complementing all of the bits and then
incrementing.
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0002 0000 8-BIT ARITHMETIC PACKAGE FOR THE 6502
0003 0000 All ROUTINES UTILIZE A 16 BIT PSEUDO ACCUMULATOR IN PAGE O.
0004 0000 ACCH IS THE HIGH BYTE AND ACCl IS THE lOW BYTE OF THE PSEUDO
0005 0000 ACCUMULATOR.
0006 0000 ROUTINES REQUIRING A DOUBLE BYTE SECOND OPERAND EXPECT X TO
0007 0000 POINT TO THE HIGH BYTE OF THE OPERAND WHICH IS ASSUMED TO BE
0008 0000 STORED ON PAGE ZERO. ROUTINES REQUIRING A SINGLE BYTE SECOND
0009 0000 OPERAND EXPECT IT TO BE IN THE HARDWARE ACCUMULATOR.
0010 0000 All ROUTINES PRESERVE X, THEY MAY DESTROY A AND Y.
0011 0000
0012 0000 *= $Bo STORAGE AREA FOR ARITHMETIC PACKAGE
0013 oOBO ACCH *::::*+ 1 PSEUDO ACCUMULATOR HIGH BYTE
0014 00B1 ACCl *=*+ 1 PSEUDO ACCUMIJlATOR lOW BYTE
0015 00B2 TEMPI *=*+ 1 TEMPORARY STORAGE FOR UNSIGNED MPY/DIV
0016 00B3 TEMP2 *=*+ 1 TEMPORARY STORAGE FOR SIGNED MPY/DIV
0017 00B4
0018 00B4 *= $1000
0019 1000 DOUBLE lOAD
0020 1000 B500 Dlo LDA O,X MOVE HIGH BYTE FROM ADDRESS IN X
0021 1002 85BO STA ACCH TO PSEUDO ACCUMULATOR
0022 1004 B501 lDA 1,X MOVE lOW BYTE FROM ADDRESS IN X PLUS 1
0023 1006 85B1 STA ACCl TO PSEUDO ACCUMULATOR
0024 1008 60 RTS RETURN
0025 1009
0026 1009 DOUBLE STORE
0027 1009 A580 oST lOA ACCH MOVE HIGH BYTE FROM PSEUDO ACCUMULATOR
0028 100B 9500 STA O,X TO ADDRESS IN X
0029 1000 A5B1 LDA ACCl MOVE lOW BYTE FROM PSEUDO ACCUMULATOR
0030 100F 9501 STA l,X TO ADDRESS IN X PLUS 1
0031 1011 60 RTS RETURN
0032 1012
0033 1012 DOUBLE ADO
0034 1012 A5B1 DADO lOA ACCl ADD lOW PART OF PSEUDO ACCUMULATOR
0035 1014 18 CLC TO lOW BYTE POINTED TO BY X+1
0036 1015 7501 ADC 1,X
0037 1017 85B1 STA ACCl AND PUT RESULT IN PSEUDO ACCUMULATOR
0038 1019 A5BO LOA ACCH ADO HIGH PART OF PSEUDO ACCUMULATOR TO
0039 101B 7500 ADC O,X HIGH BYTE POINTED TO BY X
0040 1010 85BO STA ACCH USING CARRY FROM lOW PARTS
0041 101F 60 RTS RETURN
0042 1020
0043 1020 DOUBLE SUBTRACT
0044 1020 A5B1 OSUB LOA Acel SUBTRACT lOW BYTE POINTED TO BY X
0045 1022 38 SEC FROM lOW PART OF PSEUDO ACCUMULATOR
0046 1023 F501 SBC 1, X
0047 1025 85B1 STA ACCl AND PUT RESULT IN PSEUDO ACCUMULATOR
0048 1027 A5BO lOA ACCH SUBTRACT HIGH BYTE POINTED TO BY X
0049 1029 F500 SBC O,X FROM HIGH PART OF PSEUDO ACCUMULATOR
0050 102B 85BO STA ACCH USING BORROW FROM lOWER PARTS
0051 1020 60 RTS RETURN
0052 102E
0053 10ZE DOUBLE NEGATE
0054 102E 38 DNEG SEC INITIAllY SET CARRY FOR SUBTRACTION
0055 102F A900 lOA #0 NEGATE ACCH,ACCl BY SUBTRACTING
0056 1031 E5B1 SBC ACCl IT FROM ZERO.
0057 1033 85B1 STA ACCl lOW BYTE FIRST
0058 1035 A900 lOA #0
0059 1037 E5BO SBC ACCH
0060 1039 85BO STA ACCH THEN THE HIGH BYTE
0061 103B 60 RTS RETURN
0062 I03C
0063 103C DOUBLE SHIFT lEFT
0064 103C 06B1 oSHl ASl ACCl SHIFT lOW BYTE LEFT AND PUT OVERFLOW BIT
0065 103E IN CARR Y FLAG
0066 103E 26BO ROl ACCH SHIFT HIGH BYTE lEFT BRINGING IN OVERFLOW
0067 1040 BIT
0068 1040 60 RTS RETURN
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0069 1041
0070 1041 DOUBLE SHIFT RIGHT UNSIGNED
0071 1041 46BO DSHR LSR ACCH SHIFT HIGH BYTE RIGHT AND PUT UNDERFLOW
0072 1043 BIT IN CARRY FLAG
0073 1043 66Bl ROR ACCl SHIFT LOW BYTE RIGHT BRINGING IN
0074 1045 UNDERFLOW BIT
0075 1045 60 RTS RETURN
0076 1046
0077 1046 DOUBLE SHIFT RIGHT SIGNED
0078 1046 A5BO DSHRS LOA ACCH FIRST COPY THE SIGN BIT INTO THE CARRY
0079 1048 2A ROL A FLAG
0080 1049 66BO ROR ACCH THEN SHIFT HIGH BYTE RIGHT BRINGING IN
0081 104B 66Bl ROR ACCL COPY OF SIGN BIT AND CONTINUE AS ABOVE
0082 1040 60 RTS RETURN
0083 104E
0084 104E UNSIGNED 8X8 MULTIPLY
0085 I04E ENTER WITH MULTIPLICAND IN ACCUMULATOR
0086 104E ENTER WITH MULTIPLIER IN ACCl
0087 I04E EXIT WITH DOUBLE LENGTH PRODUCT IN ACCH
0088 104E AND ACCL
0089 104E 8582 UMULT STA TEMPI SAVE MULTIPLICAND
0090 1050 A900 UMULTO LDA #0 ZERO UPPER PRODUCT
0091 1052 85BO STA ACCH
0092 1054 A009 LOY #9 SET CYCLE COUNT
0093 1056 18 CLC INITIALLY CLEAR CARRY
0094 1057 66BO UMULTI ROR ACCH SHIFT PSEUDO ACCUMULATOR RIGHT 'BRINGING
0095 1059 66Bl ROR ACCL IN ANY OVERFLOW FROM PREVIOUS ADD AND
0096 105B SH IFTI NG OUT NEXT MULTIPLIER BIT
0097 105B 88 DEY DECREMENT CYCLE COUNT AND
0098 105C FOOC BEQ MULTRT RETURN WHEN DONE
0099 lOSE 90F7 BCC UMUl TI SKIP ADDITION IF MULTIPLIER BIT WAS ZERO
0100 1060 A5BD LOA ACCH ADD SAVED MULTIPLICAND TO UPPER BYTE
0101 1062 18 CLC OF PSEUDO ACCUMULATOR
0102 1063 65B2 ADC TEMPI BEING CAREFUL TO PRESERVE ANY POSSIBLE
0103 1065 85BO STA ACCH CARRY OUT
0104 1067 4C5710 JMP UMULTI GO SHIFT PSEUDO ACCUMULATOR
0105 106A 60 MULTRT RTS
0106 106B
0107 106B UNSIGNED 16/8 DIVIDE
0108 106B ENTER WITH 16 BIT DIVIDEND IN ACCH,ACCL
0109 106B ENTER WITH DIVISOR IN REGISTER·A
0110 106B RETURN WITH QUOTIENT IN ACCL
0111 106B RETURN WITH REMAINOER IN ACCH
0112 106B DIVISOR MUST BE LARGER THAN ACCH TO
0113 106B AVOID OVERFLOW
0114 106B 85B2 UDIV STA TEMPI SAVE DIVISOR
0115 1060 A008 LOY #8 SET CYCLE COUNT
0116 106F 06Bl ASL ACCl SHIFT DIVIDEND LOW
0117 1071 26BO UOIVI ROL ACCH SHIFT DIVIDEND HIGH
0118 1073 800B 8CS UDIV2 JUMP IF A 1 SHIFTED OUT OF DIVIDEND
0119 1075 A5BO LOA ACCH SUBTRACT DIVISOR FROM ACCH
0120 1077 38 SEC
0121 1078 E5B2 SBC TEMPI
0122 107A 9010 BCC UDIV4 JUMP TO SHIFT AND COUNT IF UNDERFLOW IS
0123 107C IMMENIENT, CARRY IS OUOTIENT BIT
0124 107C 85BO STA ACCH STORE DIFFERENCE IF NO UNDERFLOW, CARRY
0125 107E FLAG IS OUOTIENT BIT
0126 107E BOOC BCS UDIV4 GO TO SHIFT AND COUNT
0127 1080 A5BO UDIV2 LOA ACCH SUBTRACT DIVISOR FROM ACCH
0128 1082 E5B2 SBC TEMPI
0129 1084 BOOS BCS UDIV3 SKIP IF UNDERFLOW IMMENIENT
0130 1086 85BO STA ACCH STORE DIFFERENCE IF NO UNDERFLOW
0131 1088 38 SEC OUOTIENT BIT IS A ONE
0132 1089 BOOI BCS UDIV4 GO TO SHIFT AND COUNT

Fig. 18-3. Signal-processing math package for the 6502
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0133 108B 18 UOIV3 ClC QUOTIENT BIT IS A ZERO
0134 108C 26B1 UDIV4 ROl ACCl SHIFT DIVIDEND lOW PART
0135 108E 88 DEY COUNT ITERATIONS
0136 108F DOEO BNE UDIV1 lOOP IF NOT DONE
0137 1091 60 RTS OTHERWISE RETURN
0138 1092
0139 1092 TWO QUADRANT MULTIPLY
0140 1092 USAGE IS THE SAME AS WITH UMUlT
0141 1092 PSEUDO ACCUMULATOR CONTAINS THE SIGNED
0142 1092 FACTOR AND THE MACHINE ACCUMULATOR
0143 1092 CONTAINS THE UNSIGNED FACTOR
0144 1092 85B2 MUlT2Q STA TEMPI SAVE UNSIGNED MULTIPLICAND
0145 1094 A5B1 lDA ACCl SAVE SIGNED MULTIPLIER
0146 1096 85B3 STA TEMP2
0147 1098 205010 JSR UMUlTO DO AN UNSIGNED MULTIPLICATION
0148 109B A5B3 lOA TEMP2 TEST SIGN OF MULTIPLIER
0149 1090 1007 BPl MULT2R GO RETURN IF POSITIVE
0150 109F A5BO lDA ACCH SUBTRACT MULTIPLICAND FROM HIGH PRODUCT
0151 10Al 38 SEC
0152 10A2 E5B2 SBC TEMPI IF MULTIPLIER IS NEGATIVE
0153 10M 85BO STA ACCH
0154 10A6 60 MUlT2R RTS RETURN
0155 10A7
0156 10A7 SIGNED MULTI PlY
0157 10A7 USAGE IS THE SAME AS WITH UMUlT
0158 10A7 85B2 SMUlT STA TEMPI SAVE MULTIPLICAND
0159 10A9 A5Bl lOA ACCl SAVE MULTIPLIER
0160 10AB 85B3 STA . TEMP2
0161 lOAD 204EI0 JSR UMUl T 00 AN UNSIGNED MULTIPLICATION
0162 lOBO A5B2 lOA TEMPI TEST SIGN OF MULTIPLICAND
0163 10B2 1007 BPl SMUl T1 JUMP AHEAD IF POSITIVE
0164 10B4 A5BO lOA ACCH SUBTRACT MULTIPLIER FROM HIGH PRODUCT
0165 10B6 38 SEC IF MULTIPLICAND IS NEGATIVE
0166 10B7 E5B3 SBC TEMP2
0167 10B9 85BO STA ACCH
0168 10BB A5B3 SMUl T1 lOA TEMP2 TEST SIGN OF MULTIPLIER
0169 lOBO 1007 BPl SMUlT2 GO RETURN IF POSITIVE
0170 10BF A5BO lOA ACCH SUBTRACT MULTIPLICAND FROM HIGH PRODUCT
0171 lOCI 38 SEC IF MULTIPLIER IS NEGATIVE
0172 10C2 E5B2 SBC TEMPI
0173 10C4 85BO STA ACCH
017 4 10C6 60 SMUlT2 RTS RETURN
0175 10C7
0176 10C7 TWO QUADRANT DIVIDE
0177 10C7 USAGE IS THE SAME AS WITH UDIV
0178 10C7 PSEUDO ACCUMULATOR CONTAINS THE SIGNED
0179 10C7 DIVIDEND AND THE MACHINE ACCUMULATOR
0180 10C7 CONTAINS THE UNSIGNED DIVISOR
0181 10C7 85B2 DIV2Q STA TEMPI SAVE DIVISOR
0182 10C9 A5BO lDA ACCH COMPUTE SIGN OF QUOTIENT
0183 10CB 85B3 STA TEMP2 SAVE THE SIGN UNTIL lATER
0184 lOCO A5BO lDA ACCH TEST SIGN OF DIVIDEND
0185 10CF 1003 BPl DIV2Q1 SKIP IF POSITIVE
0186 1001 202ElO JSR DNEG TWOS COMPLEMENT DIVIDEND IF NEGATIVE
0187 1004 206B10 OIV2Q1 JSR UOIV 00 THE DIVISON
0188 1007 A5B3 lOA TEMP2 TEST DESIRED SIGN OF QUOTIENT
0189 1009 1008 BPl DIV2Q2 GO RETURN IF SHOULD BE POSITIVE
0190 10DB A5Bl lOA ACCl TWOS COMPLEMENT QUOTIENT IF SHOULD BE
0191 1000 49FF EOR #$FF NEGATIVE
0192 10DF 85Bl STA ACCl
0193 10El E6B1 INC ACCl
0194 10D 60 OIV2Q2 RTS RETURN
0195 10E4
0196 10E4 SIGNED DIVIDE
0197 10E4 USAGE IS THE SAME AS WITH UOIV
0198 10E4 85B2 SDIV STA TEMPI SAVE DIVISOR
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0199 10E6 45BO
0200 10E8 85B3
0201 10EA A5BO
0202 10EC 1003
0203 10EE 202E10
0204 10F1 A5B2 SDIV1
0205 10F3 1005
0206 10F5 49FF
0207 10F7 18
0208 10F8 6901
0209 10FA 206B1D SDIV2
0210 10FD A5B3
0211 10FF 1008
0212 1101 A5B1
0213 1103 49FF
0214 1105 85B1
0215 1107 E6B1
0216 1109 60 SDIV3
0217 110A

o ERRORS IN PASS 2

EOR ACCH COMPUTE SIGN OF QUOTIENT
STA TEMP2 SAVE THE SIGN UNTIL LATER
LOA ACCH TEST SIGN OF DIVIDEND
BPL SOIV1 SKIP IF POSITIVE
JSR DNEG TWOS COMPLEMENT DIVIDEND IF NEGATI VE
LDA TEMPI TEST SIGN OF DIVISOR
BPL SOIV2 JUMP IF POSITIVE
EOR #$FF TWOS COMPLEMENT DIVISOR IF NEGATIVE
CLC
ADC #1
JSR UDIV 00 THE OIVISON
LOA TEMP2 TEST DESIRED SIGN OF OUOTIENT
BPL SOIV3 GO RETURN IF SHOULD BE POSITIVE
LOA ACCL TWOS COMPLEMENT QUOTIENT IF SHOULD BE
EOR #$FF NEGATIVE
STA ACCL
INC ACCL
RTS RETURN

Fig. 18--3. Signal-processing math package for the 6502 (cont.).

The shift routines do one shift at a time, again using the carry flag to
transfer bits from one byte to the other. Note that when shifting right the
left byte is shifted first, whereas when shifting left the tight byte is shifted
first. A fair amount of fooling around is necessary to duplicate the sign bit
when doing a signed shift right. A machine with decent arithmetic capabil
ity would explicitly provide a shift with sign-extend instruction. Note that
the ability of the 6502 to directly modify memory greatly simplifies many
operations on the pseudoaccumulator.

The basic multiplication subroutine handles two 8-bit unsigned num
bers and produces a 16-bit unsigned product. While most computer users
know that the proper way to multiply involves shifting and adding, the
number of inefficient (or just plain incorrect) multiply subroutines that have
been published (Ie manufacturers are the worst offenders) indicates a general
lack of understanding in this area. Minicomputer designers of the 1960s,

PRODUCT,-------_-------.f"L---- ________

SHIFT ENTIRE REGISTER AND CARRY.. MULTIPLIER
MUL flPLIER BITS

0-1 1! ! ! ! ! ! i 1; 111-1)
~~~~tPLIERI I BIT IS A ONE

I I I I I I I I
MULTIPLICAND

Fig. 18--4. Shift-and-add multiplication
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however, did know how to multiply and as it turns out their hardware
methods are highly efficient in software too.

Figure 18--4 illustrates the shift and add multiplication algorithm.
Two "registers" are involved; the multiplicand register which is 8 bits long,
and the 16-bit pseudoaccumulator. Prior to multiplication, the multiplicand
is placed in the multiplicand register, the multiplier is placed in the low
order half of the pseudoaccumulator, and the high order half is cleared. A
shift and add cycle consists of shifting the entire pseudoaccumulator right
one bit and testing the least significant bit shifted out. If this bit is a zero,
the cycle is complete. If the bit is a one, the multiplicand register is single
precision added to the upper half of the pseudoaccumulator. This addition may
overflow, so it is important to bring in the carry flag when the next shift
cycle is done. A little thought will reveal that as the multiplication pro
gresses the multiplier is "eaten away" at its right end and the product grows
downward as the multiplier is shifted out. A total of 8Y2 cycles are needed to
complete the operation. The half-cycle is a final shift of the pseudoac
cumulator to bring in a possible overflow from the last addition and properly
align the product.

The above algorithm is different from many that are published in that
the product is shifted right and the multiplicand stands still rather than
vice versa. Efficiency improvement is due to both product and multiplier
shifting being handled simultaneously and the fact that only single-precision
addition of the partial products is required. If the upper part of the pseudoac
cumulator is not cleared prior to multiplication, its contents wind up being
added to the product. Since this may be useful and actually saves a slight
amount of time, the unsigned multiplication routine provides an alternate
entry point that skips clearing the product. Note that binary multiplication,
even with the "free add" included, cannot overflow.

Unsigned binary division, illustrated in Fig. 18-5, is precisely the
reverse of multiplication. The algorithm can be described as a "shift and
conditionally subtract" procedure, opposite that of multiplication. Again,

DIVIDEND,
SHIFT ENTIRE REGISTER LEFT

OUOTIENT BITS
1 FOR SUCCESSFUL
SUBTRACT

ijSUBTRACT IF
RESULT IS
NOT NEGATIVE

I I I Ii: ! : I
DIVISOR

REMAINDER QUOTIENT
" \~-------.f1

Fig. 18-5. Shift-and-subtract division
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two registers are involved. The dividend is a double-length value, which is
held in the pseudoaccumulatot. The divisor is kept in the same register as the
multiplicand was in multiplication and is not altered by the division routine.

A shift and subtract cycle begins by shifting the entire pseudoac
cumulator left, being sure to bring in the carry flag on the right end. Next
the divisor is single-precision subtracted from the high order half of the divi
dend and the result suspended. If the subtraction underflowed (that is, went
negative, which is not allowed in unsigned arithmetic), the result is thrown
away. If the subtraction did not underflow, the result replaces the high order
portion of the dividend. Deciding whether an underflow occurred is a little
tricky because a significant dividend bit may have been shifted out when the
dividend was shifted left. The table below can be used to determine if an
underflow occurred:

Carry from shift Carry from subtract Underflow? Quotient bit
0 0 Yes 0
0 1 No 1
1 0 No 1
1 1 Yes 0

The quotient bit value from the table is saved in the carry flag and shifted
into the pseudoaccumulator on the next cycle.

As the division progresses, the dividend is eaten away on the left by
subtracting the divisor, while the quotient is shifted in bit by bit on the
right. The final result finds the quotient in the right half and the remainder
in the left half of the pseudoaccumulator. Eight-and-a-half shifr/subtract
cycles are required to complete the division. The last half cycle is necessary to
bring in the last quotient bit without moving the remainder out of position.
Note that a subsequent call to UMULTO, which would multiply the quo
tient by the divisor and add in the remainder, will recover the dividend
exactly.

In signal processing both two-quadrant (unsigned X signed) and four
quadrant (signed X signed) multiplication is needed. The obvious procedure
is to take the absolute values of the operands, perform the operation, and
then adjust the sign of the product according to the rules of algebra. The
signed multiplication routine, however, uses a different approach that is
more efficient and actually works with largest negative numbers. The idea is
to go ahead and multiply the raw operands with the unsigned multiply
routine and correct the result later.

The correction turns out to be quite simple. After unsigned multiplica
tion, the multiplicand sign is tested. If it is negative, the multiplier is
unsigned, single-precision subtracted from the upper half of the pseudoac
cumulator. Then the multiplier sign is tested and the multiplicand is condi-
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tionally subtracted in the same manner. If one of the operands is unsigned,
only the signed operand need be tested. The author does not know of a
simple correction procedure for division so it is handled using the absolute
value method.

Example Programs

The best way to illustrate use of the arithmetic package and scaling
techniques for fixed-point arithmetic is to actually study a couple of simple
signal-processing programs. Two reasonably useful functions will be covered.
The first is a generalized digital filter using the state-variable structure. The
second is a Fourier series (SFT method) program designed to optimally fill
8-bit, 256-word waveform tables for low-budget direct synthesis.

Before tackling the digital filter programming, let's discuss exactly
what the program should do and how it would be used. For full flexibility as
a state-variable filter, one input sample is required, four output samples are
produced, and two parameters are needed. The input and output samples are
assumed to be 8-bit signed binary fractions. The dynamic tange of frequency
and Q parameters are maximized if they are unsigned values. Referring to
Chapter 14, we recall that the useful range of the frequency and Qmultipliers
is 0 to 2. Therefore, the binary point will be between bits 6 and 7 in these
8-bit multipliers.

The digital filter will be programmed as a subroutine and the input
sample will be passed to it in the accumulator. For ease of understanding, the
four output samples will be stored in specific locations in memory and the
two parameters will be taken from specific memory locations. Note that this,
like all recursive digital filters, requires storage registers to hold values from
sample to sample. Two 16-bit numbers will therefore be stored in dedicated
memory locations as well. A truly general-purpose routine should have the
addresses of input, output, parameter, and register storage passed to it to
minimize data shuffling when using the same routine to simulate many
different filters.

Figure 18-6 shows a signal flow diagram for the filter along with the
sequence of calculations spelled out in detail. Note that all addition and
subtraction operations are done using 16-bit arithmetic. In fact, except for
the input sample itself, all addition and subtraction operands are 16 bits in
length because they are the result of multiplications. Also note that while the
result of a multiplication is allowed to have a range of 1. 99, the result of all
additions and subtractions must have a range of 0.99 or less.

It is apparent, then, that overflow can easily occur if the input signal is
near maximum and the Q is high (Q factor low). This is simply a consequence
of the fact that a digital filter can have a gain substantially greater than
unity. One might be tempted to consider moving the binary point of the
filter output to eliminate the possibility of overflow until the cumulative
effect of cascading several such "scaled filters" in a general-purpose digital
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,------------------------_--.. HP

INPUT

INPUT, HP, SP, LP, NOTCH
Q,FREQUENCY
A,C

A

s.xxxxxxx
X.XXXXXXX
S. XXXXXXXXXXXXXXX

SEQUENCE OF CALCULATIONS

STEP OPERATION BINARY REPRESENTATION

E S 'S.x X X X X X XiX X X X X X X

X FREQ x.x X X X X X X
F SX,XXXXXXXXXXXXXX

~H Sx,xxxxxxxxxxxxxx
G ~xXXXXXX"XX X X X

-LP OUTPUT

E S'S.XXXXXXX'XXXXXXx
X a X.X x x x x x x
A S X.X x x x x x xxx xx x xX
-A SX.xxxxxxxxxxxxxx
-G SS.XXXXXXXXXXXXXX
+ Input S.X X X X X X X 0 0 0 0 a 0 a
------e- s ,s.x x x x x x X,X x x x x x X

--HP OUTPUI

B s~.XXXXXXX'XXXXXXX
X FREQ X. X xx xxxx

c s X.X x x x x x x x x x x x x x

s s.x x x x x x x x x x x x x x
s,s.xxxxxxx,xxxxxxx

---SP OUTPUT

S,X x x xx x x
SoX X X X X X X
S.X xxxxxx

----- NOTCH OUTPUT

+

~NOTCH
+

J-G'---1>--_-- LP

Fig. 18-6. Signal flow diagram of fixed-point arithmetic digital filter

synthesis system is considered. It can be a viable technique in dedicated filter
applications such as a spectrum analyzer, however. Of course, with 8-bit
samples and arithmetic, the programmer constantly walks a tightrope in
keeping signal levels high to maximize SiN ratio, while keeping them low
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STATE VARIABLE DIGITAL FILTER
ENTER WITH 8 BIT INPUT SAMPLE IN THE ACCUMULATOR
EXIT WITH 8 BIT OUTPUT SAMPLES IN LOPAS, BNDPAS, HIPAS, AND
NOTCH.
CENTER FREQUENCY PARAMETER IS IN FREO AND Q PARAMETER IS IN Q.
INPUT AND OUTPUT SAMPLES ARE SIGNED FRACTIONS.
FREQUENCY AND Q PARAMETERS ARE UNSIGNED NUMBERS WITH A RANGE OF
2.0 AND A RESOLUTION OF 1/128.

0223 llOA
0224 llOA
0225 110A
0226 llOA
0227 110A
0228 110A
0229 1l0A
0230 1l0A
0231 1l0A
0232 1l0A
0233 OOAO
0234 00A2
0235 OOM
0236 00A6
0237 00A7
0238 00A8
0239 00A9
0240 OOAA
0241 OOAB
0242 OOAC
0243 OOAC
0244 2000 48
0245 2001 A2AO
0246 2003 200010
0247 2006 203CI0
0248 2009 A5BO
0249 200B B5Bl
0250 2000 A5A6
0251 200F 209210
0252 2012 A2A2
0253 2014 201210
0254 2017 200910
0255 201A 203CI0
0256 2010 A5BO
0257 201F B5A8
0258 2021 A2AO
0259 2023 200010
0260 2026 203CI0
0261 2029 A5BO
0262 202B 85Bl
0263 2020 A5A7
0264 202F 209210
0265 2032 A2A2
0266 2034 201210
0267 2037 A2A4
0268 2039 200910
0269 203C 68
0270 2030 85BO
0271 203F A900
0272 2041 85Bl
0273 2043 204610
0274 2046 202010
0275 2049 200910
0?76 204C 203CI0
0277 204F A5BO
0278 2051 85AA
0279 2053 85Bl
0280 2055 A5A6
0281 2057 209210
0282 205A A2AO
0283 205C 201210
0284 205F 200910
02B5 2062 203CI0
0286 2065 A5BO
0287 2067 85A9
0288 2069 A2A4

DELAYl
DELAY2
TEMP
FREQ
Q
LOPAS
BNDPAS
HIPAS
BNDREJ

SVDFLT

*= $AO
*=*+ 2
*=*+ 2
*=*+ 2
*=*+ 1
*=*+ 1
*=*+ I
*=*+ 1
*=*+ I
*=*+ I

*= $2000
PHA
LOX I/DELAYl
JSR OLD
JSR DSHL
LOA ACCH
STA ACCL
LOA FREQ
JSR MULT2Q
LOX I/DELAY2
JSR DADO
JSR DST
JSR DSHL
LOA ACCH
STA LOPAS
LOX I/DELAYl
JSR OLD
JSR DSHL
LDA ACCH
STA ACCL
LOA Q
JSR MULT2Q
LDX I/DELAY2
JSR DADO
LOX HEMP
JSR DST
PLA
STA ACCH
LOA I/O
STA ACCL
JSR DSHRS
JSR DSUB
JSR DST
JSR DSHL
LOA ACCH
STA HIPAS
STA ACCL
LOA FREQ
JSR MULT2Q
LOX I/DELAYl
JSR DADO
JSR DST
JSR DSHL
LOA ACCH
STA BNDPAS
LOX HEMP

STORAGE IN PAGE ZERO
STORAGE REGISTER FOR DELAY I
STORAGE REGISTER FOR DELAY 2
TEMPORARY STORAGE FOR A 16 BIT VALUE
CENTER FREOUENCY PARAMETER
Q FACTOR PARAMETER
LOWPASS FILTERED OUTPUT SAMPLE
BANDPASS FILTERED OUTPUT SAMPLE
HIGHPASS FILTERED OUTPUT SAMPLE
BAND REJECT FILTERED OUTPUT SAMPLE

ORIGIN FOR PROGRAM
SAVE INPUT SAMPLE ON THE STACK
LOAD OUTPUT OF DELAY 1 INTO THE PSEUDO
ACCUMULATOR
SHIFT IT RIGHT 7 BIT POSITIONS FOR USE AS
THE MULTIPLIER

MULTIPLICAND IS FREOUENCY PARAMETER
TWO QUADRANT MULTIPLY
ADD OUTPUT OF DELAY 2 TO PRODUCT

PUT SUM BACK INTO DELAY 2
SHIFT LEFT ONE TO FORM LOWPASS OUTPUT

LOAD OUTPUT OF DELAY I INTO THE PSEUDO
ACCUMULATOR
SHIFT IT RIGHT 7 BIT POSITIONS FOR USE AS
THE MULTI PLI ER

MULTIPLICAND IS 0 PARAMETER
TWO QUADRANT MULTIPLY
ADD RESULT TO SAVED LOWPASS OUTPUT

SAVE IN TEMPI

RESTORE INPUT SAMPLE
PUT INTO PSEUDO ACCUMULATOR AND SHIFT
RIGHT ONE

SUBTRACT SAVED SUM FROM INPUT SAMPLE TO
SAVE RESULT FOR LATER USE IN NOTCH OUTPUT
FORM HIGHPASS OUTPUT

IS ALSO MULTIPLIER
MULTIPLY BY FREQ

ADO OUTPUT OF DELAY 1 TO THE PRODUCT

PUT SUM BACK INTO DELAY I
SHIFT LEFT ONE BIT

HIGH BYTE IS BANDPASS OUTPUT
BAND REJECT OUTPUT IS DELAY2 PLUS TEMPI
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0289 206B 200010
0290 206E A2A2
0291 2070 201210
0292 2073 203CI0
0293 2076 A5BO
0294 2078 85AB
0295 207A 60
0296 2078
0297 207B

o ERRORS IN PASS 2

JSR OLD
LOX HOELAY2
JSR DADO
JSR OSHL
LOA ACCH
STA BNOREJ
RTS RETURN

Fig. 18-6. Signal flow diagram of fixed-point arithmetic digital filter (cont.).

enough to avoid serious distortion caused by overflow. With 16-bit arithme
tic, which is recommended for serious work, such problems are much less
severe.

The second example program, which is shown in Fig. 18-7, is included
to illustrate the use of division and as a useful program for experimentation.
The idea is to take the spectral description of a harmonic waveform, compute
samples for one cycle of it, and store them in a waveform table. With the
6502 example machine, the waveform table is assumed to be 256 samples
long (one memory page), and to contain 8-bit signed samples.

Because of the limited resolution provided by 8 bits, it is advantageous
to maximize the amplitude of the stored waveform. It is very difficult,
however, to predict the magnitude of the largest peak of the waveform
without actually computing an entire cycle, although it is easy to prove that
the peak will not exceed the sum of the harmonic amplitudes. In most cases,
it will be considerably less than this because of momentary phase cancella
tion, etc. Thus, it would be nice if the table-filling program would adjust
the waveform amplitude automatically and optimally.

The program is actually just a collection of three subroutines. The
point evaluator, FSEVAL, accepts a point number and a spectrum descrip
tion and returns a 16-bit signed number representing the waveform at that
point in time. The point number simply represents time to a resolution of
1/256 of a cycle. The scale factor determination routine, SCALE, calls
FSEVAL 256 times in order to determine the absolute maximum sample
value that will be encountered when the table is actually filled. The table
filling routine, FILL, also calls FSEVAL 256 times. The 16-bit values re
turned are divided by the maximum peak found by SCALE and stored in the
waveform table as 8-bit values.

The spectrum description expected by these routines consists of pairs of
8-bit unsigned numbers, each of which corresponds to a harmonic in ascend
ing order starting with zero (the de component). The first member of the pair
is the amplitude which is treated as an 8-bit unsigned fraction. The second
member is the phase angle of the harmonic. Zero gives a cosine wave, 64
gives an inverted sine wave, 128 gives an inverted cosine, etc. A parameter
called NHARM determines the highest harmonic number that will be con-
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0222 1l0A ; WAVEFORM TABLE FILL USING FOURIER SERIES
0223 1l0A
0224 1l0A *~ $80 STORAGE IN PAGE ZERO
0225 0080 HRMACC *=*+ 2 HARMONIC ACCUMULATOR
0226 0082 PNTNO *=*+ 1 POINT NUMBER WITHIN CYCLE OF WAVE
0227 0083 NDXACC *=*+ 1 INDEXING ACCUMULATOR
0228 0084 HRMCNT *=*+ 1 HARMONIC COUNTER
0229 0085 MAX *=*+ 1 MAXIMUM WAVEFORM AMPLITUDE
0230 0086 WAVETB *=*+ 2 ADDRESS OF WAVEFORM TABLE TO FILL
0231 0088
0232 0088 NHARM *=*+ 1 HIGHEST HARMONIC TO GENERATE (16 MAX)
0233 0089 FSRAM *=*+ 32" ROOM FOR 16 HARMONIC AMPLITUDES AND
0234 00A9 PHASES
0235 00A9
0236 00A9 *~ $2000 PROGRAM ORIGIN
0237 2000
0238 2000 WAVEFORM TABLE FILL ROUTINE
0239 2000 THIS SUBROUTINE FILLS THE WAVEFORM TABLE AT WAVETB WITH 256
0240 2000 SAMPLES OF THE WAVEFORM SPECIFIED BY THE SPECTRUM AT FSRAM.
0241 2000 MAX MUST HAVE BEEN PREVIOUSLY SET GREATER THAN TWICE THE
0242 2000 ABSOLUTE VALUE OF THE LARGEST SAMPLE THAT WILL BE ENCOUNTERED.
0243 2000
0244 2000 A900 FILL LOA #0 ZERO THE POINT NUMBER
0245 2002 8582 STA PNTNO
0246 2004 204020 FILL! JSR FSEVAL EVALUATE A WAVEFORM POINT
0247 2007 A580 LOA HRMACC DIVIDE POINT BY MAXIMUM POINT FOR SCALING
0248 2009 85BO STA ACCH FIRST TRANSFER POINT TO PSEUDO
0249 200B A581 LOA HRMACC+1 ACCUMULATOR FOR USE AS THE DIVIDEND
0250 2000 85Bl STA ACCL
0251 200F A585 LOA MAX LOAD MAX AS THE DIVISOR (UNSIGNED)
0252 2011 20C710 JSR DIV2Q DO A TWO QUADRANT DIVIDE
0253 2014 A5B1 LOA ACCL GET THE SIGNED QUOTIENT
0254 2016 A482 LOY PNTNO GET THE POINT NUMBER
0255 2018 9186 STA (WAVETB). Y STORE RESULT IN WAVEFORM TABLE
0256 20IA E682 INC PNTNO INCREMENT THE POINT NUMBER
0257 20IC DOE6 BNE FILL! GO FOR ANOTHER POINT IF NOT FINISHED
0258 201E 60 RTS RETURN WHEN FINISHED
0259 201F
0260 201F SCALE FACTOR DETERMINATION SUBROUTINE
0261 201F THIS SUBROUTINE GOES THROUGH ONE CYCLE OF THE WAVEFORM DEFINED
0262 201F BY THE SPECTRUM AT FSRAM AND FINDS THE POINT WITH THE MAXIMUM
0263 201F MAGNITUDE.
0264 201F THIS MAGNITUDE IS THEN DOUBLED AND INCREMENTED BY ONE AND
0265 201F STORED AS AN UNSIGNED NUMBER.
0266 201F
0267 201F A900 SCALE LOA #0 ZERO THE POINT NUMBER
0268 2021 8582 STA PNTNO
0269 2023 8585 STA MAX ZERO THE MAXIMUM MAGNITUDE
0270 2025 204020 SCALEl JSR FSEVAL EVALUATE A WAVEFORM POINT
0271 2028 A58D LOA HRMACC GET UPPER BYTE OF THE POINT
on 2 202A 1005 BPL SCALE2 SKIP IF POSITIVE
0273 202C 49FF EOR #$FF NEGATE IF NEGATIVE
0274 202E 18 CLC
0275 202F 6901 ADC #1
0276 2031 C585 SCALE2 CMP MAX COMPARE WITH CURRENT MAXIMUM
0277 2033 3002 8MI SCALE3 SKIP IF NOT GREATER
0278 2035 8585 STA MAX UPDATE MAXIMUM IF GREATER
0279 2037 E682 SCALE3 INC PNTNO INCREMENT POINT NUM8ER
0280 2039 DOEA BNE SCALEI GO FOR NEXT POINT IF NOT DONE
0281 203B 0685 ASL MAX DOUBLE AND THEN INCREMENT MAXIMUM VALUE
0282 2030 E685 INC MAX TO AVOID POSSIBLE DIVISON OVERFLOW
0283 203F 60 RTS AND RETURN
0284 2040
0285 2040 FOURIER SERIES POINT EVALUATOR
0286 2040 THIS SUBROUTINE EVALUATES A POINT ON THE WAVEFORM SPECIFIED BY
0287 2040 THE SPECTRUM AT FSRAM.
0288 2040 NHARM SPECIFIES THE HIGHEST HARMONIC TO BE INCLUDED
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0289 2040
0290 2040
0291 2040
0292 2040
0293 2040
0294 2040 8A FSEVAL
0295 2041 48
0296 2042 A900
0297 2044 8580
0298 2046 8581
0299 2048 8584
0300 204A 8583
0301 204C A584 FSEVI
0302 204E OA
0303 204F AA
0304 2050 B589
0305 2052 48
0306 2053 B58A
0307 2055 6583
0308 2057 AA
0309 2058 B08620
0310 205B 85Bl
0311 2050 68
0312 205E 209210
0313 2061
0314 2061 A204
0315 2063 204610 FSEV2
0316 2066 CA
0317 2067 DOFA
0318 2069 A280
0319 206B 201210
0320 206E 200910
0321 2071 A584
0322 2073 C588
0323 2075 FOOC
0324 2077 E684
0325 2079 A582
0326 207B 18
0327 207C 6583
0328 207E 8583
0329 2080 4C4C20
0330 2083 68 FSEV3
0331 2084 AA
0332 2085 60
0333 2086
0334 2086
0335 2086
0336 2086 7F COSINE
0337 208E 70
0338 2096 76
0339 209E 6A
0340 20A6 5A
0341 20AE 47
0342 20B6 31
0343 20BE 19
0344 20C6 00
0345 20CE E7
0346 2006 CF
0347 20DE B9
0348 20E6 A6
0349 20EE 96
0350 20F6 8A
0351 20FE 83
0352 2106 81

PNTNO IS THE POINT NUMBER TO BE EVALUATED
THE COMPUTED POINT IS RETURNED IN HRMACC AS A 16 BIT TWOS
COMPLEMENT NUMBER
DESTROYS A AND Y, SAVES X

TXA SAVE INDEX X
PHA
LOA #0 CLEAR HARMONIC ACCUMULATOR
STA HRMACC
STA HRMACC+l
STA HRMCNT ZERO HARMONIC COUNTER
STA NDXACC ZERO THE INDEXING ACCUMULATOR
LOA HRMCNT GET CURRENT HARMONIC NUMBER AND DOUBLE IT
ASL A
TAX USE AS AN INDEX TO THE SPECTRUM TARLE
LOA FSRAM,X GET AMPLITUDE
PHA SAVE ON STACK TEMPORARILY
LOA FSRAM+l,X GET PHASE
ADC NDXACC ADD IT TO THE INDEXING ACCUMULATOR
TAX USE AS AN INDEX INTO THE COSINE TABLE
LOA COSINE,X GET COSINE
STA ACCL SAVE AS MULTIPLICAND
PLA RESTORE AMPLITUDE
JSR MULT2Q MULTIPLY AMPLITUDE (UNSIGNED) BY COSINE

(SIGNED)
LOX #4 SHIFT PRODUCT RIGHT 4 FOR 12 BIT RESULT
JSR OSHRS
DEX
BNE FSEV2
LOX #HRMACC ADD RESULT TO HARMONIC ACCUMULATOR
JSR DADO
JSR DST
LOA HRMCNT TEST IF CURRENT HARMONIC IS LAST ONE TO
CMP NHARM INCLUDE
BEQ FSEV3 GO RETURN IF SO
INC HRMCNT INCREMENT TO NEXT HARMONIC
LOA PNTNO ADD POINT NUMBER TO THE INDEXING
CLC ACCUMULATOR
ADC NDXACC
STA NDXACC
JMP FSEVI LOOP FOR ANOTHER HARMONIC
PLA RESTORE I NDEX X
TAX
RTS RETURN

256 POINT COSINE TABLE, TWOS COMPLEMENT

.BYTE $7F,$7F,$7F,$7F,$7F,$7F,$7E,$7E

.BYTE $7D,$70,$7C,$7B,$7A,$79,$78,$77

.BYTE $76,$75,$73,$72,$71,$6F,$60,$6C

.BYTE $6A,$68,$66,$65,$63,$61,$5E,$5C

.BYTE $5A,$58,$56,$53,$51,$4E,$4C,$49

.BYTE $47,$44,$41,$3F,$3C,$39,$36,$33

.BYTE $3I,$2E,$2B,$28,$25,$22,$lF,$IC

.BYTE $19,$16,$12,$OF,$OC,$09,$06,$03

.BYTE $00,$FO,$FA,$F7,$F4,$FI,$EE,$EA

.BYTE $E7,$E4,$El,$OE,$OB,$08,$05,$02

.BYTE $CF,$CD,$CA,$C7,$C4,$Cl,$BF,$BC

.BYTE $B9,$B7,$B4,$B2,$AF,$AD,$AA,$A8

.BYTE $A6,$A4,$A2,$9F,$90,$9B,$9A,$98

.BYTE $96,$94,$93,$91,$8F,$8E,$80,$8B

.BYTE $8A,$89,$88,$87,$86,$85,$84,$83

.BYTE $83,$82,$82,$81,$81,$81,$81,$81

.BYTE $81,$81,$81,$81,$81,$81,$82,$82

Fig. 18-7. Waveform table filler
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0353 210E 83
0354 2116 8A
0355 211E 96
0356 2126 A6
0357 212E B9
0358 2136 CF
0359 213E E7
0360 2146 00
0361 214E 19
0362 2156 31
0363 215E 47
0364 2166 5A
0365 216E 6A
0366 2176 76
0367 217E 7D
0368 2186
0369 2186

o ERRORS IN PASS 2

.BYTE $83,$83,$84,$85,$86,$87,$88,$89

.BYTE $8A,$8B,$8D,$8E,$8F,$91,$93,$94

.BYTE $96,$98,$9A,$9B,$9D,$9F,$A2,$A4
.8YTE $A6,$A8,$AA,$AD,$AF,$B2,$B4,$B7
.BYTE $B9,$BC,$BF,$Cl,$C4,$C7,$CA,$CD
.BYTE $CF,$D2,$D5,$D8,$DB,$DE,$El,$E4
.BYTE $E7,$EA,$EE,$Fl,$F4,$F7,$FA,$FD
.BYTE $00,$03,$06,$09,$OC,$OF,$12,$16
.BYTE $19,$IC,$IF,$22,$25,$28,$2B,$2E
.BYTE $31,$33,$36,$39,$3C,$3F,$41,$44
.BYTE $47,$49,$4C,$4E,$51,$53,$56,$58
.BYTE $5A,$5C,$5E,$61,$63,$65,$66,$68
.BYTE $6A,$6C,$6D,$6F,$71,$72,$73,$75
.BYTE $76,$77,$78,$79,$7A,$7B,$7C,$7D
.BYTE $7D,$7E,$7E,$7F,$7F,$7F,$7F,$7F

.END

Fig. 18--7. Waveform table filler (cant.).

sidered with smaller values giving faster computation. The scaling logic
assumes that NHARM is never greater than 16, although this can be ex
tended by modifying the scaling computation or restricting the amplitude
sum to less than 16.

Looking closer at FSEVAL, it is seen that the product of a harmonic
amplitude and a sine table entry is a full 16 bits. To avoid almost certain
overflow when other harmonics are added in, the product is shifted right four
times, which effectively moves the binary point between bits 11 and 10. This
increases the range to 16 and reduces the resolution to 1/2,048. The in
creased range positively insures against overflow for up to 16 harmonics.

In scale, only the most significant byte of the 16-bit samples produced
by FSEVAL is examined. Peak determination is by comparing the absolure
value of the upper sample bytes with a current maximum, which is kept in
MAX. This maximum is incremented by one before returning. Note that the
binary point position of MAX is between bits 3 and 2.

The FILL routine normalizes the samples by simply dividing the 16-bit
sample returned by FSEVAL by MAX. Since the binary points are in equiva
lent positions, the point position for the quotient will be between bits 6 and
7, making it a signed fraction ready for storage in the waveform table.
Incrementing MAX by one in SCALE is required to avoid overflow in the
division, which would occur when the peak point is divided by itself. U nfor
tunately, this action also introduces an error that reduces the scaled
amplitude somewhat. Large values of MAX minimize this error, however.
Thus, when a harmonic spectrum is prepared, the strongest harmonic should
be given an amplitude of 0.996 (O.FF). A 16/32-bit arithmetic package
would reduce the error to insignificance but would be about three times
slower on the 6502. It is important to note that this error is only an
amplitude error; it does not introduce excess noise beyond that due to the
lower amplitude. Also note that only the highest peak is normalized. It is
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also possible to shift the baseline of the waveform t9 force posltlve and
negative symmetry and thus insure use of all 256 quantization levels in the
waveform table. Unfortunately, this may also introduce a significant de
component to the waveform, which may cause trouble, such as a "thump"
when a fast amplitude envelope is applied.

Fast Founer Transform for the 68000

For the last example, we will examine a translation of the complex FFT
subroutine described in Chapter 13 from BASIC into 68000 assembly
language. The main practical reason for being interested in an assembly
language FFT is its much greater speed relative to one in a high-level
language. For example, to transform 1024 complex data points (which could
be 2048 real data points if a real transformation routine was also written),
only 900 msec are required on a typical-speed 68000 compared to a minute
or more for the BASIC program running on most systems. With smaller
record sizes of 64 complex (128 real) points and a fast (l2-MHz) 68000, one
could approach real-time analysis of speech bandwidth (8 ks/s) data! For any
practical use with real-world data, the accuracy of the routine will be
equivalent to one using floating-point arithmetic.

Before describing the workings of the routine itself, let's examine the
scaling properties of the FFT algorithm. First refer back to Fig. 13-15, in
which the calculations involved in each "node" of the FFT were diagrammed.
These calculations are all of the form:

(NEWDATA) = (OLDDATA1) + (OLDDATA2) X COS(A) +
(OLDDATA3) X SIN(A)

where A is some angle, OLDDATA1, 2, and 3 are current values in the data
array, and NEWDATA is a new value stored back into the data array. Doing a
range analysis where the ranges of OLDDATA 1, 2, and 3 are all the same, we
find that the range of NEWDATA is at most 2.41 times larger than the
OLDDATA ranges, which could occur when the angle A is 45°. In actual use
inside an FFT, it turns out that the range of NEWDATA is only twice that of
the OLDDATA values. The point is that, since all of the array data
participates in calculations of this type for each column of nodes in the FFT
butterfly diagram, it follows thar" the range for the array doubles as each
column of nodes is evaluated. Since there are LOG2N node columns in an N
point FFT calculation, the range of the final result array is simply N times
the range of the original data array. In actuality, this theoretical result range
will only be approached when the input signal contains a single-frequency
component near full-scale amplitude and it has not been windowed.

There are numerous ways to handle this tendency for data values to

double every iteration through the FFT algorithm. The first is to simply
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insure that the initial input data values are small enough so that after
transformation they will still fit into the chosen data wordlength. This is
perfectly feasible for a dedicated function single block size FFT routine (or
hardware implementation of such a routine) but could get out of hand in a
routine designed for a wide range of possible block sizes. Another possibility
is to scan the data array after each iteration and divide all values by two.
Unfortunately, this sacrifices small signal accuracy, when freedom from
processing noise is needed most, in exchange for large signal-handling
capability. Yet a third is to scale the calculations so that overflow is a distinct
possibility and test for it during each iteration. If overflow does occur, divide
the data array by two, recording the number of times this is done, and
continue. This technique is called conditional array scaling and has the best
tradeoff between accuracy and word size but suffers from additional
complexity and an indefinite execution time as well as burdening successive
processing steps with data having a variable scale factor.

Since the 68000 readily handles 32-bit data values, the brute-force
technique mentioned first above will be used. The intial input data,
intermediate results stored in the data arrays, and the output data will be 32
bit signed integers. The SIN and COS multipliers will be obtained from a
table as 16-bit unsigned binary fractions. When multiplied by the 32-bit data
values, a 48-bit product is obtained. The intermediate calculations within a
node are perfotmed using these 48-bit values, but the final node result that is
stored back into the data array is just the most significant 32 bits. The sign of
the COS multiplier is handled by conditionally adding or subtracting the
product according to the angle. The SIN multiplier is always positive, since
the angle is always between 0 and 180°. For maximum accuracy, SIN or COS
multipliers of unity (1. 0) are represented by a special value in the table, and
multiplication is skipped when they are seen. Zero multipliers are also
skipped, which gives a noticeable speed increase for the smaller record sizes,
where zero and unity multipliers are proportionately abundant.

Figure 18-8 shows the assembled 68000 FFT subroutine listing.
Arguments and instructions for its use are given in the first few lines and
should be self-explanatory. When filling the data arrays with 32-bit values, it
is desirable to shift the data left as far as allowable to maximize accuracy. For
example, if the original data are signed 16-bit integers and the transform size
is 512 complex points, the 16-bit data can be sign extended to 32 bits and
then shifted left seven positions before being stored into the data arrays. This
leaves 9-bit positions available for the nine doublings incurred by the nine
FFT iterations needed for 512 points. However, if real data is being
transformed and this routine is followed by a real transformation routine,
only six shifts should be done because the real transformation also tends to
double the array values. The subroutine is completely self-contained except
for an external cosine table (not shown but instructions for its generation are
included), which can be shared with other synthesis routines. Since all
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; FFT68 -- COMPLEX FAST FOURIER TRANSFORM SUBROUTINE FOR THE MC68000

; OUTPUT ARGUMENTS:
NO CHECKIIIG OF ARGUMENT VALIDITY IS PERFORMED.

; ALL REGISTERS ARE SAVED AND RESTORED.
; CONTENT OF TWO DATA ARRAYS IS TRANSFORMED.
; THE COSINE TABLE IS NOT ALTERED.

I NPUT ARGUMENTS:
Al = ADDRESS OF INPUT ARRAY, REAL PARTS.
A2 = ADDRESS OF INPUT ARRAY, IMAGINARY PARTS.
A3 = ADDRESS OF COSINE TABLE (TABLE FORMAT DESCRIBED BELOW)
01 = LOG(2) OF NUMBER OF COMPLEX DATA POINTS, MAXIMUM VALUE IS 11

EXIlMPLE: 01=9=512 COMPLEX POINTS

; THIS SUBROUTINE PERFORMS THE DISCRETE FOURIER TRANSFORM ON COMPLEX DATA USING
; THE "RADIX 2 TIME DECOMPOSITION WITH INPUT BIT REVERSAL" FFT ALGORITHM.
; COMPUTATION IS DONE IN-PLACE (OUTPUT ARRAYS REPLACE INPUT ARRAYS).
; AS WRITIEN AND USING THE SPECIFIED COSINE TABLE, UP TO 2048 COMPLEX DATA
; POINTS (UP TO 4096 REAL DATA POINTS) CAN BE TRANSFORMED.
; MEASURED EXECUTION TIMES AT 8MHZ, t() WAITS, 3% MEMORY REFRESH OVERHEAD:

D3=NORMAL BINARY COUNTER
D4=8IT REVERSED BINARY COUNTER
01=8 IT# OF LS8 OF 8IT REVERSED COUNTER
INCREMENT THE t()RMAL COUNTER
D5=BIT# TO FLIP IN 8IT REVERSED COUNTER
FLIP CURRENT COUNTER BIT
DONE INCREMENT IF 0-TO-1 TRANSITION
REPEAT FOR NEXT LOWER 8IT IF 1-TO-O TRANS.
TEST IF REVERSED COUNTER OVERFLOWED

TIME IN MILLI SECONDS
13
32
77

175
400
900

2000

03
04
#1,01
#4,03
01,05
05,04
SCR2
05,SCR1
#1,05

# COMPLEX PO I NTS
32
64

12fl
256
512

1024
2048

CLR.L
CLR.L
ADDQ
ADOQ
MOVE
BCHG
BEQ.S
DBRA
CMP,W

MOVEM.L DO-07/AO/M-A6,-(SP) SAVE ALL REGISTERS USED
SUR #12,SP RESERVE ROOM FOR 3 LONG WORDS ON THE STACK
MOVEQ #1,07 COMPUTE NUMBER OF POINTS
ASL.W 01,07 07 = 2'(01) = N

; SCRIlMBLE THE INPUT DATA ARRAYS

; DATA FORMAT:
INPUT DATA SHOULD BE 32 BIT SIGNED INTEGERS. TO INSURE THAT OVERFLOW CANNOT

OCCUR, THE MAXIMUM INPUT MAGNITUDE SHOULD BE LESS THAN (2**31)/{2**K)
WHERE K IS THE TRANSFORM SIZE ARGUMENT IN 01.

OUTPUT DATA WILL ALSO BE 32 BIT SIGNED INTEGERS. THE Md.XIMUM MAGNITUDE OF
OUTPUT VALUES WILL BE EQUAL TO OR LESS THAN THE MAGNITUDE OF THE INPUT
DATA MULTIPLIED BY THE TRANSFORM SIZE. THUS FOR 16 BIT INPUT DATA,
A 2048 POINT TRANSFORM COULD PRODUCE VALUES AS LARGE 27 BITS.

THE COSINE TABLE SHOULD HAVE 1025 ENTRIES, EACH A 16 BIT UNSIGNED INTEGER.
THE TABLE SHOULD BE PREPARED USING THE FOLLOWING FORMULA:
T=INT( 65536*COS( 3.141592653*1/2048)+.5)
WHERE I IS THE TABLE A1JORESS (0 - 1024) AND T IS THE TABLE ENTRY.
USING THIS FORMULA, THE FIRST 3 ENTRIES WILL BE 65536 WHICH WILL NOT FIT
INTO 16 BITS. THESE REPRESENT A BINARY FRACTION OF 1.0 AND SHOULD BE
STORED INTO THE TABLE AS 32768 ($8000). THE FFT ROUTINE CAN DETECT THIS
VALUE AND SKIP MULTIPLICATION WHEN IT IS SEEN.

SCR1

SCRO

SCR

0005 001000
0006 001000
0007 001000
0008 001000
0009 001000
0010 001000
0011 001000
0012 001000
0013 001000
0014 001000
0015 001000
0016 001000
0017 001000
0018 001000
0019 001000
0020 001000
0021 001000
0022 001000
0023 001000
0024 001000
0025 001000
0026 001000
0027 001000
0028 001000
0029 001000
0030 001000
0031 001000
0032 001000
0033 001000
0034 001000
0035 001000
0036 001000
0037 001000
0038 001000
0039 001000
0040 001000
0041 001000
0042 001000
0043 001000
0044 001000
0045 001000
0046 001000
0047 001000
0048 001000
0049 001000
0050 001000
0051 001000
0052 001000
0053 001000 48E7FF8E FFT68
0054 001004 9EFCOOOC
0055 001008 7E01
0056 OOlOOA E367
0057 00100C
0058 00100C
0059 00100C
0060 00100C 4283
0061 00100E 4284
0062 001010 5241
0063 001012 5843
0064 001014 3A01
0065 001016 OB44
0066 001018 6704
0067 00101A 51CDFFFA
0068 00101E OC450001 SCR2

Fig. 18-8. Assembled 68000 FFT subroutine listing
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PERFORM THE FOURIER TRANSFORM PROPER
NOTE: IN THIS SECTION, THE N3, N4, N7, N8 VARIABLES FROM THE BASIC PROGRAM

; ARE ALL MULTIPLIED BY 4 TO SIMPLIFY INDEXING INTO '!HE DATA AARAYS.
; AD = N4, A4 = N3, A5 = N7 A6 = NS

NB=N7+N4

NOW ADD Dl :D2 TO PREVIOUS RESULT LEFT ON THE
STACK AND SAVE THE HIGH 32 BITS OF THE RESULT
IN 04 AS T2

T2=C*D2(N8)-S*Dl(N8) (Dl,D2 ARE DATA AARAYS)
FI RST COMPUTE C*D2 ( NB)
USING THE TRIGNOMETRIC MULTlPLY SUBROUTINE
THEN SAVE 64 BIT RESULT ON THE STACK

NEXT COMPUTE S*Dl{ NS)

NOW SUBTRACT Dl :02 FROM PREVIOUS RESULT LEFT
ON THE STACK AND SAVE THE HIGH 32 BITS OF THE
RESULT ON THE STACK AT (SP) AS T1

T1=C*Dl(NS)-S*D2(NS) (01 ,D2 ARE DATA ARRAYS)
FIRST COMPUTE C*Dl(NB)
USING THE TRIGNOMETRIC MULTIPLY SUBROUTINE
THEN SAVE M BIT RESULT ON THE STACK

NEXT CDMPUTE S*02 (N8)

C=COS(A)
TEST SIZE OF A
FOR A<=PI/2, GO DIRECTLY TO LOOKUP, SIGN IS +
FOR A>PI /2, COMPLEMENT LOOKUP ADDRESS FIRST,

SIGN IS -
LOOKUP C, KEEP IN 05.W, SIGN IN BIT 31
S=SIN(A)
SHIFT A TO RANGE OF -PI/2<=A<PI/2
ABSOLUTE VALUE OF NEW A

LOOKUP S, KEEP IN D6.W, SIGN IN BIT 31
*** CHANGE TO BSET FOR I NVERSE TRANSFORM ***
FOR N7=N3 TO 4*N-4 STEP N4*2

REPEAT UNTIL BIT REVERSED COUNTER OVERFLOWS

07=4*N
N4=4
N6=N4+N4 COMPUTED WHEN NEEDED
FOR N3=0 TO N4-4 STEP 4

A=PI*N3/N4 (N3<N4, N4 IS POWER OF 2)
ACTUALLY COMPUTE: DO=4096*N3/N4
BECAUSE A IS REALLY A TABLE LOOKUP ADDRESS

XFM JUMP OUT I F SO, DONE WITH SCRAMBLE
D3,D4 COMPARE THE TWO COUNTERS
SCRO NO SWAP IF EQUAL OR r-KJRMAL IS BIGGER
0(Al,D3.W),D5 IF BIT REVERSED COUNTER IS BIGGER,
0(Al,D4.W),O(Al,D3.W) SWAP REAL ARRAY ENTRIES ADDRESSED BY
D5 ,O(AI ,M.W) THE TWO COUNTERS
0(A2,D3,W) ,D5
0(A2,04.W) ,0(A2,D3.W) AND ALSO THE IMAGINARY ARRAY ENTRIES
D5,0(A2;D4.W)
SCRO

A5,A6
AO,A6
0(Al,A6) ,D4
05,03
TRGMPY
Dl, (SP)
02,4(SP)
0(A2,A6) ,04
D6,D3
TRGMPY
4(SP) ,DO
02 ,DO
(SP) ,DO
01,00
OO,(Sp)
0(A2,A6) ,D4
D5,D3
TRGMPY
Dl,4(SP)
D2,8(SP)
0(Al,A6) ,D4
D6,D3
TRGMPY
B(SP) ,D4
D2,D4
4(SP) ,D4

M,DO
#4096,00
AO,Dl
Dl,OO
D5
#2048,00
S13214A
#$OFFF ,DO
#1,DO
#31,05
0(A3,00.W) ,D5
06
#2048,DO
S13215A
DO
0(A3,00.W) ,06
#31,06
M,A5

BEQ.S
CMP.W
BLT.S
MOVE.L
MOVE. L
MOVE.L
MOVE.L
MOVE.L
MOVE.L
BRA.S

0069 001022 6722
0070 001024 B843
0071 001026 /iDEA
0072 001028 2A313000
0073 00102C 23B140003000
0074 001032 23854000
0075 001036 2A323000
0076 00103A 25B240003000
0077 001040 25854000
007 B 001044 60CC
0079 001046
0080 001046
0081 001046
0082 001046
0083 001046
0084 001046
0085 001046
0086 001046 E547 XFM ASL.W #2,07
0087 001048 307C0004 S13210 MOVE.W #4,AO
0088 OO104C S13211
0089 00104C 387COOOO S13212 MOVE #O,M
0090 001050 S13212A
0091 001050 200C S13213 MOVE. L
0092 001052 COFCl000 MULU
0093 001056 3208 MOVE
0094 001058 80Cl 01VU
0095 00105A 4285 ST3214 CLR.L
0096 OO105C OC400800 CMP.W
0097 001060 6FOA BLE.S
0098 001062 OMOOFFF EOR. W
0099 001066 5240 ADDQ.W
0100 001068 08C5001F BSET
0101 00l06C 3A330000 S13214A MOVE.W
0102 001070 4286 S13215 CLR. L
0103 001072 04400800 SUB.W
0104 001076 6A02 BPL.S
0105 001078 4440 NEG. W
0106 00107A 3C330000 S13215A MOVE.W
0107 00107E 0886001F BCLR
0108 001082 2MC S13216 MOVE.L
0109 001084 S13216A
0110 001084 2C40 S13217 MOVE.L
0111 001086 DDCS ADDA. L
0112 001088 2831EOOO S13218 MOVE.L
0113 00108C 2605 MOVE.L
0114 00108E 4EB81118 JSR. S
0115 001092 2E81 MOVE.L
0116 oolO94 2F420004 MOVE.L
0117 00lO9B 2B32EOOO MOVE.L
0118 00109C 2606 MOVE.L
0119 00lO9E 4EBBI118 JSR.S
0120 0010A2 202F0004 MOVE.L
0121 001OA6 9082 SUB.L
0122 0010M 2017 MOVE.L
0123 0010M 9181 SUBX.L
0124 0010AC 2E80 MOVE. L
0125 0010AE 2832EOOO S13219 MOVE.L
0126 0010B2 2605 MOVE. L
0127 001OB4 4EBB1118 JSR.S
0128 001OB8 2F4lO004 MOVE. L
0129 0010BC 2F420008 MOVE.L
0130 0010CO 2831EOOO MOVE. L
0131 00lOC4 2606 MOVE. L
0132 0010C6 4EB81118 JSR.S
0133 0010CA 282F0008 MOVE.L
0134 OOlOCE D882 ADD.L
0135 0010DO 282F0004 MOVE.L
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(FOR N3=0 TO N4-4 STEP 4)

RETURN

D1 :D2 ~XXXX~XXXX~~XXXX~DODO~

SIGN CORRECTION FOR NEGATIVE DATA

SUBTRACT MULTIPLIER FROM HIGH D2 IF
MULTIPLICAND WAS NEGATIVE

NEGATE RESULT IF SINE/COSINE WAS NEGATIVE

PERFORM 16 (UNSIGNED) BY 32 (SIGNED) MULTIPLY
MULTIPLIER IN D3.W, MULTIPLICAND IN D4.L
RESULT IN D1 (HIGH) AND D2
HIGH PARTIAL PRODUCT IN D1
LOW PARTIAL PRODUCT IN 02
ADD PARTIAL PRODUCTS AS FOLLOWS:
01 ~XXXX~XXXX~ (X=4 BITS)
02 + ~XXXX~XXXX~

RESULT=DATA IF SINE/COSINE MAGNITUDE=l.O

TEST FOR SPECIAL CASES OF SINE/COSINE

RESULT=O IF SINE/COSINE=O

02(NB)=D2(N7)-T2

NEXT N3

N4=N4+N4
IF N4<4*N Gom 3211

Dl (N7)=D1 (N7)+Tl
D2(N7)=D2(N7)+T2
NEXT N7 (FOR N7=N3 TO 4*N-4 STEP N4*2)

RETRIEVE T1 FROM STACK, NOW D3=T1, 04=T2
Ol( NB)=ol(N7)-T1

D3
TRGMPYA
D1
D2

#$8000,03
TRGMPYB
D4,D1
02
TRGMPYC
D4,01
D1
03,01
04,D2
D3,D2
02,DO
DO
DO
DO,m
02
02
D4
TRGMPYC
D1
D3,D1
D1
D3
TRGMPYD
D2
D1

END

ADDX.L D1,04
MDVLL (SP) ,D3
MDVE.L 0(A1,A5),DO
SUB.L D3,DO
MOVLL DO,0(A1,A6)
MOVLL 0(A2,A5) ,DO
SUB.L D4,DO
MOVLL DD,O(A2,A6)
ADD.L D3,O(A1,A5)
ADD.L D4,O(A2,A5)
ADD.L AO,A5
ADD.L AO,A5
CMPA. L D7,A5
BLT.S S13216A
ADD.W #4,M
CMPA.L AO ,M
BLT S13212A
ADD.L AO,AO
CMPA. L D7,AO
BLT S13211
ADD #12,SP FREE UP SPACE RESERVED ON lliE STACK
MOVEM.L (SP)+,DO-D7/AO/M-A6 RESTORE ALL REGISTERS USED
RTS RETURN TO CALLER

; TRGMPY = SPECIAL TRIGONOMETRIC foULTIPLY SUBROUTINE
ENTER WIlli SINE OR COSINE Ml\GNITUDE IN D3.W, SIGN IN D3(BI131)
ENTER WITH 32 BIT SIGNED DATA VALUE IN D4.L
RETURN WITH 48 8IT SIGNED PRODUCT LEFT-JUSTIFIED IN 01 (HIGH) AND 02
USES 00-D2

0136 001004 0981
0137 001006 2617
0138 001OD8 2031DOOO S13220
0139 0010DC 9083
0140 00100E 2380EOOO
0141 001OE2 2032DOOO S13221
0142 DOlOE6 9084
0143 0010E8 2580EOOO
0144 0010EC 07B10000 S13222
0145 0010FO 09820000 S13223
0146 001OF4 OBC8 S13224
0147 001OF6 OBC8
0148 0010F8 BBC7
0149 0010FA 6088
0150 OOlOFC 08FC0004 S13225
0151 001100 B9C8
0152 001102 6000FF4C
0153 001106 OlC8 S13226
0154 001108 B1C7 S13227
0155 00110A 6DOOFF40
0156 D0110E DEFCOOOC
0157 001112 4CDF71FF
0158 001116 4E75
0159 001118
0160 001118
0161 001118
0162 001118
0163 001118
0164 001118
0165 001118
0166 001118 4M3 TRGMPY TST.W
0167 00111A 6606 BNE.S
0168 00111C 4281 CLR.L
0169 DOllIE 4282 CLR.L
0170 001120 4E75 RTS
0171 001122 OC438000 TRGMPYA CMP.W
0172 001126 6606 BNE.S
0173 001128 2204 MOVE.L
0174 00112A 4282 CLR. L
0175 00112C 6020 BRA.S
0176 00112E 2204 TRGMPY8 MOVE.L
0177 001130 4841 SWAP
0178 001132 C2C3 MULU
0179 001134 2404 MOVE.L
0180 D01136 C4C3 MULU
0181 001138 2002 MOVE.L
0182 00113A 4240 CLR. W
0183 00113C 4840 SWAP
0184 00113E 0280 ADD.L
0185 001140 4842 SWAP
0186 001142 4242 CLR. W
0187 001144 4A84 TST.L
0188 001146 6A06 8PL. S
0189 001148 4841 SWAP
0190 00114A 9243 SUB.W
0191 00114C 4841 SWAP
0192 00114E 4A83 TRGMPYC TST.L
0193 001150 6A04 BPL. S
0194 001152 4482 NEG.L
0195 001154 4081 NEGX.L
0196 001156 4E75 TRGMPYO RTS
0197 001158
0198 001158

o ERRORS IN PASS 2

Fig. 18-8. Assembled 68000 FFT subroutine listing (cant.)
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temporary storage is in the machine registers (a big advantage of the 68000)
and the stack, the routine could even be put into ROM if desired.

In general, the subroutine is a literal translation of the BASIC program
of Fig. 13-17. However, the first portion, in which the data arrays are
scrambled into bit-reversed order, has been redone. Although the algorithm
used in the BASIC version is reasonably efficient for a high-level language
implementation, using bit manipulation instructions is much faster in
assembly language. Essentially, two counters are incremented from 0 to N-l,
one normal and one bit-reversed, and the corresponding array elements are
swapped whenever the bit-reversed counter is larger.

The second portion is reasonably straightforward except when multi
plication by a sine or cosine is performed. What is actually needed is a 16-bit
unsigned X 32-bit signed multiply to yield a 48-bit signed product,
whereas the 68000 only provides 16 X 16-bit multiplies where both
operands are either signed or unsigned. The desired result is achieved in the
TRGMPY subroutine by treating the 32-bit signed multiplicand as an
unsigned value, performing a 32 X 16-bit unsigned multiply using two of
the 16 X 16-bit machine instructions, and then correcting the product by
subtracting the unsigned multiplier from the most significant 16 bits of the
48-bit product if the multiplicand was negative. This routine also bypasses
multiplication completely when the multiplier is zero or unity. If an inverse
transform is required, the instruction in line 106 can be changed to a BSET
instruction, which has the effect of negating the SIN multipliers.

For efficient transformation of real data, a complex-to-real transform
routine can be coded using these same techniques and the BASIC version in
Fig. 13-19 as a guide. Note that the complex-to-real transform uses cosine
and sine angle increments half the size of the corresponding complex FFT.
Thus, to acrually transform 4096 real points using a 2048-point complex
transform, either the cosine table will have to be made twice as large (and the
given subroutine slightly modified to accommodate it), or the complex-to
real routine will have to interpolate in the given table. Of course, this
problem does not arise for smaller transforms.

As coded, this subroutine gives results as accurate as 16-bit input data
allow. For many analysis tasks, particularly those in which the final result is a
plot or display, less accuracy is needed. This routine (and a companion
complex-to-real routine) could in fact be rewritten for the 12-bir data and
multipliers, which would probably increase the speed two to three times for
transform sizes up to 256 points. Real-time analysis of speech bandwidth
data then would be possible even on an 8-MHz 68000.

NOTRAN Music System

After coming this far, it is about time to see how the various synthesis
and processing techniques can be put together to form a usable music
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software system. The system that will be described here is rather small and
simple compared to mammoth systems like MUSIC V. Nevertheless, it
should serve well as an example of how a system of manageable size (for one
person) might be put together. A subset of the system to be described was
actually implemented on a university minicomputer (about half as fast as an
8-MHz 68000) in 1970 and used to perform a Bach organ fugue! with
considerable attention to detail. The version described here as well as logical
extensions is within the capabilities of nearly any microcomputer given the
necessary masS storage capacity and audio DAC.

The acronym for the system is NOTRAN , which is taken from the
words, NOte TRANslation. Immediately it is apparent that the system is
based on conventional music notation and the 12-tone scale with all of its
trappings and as such it is seemingly bound to the performance of conven
tional sounding music. This is basically true but does not detract from its
utility as a system organization example, and besides, far more people are
experienced in conventional notation. Thus, the reader is allowed to concen
trate on the system organization, which is the purpose of this section. In any
case, the huge variety of techniques, options, and goals in music synthesis
makes "assumptions to simplify the problem" absolutely necessary if any
results at all are to be obtained. Extensions to cover other tuning and nota
tion systems are certainly no more difficult than with other music software
systems.

Another characteristic of the NOTRAN system as described here is that
it is a programmed, delayed-playback, direct digital synthesis system.
However, the three lowest levels of software could be replaced by dedicated
synthesis hardware or an interface to an analog synthesizer to allow real-time
operation. The basic syntax of the language itself is not optimized for
minimum typing effort. Instead, it is designed for ease of understanding (by
humans) and ease of interpretation (by computers). However, a macro
processor can be used to define more advanced statements that may generate
numerous basic NOTRAN statements.

Finally, NOTRAN statements are in strict time order. All sounds
created by the NOTRAN system are discrete events having a starting time
and a duration. The starting time is determined by the location of statements
invoking the event, whereas the duration is determined both by the invoca
tion statement and a corresponding "voice definition" statement. Once
started, an event runs to completion independent of other events and
statements.

In describing the NOTRAN system, the lowest-level routines and
design considerations will be covered first. While this is in direct opposition

1 The piece was "Toccata and Fugue in D Minor." The computer was an Adage Ambilog
200, which had a 3D-bit word but for arithmetic behaved like a 15-bit machine.
Twelve-bit samples were used and the sample rate was 32 ks/s, although four-co-one
speedup of the audio tape was necessary to obtain that speed due to the low-density
(556BPI) of the tape drives. Computation time for the 8-min piece was about 3.5 h.
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to "top-down" philosophy, it offers a smooth transition from familiar con
cepts already covered to the unfamiliar ones being introduced. Where word
sizes are given they were chosen for very high sound quality and can certainly
be cut back for experimentation in 8-bit systems.

Level 1 Routines

The Level 1 or actual sound generation routines in a synthesis system in
many ways determine the "character" of sounds generated by the system. The
NOTRAN system utilizes two basic types of sounds, definitely pitched tones
and percussive sounds. Accordingly, there are two Level 1 subroutines, one
for each type of sound. Although only two subroutines are involved, each
may be called several times with different arguments in order to generate
simultaneous sounds. While actual listings of these two subroutines will not
be given, it is expected that they will be written in assembly language. The
actual code is quite straightforward and may in fact represent the majority of
machine level coding required for the entire NOTRAN system.

As mentioned earlier, efficiency considerations dictate that Level I
routines work with blocks of samples in order to minimize call/return over
head. All control parameters are assumed to be constant throughout the
block. A good block size is about 1 msec of samples; thus, for example
purposes we will assume a ,)O-ks/s sample rate and a 30-sample block size.
The subroutine will therefore compute 30 samples before returning. For
maximum flexibility, these 30 samples will be added to the contents of a 30
sample, 16-bit output buffer to effect mixing. The upper level routines will
be using block counts for timing purposes so an exact I-msec block size is
convement.

The tone generation subroutine will operate on the table lookup
principle. A table size of 1,024 16-bit words is sufficient for very high quality
but could be reduced to 256 8-bit words for lower-quality experimentation.
In either case, the subroutine needs the following five arguments passed to it:

1. Address of the waveform table (16 or 32 bits)
2. Frequency parameters (16 to 32 bits)
3. Amplitude parameter (8 or 16 bits)
4. Address of sample buffer (16 or 32 bits)
5. Waveform table pointer (16 to 32 bits to match frequency

parameter)

Note that the waveform table pointer will be changed by the computation,
while the rest of the parameters are left alone.

The most efficient method of passing this information back and forth is
to treat the five items as an array and simply pass the addreJJ of the array to
the subroutine. Although the array size is fixed for this particular subroutine,
other Level 1 subroutines may require a different array size and format. Thus,
for ease of storage allocation by upper level routines and future expandability,
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HIGH BYTE LOW BYTE MNEMONIC

BLOCK __

ADDRESS

+2

+4

+6

+8

+ 10

+ 12

+ 14

+ 30

ACTIVITY

I

I

FLAGS
SOUNDID

WAVE TABLE ADDRESS

HIGH ORDER FREQ. PARM.

LOW ORDER FREQ. PARM.

AMPLITUDE PARM

ADDRESS OF SAMPLE BUFF

HIGH ORDER WAVE TABLE PTA.

LOW ORDER WAVE TABLE PTA.

UNUSED

SNDID

WAVTBA

FREQ

AMP

SMPBFA

WAVTBP

Fig. 18-9. Sound control block for tone generator

NO
ZERO,

Fig. 18-10. Tone generator subroutine flowchart
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a fixed argument array size of, say 32 bytes will be used for all Level 1
routines.

Figure 18-9 shows one possible way to arrange the five arguments into
fields within the 32-byte sound control block. With the 6502,68000, and most
other microcomputers, indexed addressing can be used to quickly access the
fields in the sound control block. One simply loads the address of the control
block passed by the caller into a register and then uses fixed offsets to access
the data. In a machine without indexed addressing, such as the 8080, the
control block can be copied into a fixed memory area, the samples computed,
and those descriptor elements changed by the execution (such as the table
pointer) copied back. Alternatively, the order of the fields within the block
can be carefully sequenced so that increment index instructions can be used
to scan through them.

The initial byte of activity flags is used by the upper level routines to
keep track of which control blocks are actually generating sound. The sound
10 byte identifies which Level 1 routine the control block is formatted for.
The wave table address is the address of the first entry of the waveform table
being used. The wave table pointer is shown as a 32-bit value, which consists
of a 22-bit fractional part and a lO-bit integer part. The integer part is added
to the wave table address to actually get a sample. The frequency parameter is
also shown as 32 bits and is the waveform table pointer increment. The
amplitude parameter gives the desired waveform amplitude, while the sam
ple buffer address indicates where the 30-sample buffer is located.

Figure 18-10 shows a flowchart for the tone generator subroutine.
Essentially, it goes through a sample computation loop 30 times and returns.
Note that the argument giving the address of the sample buffer is
incremented during execution. This is desirable and minimizes the overhead
associated with building up large sample blocks for mass storage devices,
such as 3,000 samples for IBM-style magnetic tape. The other calculations
perform standard waveform table lookup without interpolation as described
in Chapter 13.

The percussion generator routine is less straightforward than the tone
generator. In Chapter 15, it was seen that a wide variety of mechanisms
produce percussive sounds. Covering all of these in a single subroutine is not
practical. Figure 18-11 shows a model that can be used to approximate the
majority of common percussive instruments as well as numerous others. The
pulse-excited bandpass filter is used to provide a damped sine wave, while
the white noise source and multimode filter provide filtered noise. Three
gain controls are shown, which allow a noise envelope, the ratio of noise to
damped wave, and overall output amplitude to be independently controlled.
For maximum efficiency, amplitude control of the damped wave is controlled
by varying the intensity of the strike pulse, which only has to be done once,
rather than doing a sample-by-sample multiplication of the generator out
put.
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Fig. 18-11. Percussive sound model
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BLOCK
ADDRESS

+2

+4

+ 6

+ 8

+ 10

+ 12

+ 14

+ 16

+ 18

+ 20
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+ 24

+ 26

+ 28

+ 30
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FLAGS SOUND 10

BANDPASS FILTER F

BANDPASS FILTER Q

MULTIMODE FILTER F

MULTIMODE FILTER Q

FILTER MODE

DAMPED SINE AMP

FILTERED NOISE AMP

OVERALL AMP

ADDRESS OF SAMPLE BUFF

STORAGE FOR BANDPASS

FILTER

STORAGE FOR MULTIMODE

FILTER

NOISE REGISTER

UNUSED

MNEMONIC

SNDID

RESNF

RESNQ

MMFF

MMFQ

MMFM

RESNAM

MMFAM

AMP

SMPBFA

RESNDl

RESND2

MMFDl

MMFD2

NOISE

Fig. 18-12. Sound control block for percussion generator

The sound control block for percussive sounds is shown in Fig. 18-12.
The data elements in the control block should be self-explanatory. Note that
all but two bytes of the block are used and that many of them simply describe
the percussive timbre, which is (:onstant. In the tone generator control block,
the actual waveform was stored elsewhere and a pointer to the information was
given. This could also be done with the percussive generator and thus free up
10 bytes in its sound control block, although it was not.

Figure 18-13 is a flowchart of the major operations performed by the
Level 1 percussion routine. Note that each half of the percussive sound
model is checked for activity before computing the 30 samples. This saves
considerable time when only half of the model is needed for simple percussive
sounds.
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OFF

YES

RETURN

Fig. 18-13. Percussion generator subroutine flowchart

The envelope of the filtered noise is handled by higher level routines
just as with the tone generator routine. The damped sine wave generator,
however, supplies its own envelope because of the way it works. The activity
flags are used to pass information about the damped wave generator to and
from the calling routine. The start flag is set by the caller when the percussive
sound is to be started. When the percussive routine sees the flag set, it
initializes one of the bandpass filter registers (the digital state-variable type is
assumed) to the damped wave amplitude and turns the start flag off. This
operation is equivalent to striking the resonator, and thereafter the filter is
iterated to produce the damped wave.

In theory, the wave ampli tude will never reach zero so a mechanism is
necessary to detect when a very small amplitude is reached so that the
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Fig. 18-14. Tone envelope details

percussive sound can be considered complete. Thus, at the end of every
3D-sample block, the bandpass filter registers are examined (their absolute
values are summed and compared with a constant representing perhaps 6D dB
of decay), and if a low enough amplitude is seen, the stop flag is turned on.

Level 2 Generator Routines

Level 2 routines operate much like Level 1 routines except at a slower
speed. They are primarily responsible for sequencing through envelopes in
the synthesized sound. In this respect, they act much like waveform
generators but at a l-ksls sample rate. Also, in order to crudely implement
dynamic spectrum changes during a note, several waveform tables may be
sequenced through in the course of the note. Cross-fading (time-variable
interpolation) from one waveform table to the next is therefore handled in
these routines as well. Also, there is a routine responsible for scanning the
control blocks and insuring that all of the active ones contribute their
samples to the sample buffer. Finally, there is a routine that controls the
collection of 30 sample blocks into larger records and initiates writing of the
records onto a mass storage device.

The most important Level 2 routine controls the execution of tone
events. A tone event is basically a pitched note that uses the Level 1 tone



680 MUSICAL ApPLICATIONS OF MICROPROCESSORS
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Fig. 18-15. Tone-event control block
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EVTID

TONTYP ENVPHN

ENVTC

ENVAD

ENVDD

ENVSD

ENVRD

ENVAW

ENVDW

ENVSW

ENVRW

ENVSAM

EVTAMP

WAVACB

WAVBCB

CFVAL

CFINC

EVTFRQ

subroutine to generate sound. One important aspect of a tone event is its
envelope, which is sketched in Fig. 18-14. This routine uses the standard
ADSR envelope shape, which consists of four phases. To make life interest
ing, not only is the amplitude controlled by the envelope but the waveform is
as well. Each envelope phase can correspond to a different waveform, which,
although seemingly crude, is quite effective. A sudden switch from one wave
table to the next might inject objectionable clicks, however, so a "cross
fading" technique is used.

From the foregoing it can be seen that this routine has several tasks to
perform. It must sequence the envelope through its four phases according to
several parameters, and it must generate an acceptable curve for each phase.
During the cross-fading interval, two tones are being generated. Besides
controlling the cross-fading itself, sound control blocks for the needed tones
must be created, used, and deactivated. Although this routine is much more
complex than the lower-level routines, it is executed far less frequently,
which makes the extra time tolerable.

Figure 18-15 shows the event control block for tones. Since these blocks
will tend to be large, an allocation of 64 bytes is assumed. The activity flags
and event ID fields parallel those of sound control blocks. The tone type field
indicates which type of tone generation subroutine is to be used if the system
is ever expanded. The envelope phase number ranges from 1 to 4 to indicate
which part of the envelope is being generated. The time counter is used to
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Fig. 18-16. Level 2 tone-control routine
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count milliseconds during each phase. The next four parameters give the
duration for each phase. Two additional parameters give the sustain
amplitude relative to the peak amplitude of the attack (remember that the
ADSR shape overshoots the sustain level during attack) and the overall
amplitude of the entire event.

The remaining parameters are used to control waveform switching.
Four parameters give waveform table addresses for each of the four envelope
phases. Since sound control blocks must be created to generate sound, their
addresses are stored in the event control block. The cross-fade value increases
from 0 to 1.0 as the old waveform fades out and the new waveform fades in.
The rate of fade is arbitrarily set to complete in one-quarter of the duration of
the current envelope segment. The cross-fade increment is computed at the
beginning of an envelope segment such that this is true.
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Figure 18-16 is a rough flowchart of the Level 2 tone control routine.
Start and stop flags similar to the percussive sound control block are used to
control initiation and termination of the event. If this routine finds the start
flag on, it initializes things for the attack phase of the envelope. Since no
waveform cross-fade is used during the attack, the cross-fade parameters are
zeroed.

Note that a routine is called to find an inactive sound control block and
initialize it. This is a Level 2 utility that will be used quite often. It simply
scans rhe portion of memory devoted to sound control blocks and uses the
first inactive (stop flag on) one it finds. Failure to find an inactive block is an
error condition, which means that too many sounds are going simulta
neously. Once a sound control block is found and initialized, it is called
waveform A and its address is stored in WAVACB.

The second decision block determines if an envelope segment has ex
pired. If so, and it is the release segment, the stop flag is set, which means
that the tone event is complete. Otherwise, the envelope phase number is
incremented and the envelope time counter is initialized to the. duration of
the next phase. Since cross-fading will be necessary when entering the new
phase, the cross-fade parameters are initialized. The cross-fade value
(CFVAL) is set to zero and the increment (CFINC) is computed according to
the formula CFINC=4/ENVTC, where CFINC and CFVAL are assumed to
be fractions. Wi th this increment, the cross-fade will be complete in one
quarter of the duration of the current envelope phase. Finally, another sound
control block is set up and called waveform B. Cross-fading will always fade
out waveform A and fade in waveform B.

Most of the time, entry into the tone control routine falls through the
first two decisions and enters a block where the Level 1 routine for waveform
A is called. The amplitude for the 30 samples that it computes is the product
of the overall event amplitude, the current-envelope amplitude, and one
minus the cross-fade value. The current-envelope amplitude is a function of
the time counter (ENVTC) and the duration of the current-envelope phase.

In an analog-envelope generator, the attack, decay, and release curves
are negative exponential functions, which never really reach their endpoints.
In the digital domain, linear curves are easier to generate and also reach their
endpoints but do not always "sound right," particularly with long duration
envelopes. Here, a compromise is made in which the exponential curve is
adjusted to reach the endpoint in three time constants. This may be accom
plished as shown in Fig. 18-17 by computing a virtual endpoint 5.2%
further away from the beginning point than the actual endpoint. For
maximum efficiency in the envelope rourine, the three-time constant expo
nential curve is stored in a table. Then a table lookup based on the envelope
phase number, time counter, and envelope phase duration is performed
according to the formulas given in the figure.

After waveform A samples are computed, a test is made to determine if
cross-fading is in effect. If so, B waveform samples are also computed, which
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Fig. 18-17. Truncated exponential curve

are automatically added to the A samples in the sample buffer. The
amplitude argument for B is the same as for A except that the cross-fade
value is factored in differently so that wave B fades in. If cross-fading is not in
effect, waveform B is bypassed.

After the 30 composite samples are computed, the cross-fade increment
is added to the cross-fade value. If the sum reaches 1.0, which means that the
A waveform is completely faded out, the A sound control block is deactivated
and the B sound control block becomes a new A by swapping the control
block addresses, WAVACB and WAVBCB, in the event control block. The
cross-fade parameters are then zeroed to inhibit cross-fade processing until
the next envelope phase is started. The final operation before a normal exit is
decrementing the time counter.

Control of percussive events in most respects parallels that of tone
events. The filtered noise envelope, for example, is controlled in a similar
fashion but for simplicity is a simple attack-release shape. In order to

broaden the range of sounds available from the simple model used, provisions
are made for the noise filter and ringing resonator parameters to vary during
the sound. Both the center frequency and Q factor for the noise filter may
vary, while only the ringing frequency of the resonator is adjustable. A linear
variation from a specified initial value to a specified final value is used. This
variation scheme is well defined for the enveloped noise, which has a duration
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Fig. 18-18. Percussion-event control block

that is the sum of attack and release times. The ringing bandpass filter does
not have such a well-defined duration so for simplicity the "duration" is
assumed to equal that of the enveloped noise. (If no enveloped noise is
desired, its amplitude parameter may be set to zero but with an envelope
defined to establish the "pseudoduration. ")

The percussion event control block in Fig. 18-18 again contains a large
number of parameters, most of which are manipulated similarly to those in
the tone event control block. The main difference is control information for
varying filter parameters during the event. For maximum efficiency, an
"increment" (which can be negative) for each parameter is computed when
the event is started, and the increment is added to the filter parameter every
block of 30 samples.

Figure 18-19 is a flowchart of the percussion event control routine.
Again, it is similar to the tone routine and in most respects is simpler. The
major complication is that the "duration" of the filtered noise portion of the
event may be different from that of the damped sine wave portion. No
problem occurs if the damped wave is shorter, but, if it is longer, the event
control block will have to be kept active beyond the end of the noise en-
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Fig. 18-19. Level 2 percussion-control routine

velope. This is accomplished by the bottom-most decision block, which does
not allow the event control block stop flag to be set until the sound control
block stop flag is set. This solurion requires the envelope-sequencing logic to
be smart enough to avoid overshooting the end of the envelope.

Level 2 Sequencing Routine

Up to this point, sound and envelope generator routines have been
discussed. Although many sounds may be going simultaneously, there is
only one copy of each generator subroutine in memory. The multiple sounds
are the result of calling these routines with different event control blocks.
The Level 2 sequencer routine is responsible for scanning the area of memory
devoted to event control blocks and having each active one processed. This is
the routine that is actually called by the Level 3 routines to be discussed.

Figure 18-20 is a flowchart for the sequencer routine. Entry is directly
from the NOTRAN language interpreter and is with exactly one argument.
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Fig. 18-20. Level 2 general-control routine

This argument specifies how many milliseconds of sound to generate before
returning. Although no new events can be started during this interval, any
number may terminate (as mentioned earlier, events are defined by their
starting time and duration). New events can only be created by the NO
TRAN interpreter when it is in control.

The first task is to scan the memory area devoted to event control
blocks. Every active block found is further tested for the event type and the
corresponding Level 2 generator routine is called. After a complete scan
through all of the blocks, 30 samples have been added to the sample buffer
and the buffer address pointers in all sound control blocks have been in
cremented by 30.

The next task is to determine if the large sample buffer is full. In the
original implementation of NOTRAN, this buffer was 3,000 samples long,
which would therefore hold 100 of the small sample blocks. If the large
buffer is full, then a sample record would be written to the mass storage
device. Following this, all of the sound control blocks would be scanned and
their sample buffer addresses reset to the beginning of the large sample
buffer. While this method of handling (he sample buffer seems redundant
(the buffer address field of all sound control blocks is the same), keeping the
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information separate and with the sounds facilitates implementation of stereo
or quad at a later time.

The last task is to determine if the specified duration of sound genera
tion has elapsed. The time argument that was passed to this routine is simply
decremented and tested for zero. If the time has not elapsed, the routine is
simply executed again for another 30 samples. When the time is elapsed, the
Level 3 NOTRAN interpreter regains control so that more events can be
started.

NOTRAN Language

Level 3 routines in the NOTRAN system are what actually look at
NOTRAN statements. Like the lower-level routines, most of the work is
simply the manipulation of tables of information. Before discussing what
these routines do, a brief description of the NOTRAN language itself is in
ordet. Note that up to this point the sound generation routines are com
pletely independent (within the constraints imposed by the sound generation
models) of the actual music language used. Thus, language freaks could
completely restructure the language and still use the sound generation
routines that have been discussed.

As briefly mentioned earlier, NOTRAN uses a textual representation of
the musical score. In designing such a representation, one is immediately
faced with a problem: how should the score, which is basically a two
dimensional structure, be represented as a one-dimensional character string?
The two dimensions in this case are time in the horizontal direction and
"voices" or "parts" in the vertical dimension. Thus, the music language
designer must choose between a vertical representation where the score is
coded chord-by-chord in strict time sequence and a horizontal representation
in which all of the notes, from beginning to end, for the first voice are coded
followed by notes for the next voice, etc.

The former is probably easier to read (it can be likened to a conductor's
score, which shows all of the instrument parts at once), while the latter may
be easier to transcribe from a printed score into language statements. Of
course, when the music is actually played, it must be presented to the
synthesis routines or synthesizer in vertical form so the individual parts of a
horizontal score must be "merged" into an internal vertical form for
performance. Such a merging routine can become quite complex and unless
"checkpoints," such as measure boundaries, are included in the language, a
single duration error in a voice may misalign that voice for the remainder of
the piece. Thus, for simplicity, NOTRAN uses a vertical score
representation.

Of course, printed music scores are primarily graphic in nature. This
coupled with the improved graphic capabilities of modern microcomputers
suggests an interactive graphic score editor rather than a text language and
standard text editor program. This in fact is done frequently in commercial
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products (see Chapter 20), but the author is opposed to doing this in an
experimental synthesis system from three standpoints. First, common
graphics resolution in the 500 X 300 range and less is simply too low to
provide satisfactory rendition of all the various music score marks and still
show more than a few measures at once. Another is that the graphic score
tells what to play but very little about how to play it. Special conventions,
such as horizontal entry of one part at a time and a way to refer to voice
definitions, are necessary to insure that notes are matched with the proper
waveforms, envelopes, etc. While'this problem can certainly be overcome in a
system as simple as NOTRAN, one quickly becomes bogged down when
adapting conventional score notation to a more comprehensive synthesis
program. And finally, writing even a minimal score-editor program is a very
large task for an individual to tackle, certainly much larger than the
synthesis routines outlined so far. One can spend months or years to come up
with a good score editor before getting into the sound-synthesis program
ming at all!

Keturning to the NOTRAN language as currently defined, it is in
many ways similar to a step-by-step procedural computer language like
FORTRAN or BASIC. Music code in the language is broken up into
individual statements.

Each statement uses one (or more) lines of text and almost always starts
with a keyword such as TEMPO or VOICE. The keywords, besides being easy
to read, make it easy for the interpreter to identify the type of statement. The
boundaries between statements either denote the passage of time or simply
separate blocks of information.

NOTRAN statement types can be divided into three different groups.
First, there is the specification group, which is used to define the characteris
tics of something such as an "instrument." Specification statements are
instantaneous and do not consume any time in the musical performance.
Next, there are control statements, which influence what notes are to be
played and how they are to be played but again they do not consume any
time. Finally, there are note statements that actually cause sound to be
generated. Usually, but not always, a duration is associated with each note.
Later, we will discuss the importance of durations in sequencing and coor
dinating multiple, simultaneous sounds. NOTRAN statements are executed
sequentially, one after another. The standard language has no provisions for
loops or repeats, etc.; that function is left for a Level 4 macroprocessor.

VOICE Statement

The VOICE statement is a specification statement used to define all of
the parameters associated with tone-type sounds. Thus, the envelope,
amplitude, and waveform parameters associated with tones must be
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Example: V01CE2 AD=80; 00=50; RD=250; SA=45; VA=15;
AW=Hl,50,50; H2,20,25; H4,30,60;
DW=Hl,lOD; H2,80; H3,20; SW=H2,75; H3,50; H4;
RW=Hl

V01CEn where n is the voice 10 number

AD Attack Duration in milliseconds

DO Decay Duration in milliseconds

RD Release Duration in milliseconds

SA Sustain Amplitude in percent of peak attack amplitude

VA Voice amplitude in percent of DAC full scale range

AW Attack Waveform

OW Decay Waveform

SW Sustain Waveform

RW Release Waveform

Hn Harmonic number

Fig. 18-21. Voice statement format. The example defines a voice ID of 2, and
attack duration of 80 msec, decay duration of 50 msec, release
duration of 250 msec, sustain amplitude 45% of attack amplitude,
and total voice amplitude 15% of overflow level. The attack
waveform consists of fundamental, second, and fourth harmonics
with relative amplitudes of '50%, 20%, and 30% of the full
waveform amplitude and phases of 180°, 90°, and 216°, respec
tively. The decay waveform has fundamental, second, and fourth
harmonics with amplitudes of 50%, 40%, and 10% of the total and
random phase angles. The sustain waveform has second, third,
and fourth harmonics with amplitudes of 33.3%, 22.2%, and
44.4% of the total and random phases. The decay waveform con
tains only the fundamental harmonic, which is, of course, 100% of
the waveform.
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specified. The syntax of the VOICE statement could be as simple as a string
of parameters (numbers) separated by commas (this, in fact, is how the
original version of NOTRAN worked), but with possibly dozens of parame
ters, it becomes very difficult for the user to read the statement. Therefore,
the convention of keyword parameters is adopted whereby each parameter is
identified by a two-character mnemonic. This method also allows parameters
to be scrambled or omitted if desired. The statement interpreter then
supplies default parameters for the omitted ones. For example, if a simple
AR envelope is desired, then only the attack and release parameters need to

be specified and the interpreter will set the decay duration and sustain
amplitude to zero and unity, respectively.

Parameters are separated by semicolons and optionally spaces. The
semicolons act as a signal to the interpreter that more parameters, possibly on
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the next line, follow. Parameters probably should not be split across line
boundaries (whether this is a requirement depends on the interpreter im
plementation), and besides, splitting makes the statement hard to read.
Parameters that specify a duration are always in units of milliseconds.
Parameters that specify an amplitude are in terms of percent. Depending on
the parameter type, the values of related parameters may have to add up to

100% or less. With other parameter types, the percentage figures merely
establish ratios and can add up to any value, although individual parameters
must be less than 100%. With these conventions for numerical parameters,
integers can normally be used; however, a decimal point and fractional part
can be tacked on for additional precision.

Figure 18-21 shows an example voice statement and a list of the
keyword parameters available. The number immediately following the
VOICE keyword is the 10 number for the voice. Note statements using the
voice will specify the 10 number. During the course of the music, a
particular voice number may be redefined as often as desired. There is no
restriction on the numbers that can be used.

The AD, DO, and RD parameters are used to specify the durations, in
milliseconds, of three phases of the ADSR envelope. The duration of the
sustain phase depends on the note being played. The first letter identifies the
envelope phase and the D is a mnemonic for duration. If a parameter is
omitted, zero (actually 1 msec) is assumed. SA refers to sustain ampJiwde
and gives the sustain level relative to the peak overshoot of the attack. Note
that the percent figure refers to voltage amplitude; thus, a specification of 50
would give a sustain level 6 dB below the attack peak. Omissi/on of this
parameter gives a default of 100%.

The voice amplitude (VA) parameter is very important. Its basic func
tion is to specify the amplitude of the voice relative to that of other sounds.
The importance is due to the requirement that the sum of all of the voice
amplitudes of all simultaneous sounds must not exceed 100% if total freedom
from overflow is desired. This means that if at some point in the musical
score 15 simultaneous sounds have been built up, the VA parameters as
sociated with each sound should not add up to more than 100%. Observing
this rule will virtually guarantee (since the filtered nois() used in percussion
instruments is random, it cannot be absolutely guaranteed) that overflow will
not occur when the sounds are summed in the sample buffer. In most cases,
with a lot of simultaneous sounds, the amplitude sum could substantially
exceed 100% without undue risk of overflow because of the low probability
of envelope and waveform peaks all coinciding at the same time.

The remaining parameters define the four waveforms associated with
the four envelope phases. These are organized into groups of parameters. A
group starts with a keyword, such as AW for attack wave, followed by an
equals sign, which signals that a group of parameters follows. Within the
group may be several parameter subgroups, each of which corresponds to a
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harmonic. The subgroup starts with the keyletter H (harmonic) immediately
followed by a number defining the harmonic number. Commas then separate
the parameters in the subgroup. The first parameter after the harmonic
number is amplitude (in percent) and the second is phase in units of 211"/100
(thus, 50 specifies 180°,25=90°, etc.). The last parameter in a subgroup is
followed with a semicolon if any more subgroups or groups follow; other
wise, the end of the statement is assumed. If the phase parameter is omitted,
a random-number generator determines the phase, and, if the amplitude
parameter is omitted, a 100% amplitude is assumed. Omitted harmonics, of
course, have zero amplitude. The amplitude percentages in a waveform
specification simply indicate relative harmonic amplitudes; there is no re
striction on their sum, since the waveform will be scaled after it is computed.
DW, SW, and RWare similarly used to specify groups of parameters for the
other three waveforms. If a waveform is not defined for an envelope phase,
the waveform of the previous segment will be used, which saves space in the
waveform table area of memory. The attack segment must have a waveform
specified.

PRCUS Statement

The PRCUS statement, which is detailed in Fig. 18-22, defines the
sound of a percussion instrument. The ID number and duration and
amplitude parameters closely parallel those of the voice statement. Since a
two-phase envelope is used, only the AD and RD parameters are needed.

The use of filtered noise in the percussion sound model creates some
interesting problems in specifying the amplitude of the filtered noise. The
worst problem is that the parameters specified for the filter will greatly
influence the perceived as well as actual amplitude of the filtered noise.
Although the interpreter could look at the filter bandwidth and adjust the
amplitude parameter, the correction will be inaccurate if the bandwidth
changes during the sound. For simplicity, the noise amplitude parameter
should simply be passed through with any necessary correction supplied by
the user. Another problem with filtered noise is the fact that its peak
amplitude cannot be predicted with certainty even if uniformly distributed
noise samples are used. Nevertheless, this will seldom cause a problem unless
the noise filter bandwidth is quite small and the percussive voice amplitude
is a sizable portion of the DAC's range. If a problem is encountered, it would
be easy to incorporate a test in the percussion sound generation routine to
clip excessively large filtered noise samples.

The noise filter mode parameter is different because it uses mnemonics
for its value. While convenient for the user, mode numbers could be used
just as well to simplify the interpreter program. Parameter transitions are
specified by giving two numbers separated by commas, the first of which is
the initial value of the parameter and the second is the final value. The
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Example: PRCUS4 AD=10; RD=70; NA=30; SA=70; VA=10;
NM=BP; NF=400,600; NQ=3; SF=100,90; SQ=15

PRCUSn where n is the percussive voice 1D number

AD Attack Duration for filtered noise in milliseconds

RD Release Duration for filtered noise in milliseconds

NA Filtered noise amplitude in percent

SA Damped sine wave amplitude in percent

VA Voice Amplitude in percent of DAC full scale range

NM Noise filter Mode

BP Bandpass

LP Low-Pass

HP High-Pass

BR Band-Reject

NF Noise filter Frequency in Hertz initial,final

NQ Noise filter Q factor initial,final

SF damped Sine wave Frequency in Hertz initial,final

SQ damped Sine wave Q factor

Fig. 18-22. Percussion statement format. The example defines a percussive
sound with an ID of 4, a filtered noise attack duration of 10 msec,
filtered noise release duration of 70 msec, filtered noise amplitude
of 30%, damped sine amplitude of 70%, and overall amplitude of
10% of the DAC range. The noise filter mode is bandpass, and its
center frequency increases from 400 Hz to 600 Hz during the
80-msec combined duration of the envelope. The noise filter Q
factor is constant at 3, giving a 3-dB bandwidth of 133 Hz at the
beginning of the sound. The damped sine wave frequency de
creases from 100 Hz at a rate that will make it 90 Hz when the
filtered noise envelope expires. The damped sine wave Q of 15
will give a ring time to -60 dB of about 330 msec assuming a
constant frequency.

parameters specifying Q are different from the others in that they are pure
numbers rather than percents or durations.

Linear transition of the ringing filter frequency under the control of an
unrelated process (the noise envelope) can lead to some interesting error
situations if a decreasing frequency is specified. The problem occurs when the
center frequency decreases all the way to zero before the ringing is damped
enough to deactivate the sound. If this occurs, the frequency may go negative
(and therefore seem to start increasing from zero) or it might get stuck. With
the constant Q form of the ringing filter, sticking at zero frequency would
probably prevent the sound control block from ever being deactivated, even
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though it is not producing an audible sound. Again, exceptional condition
testing is probably necessary to eliminate the effects of this kind of error. The
testing can be relatively infrequent, however.

Control Statements

The basic level of NOTRAN has very few control statements. Many
more would undoubtedly be added if the language is extended via a macro
processor. One of the basic control statements is the TEMPO statement. The
TEMPO statement essentially specifies a correspondence between musical
time in terms of quarter notes, etc., and real time. The statement format is
simply the keyword TEMPO followed by a valid duration specification (see
the section on note statements), an equals sign, and a number specifying the
number of milliseconds assigned to that duration. An example statement is:

TEMPO Q=350

where Q refers to a quarter nate and the 350 specifies that the quarter note
has a duration of 350 msec. If the time signature (which does not need to
be specified) is 4/4, then this cOtresponds to a metronome marking of 170
beats/min.

The only other control statements are START and STOP. These
keywords require no parameters and are merely used to skip over code while
the score is "debugged." Sound generation is started when a START state
ment is encountered and suspended when a STOP statement is seen. With
sound generation suspended, statements are interpreted and thrown away at
great speed, thus allowing rapid syntax checking or skipping of sections
known to be correct.

Comment lines may be inserted simply by making the first character on
the line an *. The interpreter then ignores the remainder of the line and goes
ro the next.

Note that there are no jump or repeat statements and no provisions for
subroutines (refrains) in the basic language. A little thought will reveal that
if these are implemented in the Level 3 interpreter that the entire NOTRAN
score would have ro be in memory at once. During actual sound synthesis
much, if not most, of memory will be needed for waveform tables, control
blocks, and sample buffers. Although the text could be kept on disk and
randomly accessed in response ro a jump or refrain statement, such a facility
is beyond many microcomputer operating systems. In any case, these func
tions will be left to a higher-level macroprocessor that has all of memory
available when run.

Note Statements

Note statements are the only ones that actually produce sound and take
real time to execute. Whereas the other statements all began with a keyword,
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a note statement begins with either an ID number or simply one or more
blanks. The statement ID number is not important to the interpreter but
may be included to identify various portions of the score such as measure
numbers to the user. The remainder of the note statement consists of one or
more event (note) specifications. As before, a semicolon following a specifica
tion is a signal that more follow on the same or next line.

Quite a bit of information is needed in the specification such as the
voice ID, pitch, duration, and articulation so the syntax is somewhat con
densed to save space without unduly affecting readability. For a tone event,
the specification starts with a number corresponding to the voice statement
defining the "instrument" that will play the event. Immediately following
the voice ID is a single letter pitch mnemonic, which is simply one of the
letters A-G. If the basic pitch must be sharped or flatted, the letter is
followed by a # or an @ sign, respectively. Following this is a single digit
specifying the octave where C4 through B4 spans the octave starting at
middle C. Note that the octave numbers "turn over" at C in accordance with
usual musical practice.

After the voice and pitch have been specified, the duration is needed. In
the original version of NOTRAN, standard fractions such as 1/4 were used
for the duration. However, single-letter mnemonics will be used here for the
common durations as listed below:

W Whole note
H Half note
Q Quarter note
E Eighth note
S Sixteenth note
T Thirty-second note

These stock durations may be modified by appending one or more dots
(periods) or the digit 3. The dot extends the duration specified to its left by
50% and can be repeated if desired, that is, Q .. is 75% longer than a
standard quarter note. The "3" modifier indicates a triplet, which has a
duration two-thirds of that specified. This format is much faster to type than
the old fractional form but may not be quite as flexible. For example, tied
notes are not readily specified, although for most common cases dots can be
used to simulate tied notes. A general solution to situations such as a half
note tied to an eighth note is left to the reader's imagination. (In the original
version, a simple 5/8 would have been used.)

The final variable to specify is articulation. Currently, only staccato is
recognized and is indicated by the letter "S" following all other specifica
tions. When normal (legato) notes are interpreted and given to the sound
generation routines, the sustain duration is made equal to the note duration
minus the attack and decay duration. Thus, the release phase of the note
occurs beyond its musical stopping poinr. If the note duration is shorter than
the attack plus decay time, the full attack, decay, and release phases are still
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executed. When staccato is specified, the sustain duration is made uncondi
tionally zero.

Obviously, with so many options in statement construction, a great
variety of note specifications is possible. Below is a list of some legal specifi
cations and how they are interpreted:

97 3C4Q Voice 3, middle C, quarter note duration (the 97 is a tag
and is not processed)

4E@4E. Voice 4, E-flat just above middle C, dotted eighth duration
(equivalent to 3/16)

2F#3S3S Voice 2, F-sharp just below middle C, part of a sixteenth
note triplet in which three notes take the time normally
required by two of them. Staccato articulation.

19B@5Q3 .. S What a mess! The duration should evaluate to 1/4 X 2/3 X

3/2 X 3/2 = 9/24. Voice 19 and staccato articulation are
specified.

In a long score, much of this information seems to be redundant. For exam
ple, a melody line might run for dozens of notes in the same octave, yet the
octave number must be specified for each note. If it weren't for the fact that
several notes with the same voice ID can be playing simultaneously, it would
be easy to have the NOTRAN interpreter assume octave numbers. Of course,
the melody could just as well be split between two octaves and such assump
tions would probably lead to numerous errors. Again, a general solution to
this and other redundancies is left to the reader.

Percussive note specifications are much simpler than tones because only
the voice number really has to be specified. The form: Pn is used where the P
signals a percussive voice and n refers to the ID of a percussive voice defini
tion. For convenience in certain situations, a duration specification identical
to that described above can be appended.

Sequencing and Overlap

Now that the events themselves are fully specified, all that remains is to
define their sequencing, which relies on just two simple, but very powerful,
concepts. The first is that every note statement represents a distinct point in
time. These time points are in the same sequence as the note statements. All
of the events within a single note statement start at the point in time
corresponding to the statement. Once started, each event runs for its dura
tion and stops when finished, completely independent of other events started by
this or earlier statements.

The second key concept involves spacing of the time points. Simply
put, the shortest specified duration in a note statement determines the amount
of real time that elapses until the next note statement is executed. Thus, if a
note statement specifies a quarter-note event, two eighth-note events, and a
sixteenth-note event, time equal to a sixteenth-note duration will elapse
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(AI

1F4Q 205H
1F4Q
184Q 2E5H
1A4Q IB)

2050 AE
1E4Q RE
2050. RE
lF4Q RE
2E5Q AE
184Q RE
2ESQ

Ie)

1830 2F4E 3E5E3
3F5E3 AS3
2G4E RS3
3E5E3
lA30 2G4E 3ESE3
3E5E3 RS3
2A4E RS3
3DSE3

Fig. 18-23. Note-sequencing examples

before the next statement is executed. The fact that three other notes are still
playing in no way affects interpretation of the next statement. Note that
durations specified with Qs, Es, etc., are what count. Even though a staccato
quarter note may sound for only a sixteenth-note duration, its time value is
still a quarter, and if that is the shortest time value in the statement, it will
control the delay before the next statement. Likewise, a percussive event with
a specified duration (which need have no relation to its actual sound duration)
can control the statement duration.

Often, it is necessaty to go on to the next statement even sooner. The
rest specification is provided for this purpose. A rest specification is simply
the letter R followed by a duration specification. Its only effect is to be
factored into the shortest duration evaluation and if indeed the rest is the
shortest, it will control when the next statement is executed. This use of the
rest is quite different from normal use in which a particular voice is in
structed to be silent. In NOTRAN, no sound is created unless a note or
percussion specification specifies it; thus, the usual rests are not needed.
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However, if a period of silence is needed, a statement having a lone rest
specification can be used.

Figure 18-23 shows some common musical situations and how they
might be coded in NOTRAN. This sequencing method is quite general and
should be able to handle any situation likely to be encountered in reasonably
conventional scores.

Level 3 Routines

The primary function of Level 3 software is to decode the NOTRAN
statements that were just described and extract their information content.
Conversely, if a typing or specification error is found, the condition should
be reported to the user. The routines for statement scanning and syntax
checking, however, are in the realm of compilers and other language analysis
programs and are therefore beyond the scope of this text. Basic NOTRAN as
specified here is very simple in comparison with a typical programming
language; thus, a statement interpreter should not be very difficult to write
even by one experienced in general programming but inexperienced in com
pilers. In fact, a successful interpreter can be written with no knowledge of
classic compiler theory at all, just common sense. The main danger, how
ever, is a program that might misinterpret an erroneous statement rather
than flag it as an errot.

Once a statement is decoded, its information content is systematically
stored in tables. In the case of a voice statement, for example, the various
envelope parameters are stored in a table that describes the characteristics of
that voice. The waveform parameters are then used to compute a waveform
table (or tables) that is stored away, and a pointer to the table is stored along
with the envelope parameters. The voice 10 is also part of these data. Before
allocating additional table space, a scan is performed to determine if the same
voice 10 had been defined previously. If so, the new information replaces the
old; otherwise, more table space is allocated. Percussive voice definitions are
handled in the same way except that the parameters are different and no
waveform table is needed. TEMPO statements simply update a single tempo
variable, which then influences all succeeding time calculations.

When an actual event is encountered in a note statement, several
operations must be performed. First, the voice 10 is extracted and used to
locate the table of information created earlier when the corresponding voice
statement was processed. Next, a new event control block (ECB) is created
(by scanning the control block area until an inactive one is found), and
pertinent information such as waveform table addresses and envelope
parameters are copied over to it. The frequency parameter in the ECB is set
by further scanning the specification for pitch information. Next, the dura
tion and articulation specifications are analyzed and the information used in
conjunction with the tempo variable to set the sustain duration. Finally, the
duration is compared with the current "shortest duration," which is updated
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if longer. After all events in the statement are processed, the current shortest
will be the actual shortes t, which is then passed as an argument to the Level 2
ECB scanner routine.

Level 4 Routines

The preceding has described a functionally complete direct digital
music synthesis system that is quite usable as is. However, even higher-level
programming can be added to further ease its use and reduce the amount of
typing effort needed to encode a score. In a nutshell, Level 4 programming
accepts a string of "extended NOTRAN" statements as input and produces a
longer string of "basic NOTRAN" statements as output. This Output string
is then run through the synthesis program (Levels 1-3) as a separate opera
tion. The details of Level 4 programming will not be described, but perhaps
a discussion of some ideas and possibilities will give a hint of what could be
accomplished.

One easy-to-incorporate enhancement would be a key signature capabil
ity. A new control statement would be added whereby the user could specify
the key in which the music was written. Note statements then could be
coded without explicit sharps and flats except where necessary. The Level 4
processor would provide all of the accidentals in the output score. It might be
necessary to provide a semipermanent override capability, however, to cover
atonal and highly modulated scores. As mentioned before, other redundan
cies such as octave selection could also be removed with similar facilities.

A somewhat more complex enhancement would be a transposition
facility. Orches tral scores, for example, are wri tten for instruments that
actually sound pitches different from what the score says (and the player
thinks). A B-flar trumpet, for example, sounds B-flat when the player reads
and fingers C. The rrumpet part of the score, therefore, has been adjusted so
that the correct pitches are played. With transposition capability, one could
declare that voice 3, for example, was a B-flat voice and therefore directly use
notes from a B-flat instrument score.

Sophisticated sequence control could also be added. Simple repeats and
jumps are obvious but a subroutine capability can allow many weird and
wonderful things to be done. Like a software subroutine, a musical sub
routine can be written once and then called by name whenever it is needed.
Power comes from the fact that a subroutine can in turn call another one and
so on. Thus, very complex sequences can be built up from a relatively small
number of statements. Much of the usefulness of software subroutines is due
to the ability to pass arguments that then alter the action of the routine in a
specific way for that particular call. Arguments such as key signature, pitch
register, tempo, and voicing would allow great variety in the expression of a
musical subroutine without rewriting it. Some really nice effects can be
accomplished if a single voice line can be subroutined independent of other
simultaneous voice lines.
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Many other possibilities should come to mind. In fact, the appearance
of the input language need not even bear a resemblance to NOTRAN. In this
respeer, "basic NOTRAN" would be used as a musical "machine language"
with a high-level compiler generating code for it.

Level 0 Routines

Although seemingly out of sequence, Level 0 routines are discussed
here because for most microcomputer direct synthesis installations they
would comprise a separate program and separate pass of the data. As men
tioned earlier, Level 0 routines operate on the individual sound samples
produced by the Levell routines to introduce reverberation, choral effeers,
etc. The reader should not underestimate the utility of these simple tech
niques in enhancing and "de-mechanizing" the sound of even the most
sophisticated synthesis methods.

The techniques described in Chapter 14, however, require large
amounts of memory for simulated delay lines and therefore would probably
not fit if implemented as part of the synthesis program. Thus, Level 0
functions would be written to read a sample stream from a mass storage
device, process it, and write the altered stream on another device.

In some cases, the "acoustical environment" created by the Level 0
routines must change during the course of the score. If the ability to dynami
cally specify reverberation parameters is desired, the Level 0 program will
also have to scan the score while processing the sample string. Virtually all of
the score data will be ignored, but timing will have to be followed to
determine where in the sample string to change reverberation parameters.

Sample Storage Devices

The mass-storage device used to hold computed sample data usually
determines a delayed playback synthesis system's performance in two ways.
First, its average data transfer rate limits the number of channels, sample size,
and ultimately the sample rate that can be used. "Average" was emphasized
because this figure is often much lower than the peak transfer rate often
quoted in sales literature. With a disk, for example, nonproductive gaps
between sectors, finite head movement time from one track to the next, and
sector format restrictions, all subtract from theoretical average transfer rates.
If the sample data are read using the computer's operating system as opposed
to direct programming of the hardware, severe performance degradation can
often occur due to operating system overhead. A lO-to-l slowdown is not
uncommon, thus making direct hardware programming a necessity in many
cases.

The other performance determinant is, of course, mass-storage capacity.
How storage capacity relates to continuous time capacity and other variables
can be determined by applying these very simple formulas:
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C=TNRB T= C
NRB

R= C
TNB

N= C
TRB

B= C
TNR

where T is sound storage time in seconds, C is storage capacity in bytes, N is
the number of sound channels (1 for mono, 2 for stereo, etc.), R is the sample
rate in samples per second, and B is the number of bytes per sample (2 for 16
bit samples, 1.5 for 12-bit samples, etc.). Thus, with a 10M byte storage
capacity, 16-bit samples, two channels, and 40-ks/s sample rate, the program
length would be just over a minute. Conversely, one channel, 12-bit samples,
and 25-ks/s would be over 4 min with only a slight effect on sound quality.
One way to avoid the tyranny of these numbers is to use two mass storage
devices with removable media. Then, assuming that the storage media can be
swapped on one unit before the other is exhausted, one can obtain indefinite
program lengths with a little manual intervention. Seldom are synthesis
results archived on expensive computer media. Instead, when the project is
complete, it is converted into analog form and recorded on conventional
audiotape.

In the past, half-inch-wide digital magnetic tape was often used for
sample storage, since disk space was simply too expensive to consider and the
tape media was relatively cheap at around a dollar per megabyte. Such tape
units are still used on large mainframe computers but are almost never seen
on a microcomputer because of size (a moderate performance unit is as big as
a large microwave oven and weighs 100 pounds) and expense ($2,000 and
up). They are also clearly not random-access devices, which is necessary for
applications other than strict sequential synthesis. Some of the newer
"streaming" tape drives intended for backup of fixed disk data have potential
for sample storage but tend to be as expensive as a disk of the same capacity
and much less flexible.

Today, disks are almost universally used for sample storage. "Hard"
disk drives with 5, 10, or even 20M byte capacity are so popular and
reasonably priced now that they are built into many 16-bit microcomputers
as standard equipment. Larger-capacity external units with 40, 80, and even
160M byte capacity are available, although the cost starts pushing past
$2,000. These are all "fixed-media" disk drives, which means that the disk
cannot be removed. Thus, sample data competes for storage space with the
operating system and other programs and data stored on the disk. Removable
media hard disk drives for microcomputers generally have capacities of only 5
or 10M byte, but, as mentioned earlier, two such drives could provide
unlimited program length with some manual swapping. Even modern floppy
disk drives can perform satisfactorily in many applications. Units are now
available with up to 2.5M bytes on a 5-inch diskette, but the data transfer
rate is limited to about 40K bytes per second.
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Playback Program

After sound samples for the score are all computed and saved on a mass
storage device, the last step is playing them back through the DAC for
conventional recording. Because of the sustained high data rate involved and
the requirement for an absolutely stable sample rate, this tends to be a highly
specialized program that may not be easy to write. Most of the problems are
due to the fact that samples are stored in blocks on the mass medium. With
IBM-type tape, the time lapse between blocks is fairly constant and predicta
ble. Disks are far more erratic. If the next sector is even barely missed, the
playback program will have to wait a full revolution before reading it again.
Even more time is wasted when a track seek is necessary. Also, rereading a
block after an error is usually out of the question, so top-quality recording
media are a must. The net effect of such an erratic input data flow is that as
much memory as possible should be used as a data buffer.

Details of the playback program are heavily dependent on the system
configuration. The ideal situation is an audio DAC that is interfaced to the
system as a direct memory access (DMA) device and a mass storage system
that is also a DMA device. The DAC could be configured so that it
continuously scans, say, 16K words of memory in a circular fashion and
generates an interrupt whenever wraparound occurs. The playback program
then attempts to keep ahead of the DAC by reading records from the storage
device. Of course, the records cannot be read too fast or the DAC may be
"lapped." This, of course, assumes a system that can support simultaneous
DMA, such as many of the larger bus-oriented 68000 and 8086 based
computers.

A livable system can often be put together when only one of the two
data streams is under DMA control. The easiest situation would be a DMA
DAC coupled with a programmed transfer mass storage device. Execution
time constraints on the playback program would remain lenient as long as
sample entry into the buffer did not fall behind the DAC. Programmed
transfer to the DAC with DMA sample reading is a less desirable situation.
Assuming that the DAC is merely double-buffered (can hold one sample in a
register while converting the previous one), the playback program must be
free every sample period to get the next sample loaded before the previous
one expires. While not difficult to do most of the time, the data must be
kept flowing even while servicing exceptional conditions on the storage
device such as an end of record interrupt or seeking to the next track. In
either case, DMA activity must not lock the processor out for long periods of
tlme.

The declining cost of memory is making another audio DAC interfac
ing option practical. The DAC itself could be equipped with a very large
first-in-first-out data buffer and thereby greatly simplify both the writing
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and timing of a playback program. In fact, when using such a DAC, DMA
data transfer is not necessary either from the storage device or to the DAC. In
an all-programmed I/O system using a disk, for example, one could simply
write a new programmed disk data transfer routine that stores bytes read
from the disk data register directly into the DAC data register without ever
going through the computer's own main memory at all. The DAC's buffer
automatically bridges the unpredictable gaps in disk data flow provided the
average transfer rate is great enough. Nowadays, it is perfectly feasible to
have a 16K or 64K sample buffer built into the DAC, which is large enough
to survive data flow interruptions up to a second or more depending on the
sample rate.

The Author's Delayed-Playback Installation

To conclude this section, it seems appropriate to briefly describe the
author's present delayed-playback synthesis setup as an example of what can
be done with rather ordinary, currently available hardware. The computer is
an MTU-130, an obscure 6502-based unit with 80K of standard memory, a
480 X 256 graphics display, two 8-inch floppy disk drives, and an excellent
performance-oriented operating system. To the standard unit has been added
an 8-MHz 68000 slave processor board with 256K of additional RAM. The
audio D-to-A converter has gone through several revisions starting with 12
bits, mono, and a 256-sample buffer, followed by 12-bit stereo with A-to-D
capability and a 1K buffer, and finally becoming 16 bits (with a 12-bit mode)
and a 32K buffer. Although the disk drives use DMA data transfer into
RAM, all three of the converter designs used programmed I/O; the current
version in fact simply plugs into the computer's standard parallel printer
port.

For digital audio recording and playback, the 8-inch floppy disks have a
theoretical average transfer rate of about 40K bytes/sec and a capacity of
1.26M bytes. This is normally used to provide a single-channel 25-ks/s rate
using 12-bit samples, which yields about 33 sec per disk. Block compound
ing is used, however, to obtain 16-bit dynamic range, and the two drives
allow disk swapping for unlimited program length. Full 16-bit samples can
also be transferred at 20 ks/s for 31 sec. For maximum usable disk storage
capacity and transfer rate, a data format with 1K byte sectors is used. The 1K
sectors are then divided into four 25 6-byte sound blocks, which is the basic
unit of sound file storage. In 12-bit mode, each sound block holds 170
samples with the odd byte left over holding a gain value that is applied to the
whole block. Direct programming of the disk hardware was necessary because
the operating system runs at only 20K bytes/sec for disk data.

For music software, the NOTRAN system described in this chapter
(less percussion) was coded into 6502 assembly language. The waveform
tables used for tone synthesis are 256 points of 8 bits but with linear
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interpolation between points. Although the voice waveforms are only 8 bits
before the amplitude envelope is applied, all later processing is carried to 16
bits of accuracy. This compromise greatly speeds up multiplication, which is
a software subroutine on the 6502, and is nearly impossible to hear when
several instruments are playing. Tre same Bach score transcribed 10 years
earlier was run through the system and required about 5 hours of processing
time for the 8 min piece; about a 40-to-l ratio. In addition to NOTRAN,
there is a playback program, a record program (A-to-D conversion into a
sound file), a reverberation program, and several miscellaneous utilities.

For the immediate future, NOTRAN, of course, will be recoded into
68000 assembly language, which should provide about a 6-to-l speedup
along with greater precision (lK waveform tables with 16-bit samples). A pair
of removable media 10M byte disk drives is also being added, which should
allow stereo operation at 30-40 ks/s and several minutes per disk. Since the
68000 promises to be a popular microprocessor for music synthesis and can
run high-level languages such as C reasonably efficiently, it should also be
possible to run some of the other delayed-playback synthesis programs being
developed at universities. The CARL system, which will be described in the
next chapter, seems to have the most potential in this respect.





SECTIONIV

ProductApplications
and the Future

At this point, it is time to describe some real-world applications of the theory
studied in previous sections. In fact, there is probably no better way to get a
feel for the real advantages and disadvantages of all of the synthesis and
modification techniques described in those sections. This will also allow a
chance to see how the market realities of cost, consumer acceptance, and ease
of use enter into and usually dominate a product's technical design. The
discussion will begin in Chapter 19 with serious applications in professional
instrument design and university level research. Entertainment and novelty
applications, which have been largely ignored so far, will be described in
Chapter 20. And, finally, Chapter 21 takes a brief look at the potential future
of computer-synthesized music.
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Some RealApplications

In previous discussions, synthesis, modification, and analysis techniques
were described as individual tools that could be used independently or
combined in myriad ways to achieve a desired acousrical result. Indeed, in
research applications of music and sound synthesis, one would probably
prefer to have just rhe individual tools available without any externally
imposed structure or limitations on how they may be used together. Whereas
such a collection of tOols really just constitutes an environment in which music
creation can take place, a saleable product must be more organized for easy
learning and less general for an acceptable cost. In fact, such a product is
usually called a synthesizer, a term that has already been used frequently
without really being defined.

Synthesizers in the Real World

In the context of this chapter, a synthesizer is essentially a self
contained machine designed to produce a wide variety of, hopefully, musical
sounds in response to commands received from the outside. Any technology
can be used to build a synthesizer (in the last century, pressure-actuated air
columns were used), but, of course, analog and digital electronic techniques
are of interest here. A true synthesizer already "knows" how to produce sound;
an elaborate setup or programming procedure is not necessary to get at least
simple sound out. Thus, a computer with a DAC alone is not a synthesizer,
even though with programming it could produce any sound. However, a
computer plus DAC bundled with a control interface and a ROM synthesis
program could be sold as a synthesizer. Any practical synthesizer uses only a
small subset of the many possible sound-generation techniques available.
These may be chosen with generality, ease of control, or cost in mind
according to the application ("market" in product planning terminology) the
synthesizer will be designed for.

Live Performance Synthesizers

What, then, are the markets and applications for synthesizers? Many
have been alluded to in previous chapters but were never focused upon.

707
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Clearly, the mass market for synthesizers at this time is live performance in
small bands by professional and semi-professional players. The term "mass
market" implies two things. First, it refers to the needs of average potential
customers, i.e., those with average skill, intelligence, and typically low
interest in the technical aspects of .their instruments. Second, because the
mass market of average potential customers is so large (maybe 70-90% of the
total market), it is where the competition is fiercest. There is a direct parallel
apparent in the personal computer industry where mass market computers are
promoted in terms of ease of use rather than flexibility or performance, and
low cost rather than quality or reliability.

A mass market live performance synthesizer must be able to change
patches ("sounds" and "programs" are common instruction manual terms)
quickly and surely at any time. Quickly usually means instantaneously such
as between musical phrases, and surely means a procedure so simple that
embarrassing mistakes are unlikely. Typically, each combination of sound
parameters is given a number and that combination can be called up by
pressing one of 50 or so numbered keys or entering a two-digit number on a
keypad. The parameters themselves are supplied by the manufacturer in
printed, ROM, or digital cassette form or possibly determined by experiment
during rehearsal. A live performance synthesizer must "sound good" in that
it must not sound cheap or overtly electronic. Great flexibility and generality
are usually secondary considerations as long as a reasonable range of sounds is
possible. During sales demonstrations, realism in simulating conventional
instruments is often promoted as an indication of the instrument's quality
and flexibility. In actual use, where just the mood of a particular instrument's
sound is preferable to a flawed duplication, such patches are infrequently
used. Finally, a live performance synthesizer must be reasonably portable, at
least by two people, and rugged and reliable enough so that it works upon
arrival.

Studio Synthesizers

Of course, there are other markets for synthesizers, although much
smaller than the mass market just described. One of these is studio
synthesizers, which are used for creating music directly in tecorded form rather
than in a live performance situation. Although much studio work goes into
creating record albums, the major use of studio synthesizers is in producing
soundtracks for radio and TV ads and for the thousands of movies, TV
programs, and documentaries released every year. Synthesized music has
become so pervasive in this field that 50-75% of such "commercial music" is
synthesized now. Although no attempt is made to simulate an orchestra, the
sounds typically used are bland enough to avoid calling attention to
themselves for all but the most critical listener. It is interesting to note that,
although the studio synthesizer market is relatively small, its musical product
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is aimed ar the very large mass market of TV and movie viewers and radio
and album listeners.

While regular live performance synthesizers are certainly used in studio
work, the requirements are different. For example, the ability to imme
diately change patches is less important because the tape can be edited later.
Elaborate and complex programming and parameter setting schemes are
admissable if they result in greater flexibility, since nobody hears the
misrakes and evolution toward a desired sound. In fact, flexibility is the most
important attribute because the synthesizer must adapt to a variety of very
different musical situations; not just rock music on stage. Time is available to

experiment in finding just the right sound, and, when it is found for a
particular job, it need never be duplicated again. Sound quality is more
important than in live performance where other insrruments and the crowd
(not to mention overloaded amplifier/speaker systems) tend to cover up subtle
imperfections. Finally, a studio-oriented synthesizer need not be portable. In
fact, many "studios" are built around a synthesizer in the owner's home and
may consist of little more than the synthesizer and a multitrack tape
machine.

Research Synthesizers

Another specialized application area is in academic research. Here, a
synthesizer may be used in two ways. In psychoacoustic research (the study of
human hearing perception), a synthesizer may be used to generate a very
precise stimulus sound. The sounds needed, such as sine-wave bursts with
controlled amplitude and frequency contours, are generally simple but must
be very accurate and repeatable for reliable experimental results. Thus, a
synthesizer for such research must be flexible (although the sounds needed
may be simple, they are not necessarily musical and thus may not be in the
repertoire of a "music" synthesizer) and accurate. The accuracy requirement
often goes far beyond what is typically necessary for a synthesizer to "sound
good." Distortion, frequency stability, and background noise musr often be a
factor of 10 better than accepted human perception limits to positively insure
that experimental results are not affected. Frequently, specialized equipment
is designed and built rather than buying a commercially available synthesizer
either because something suitable doesn't exist or to save money. A computer
with a high-quality DAC is probably the optimum choice for most of these
needs, but then custom software must usually be written.

The other major research application is in studying synthesis tech
niques themselves. Here, extreme flexibility is the primary and oftentimes
only requirement. Since the research object is new synthesis techniques,
commercial synthesizers with fixed, built-in synthesis algorithms are un
likely to be of much interest. Instead, a programmable synthesizer in which
the structure as well as the parameters can be changed is needed. Much cutrent
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research is directed toward discovering simple synthesis techniques that give
acceptable results in a limited number of cases rather than re-proving the
genetality of brute-force techniques such as direct harmonic synthesis. The
FM, VOSIM, and nonlinear distortion techniques described earlier are the
results of some of this research. Obviously, evaluation of new techniques
involves psychoacoustic tests as well. Again, a direct computer synthesis
system is probably the best low-cost solution to the immediate algorithm
implementation and testing problem. However, the final goal of many such
projects is the development of simpler and cheaper hardware using the new
technique that performs audibly as well as earlier equipment using a more
general technique. Thus, the academic research market is best served by D
to-A conversion equipment for general-purpose computers and specialized
signal-processing computers rather than the typical packaged synthesizer.

Music Education

Music education is another fairly large market area with specialized
requirements. Until recently, this market was served entirely by conventional
instruments and almost by definition had no interest in electronic instru
ments. Now, however, the whole spectrum of personal computers and
synthesizers is playing an increasing role in music education, particularly at
the lower levels. It is becoming common for children to be first exposed to
the mechanics of music (pitch, rhythm, melodies, notation, etc.) via some
kind of simple music program on a home computer. Indeed, a big advantage
of using such programs is that a child can produce a reasonably listenable
final result as soon as the program is understood, long before any significant
manual skills could be developed. This may in rum sustain interest through a
child's critical interest-forming years.

In the intermediate stages involving ear training (learning to recognize
intervals and chords) and music dictation training (learning to notate what is
heard), drill programs on personal computers can be very helpful. More
advanced instruction in compositional methods and analysis can also be more
effectively done with interactive composition programs. It will probably be
awhile before keyboard synthesizers make much headway in replacing the
piano in performance training, although they could greatly reduce the
boredom factor that causes many "piano students" to drop out after two or
three years. Some of the very low-cost keyboard synthesizers becoming
available may force their way into this realm on purely economic as well as
pedantic grounds.

In most of the areas just mentioned, great synthesis power and
flexibility are not tequired. In fact, a simple three- or four-voice square-wave
synthesizer can be perfectly adequate in many cases. Modern personal
computers usually have such capability built in as will be described in the
next chapter. For more advanced needs, add-on products are available for the
more popular computers that can have quite significant musical capabilities.
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The Synthesizer Industry

The manufacture of synthesizers and related products is actually a 120
million dollar industry worldwide (estimated 1984 figures). Some 25
manufacturers are directly involved with making complete synthesizers, and
many more make key parts such as keyboards and control panels. Since a
synthesizer is almost entirely electronic, it is not surprising that a large
segment of the industry actually resides in Japan while smaller portions are in
Italy and Australia, to name a few. The United States, however, is the lion's
share of the market at 65%.

The most striking feature of the synthesizer industry is that it is
extremely competitive. Several large companies are involved (most of them
are not exclusively synthesizer manufacturers or even muscial insttument
manufacturers) as well as many smaller companies dedicated to synthesizer
manufacture. No one manufacturer dominates the industry as is the case
with, say, personal computers. Real innovation, such as the MIDI interface
standard, frequently comes from the smaller companies, whereas the larger
ones specialize in production efficiency, which lowers the cost of "main
stream" instruments.

Besides from each other, much of the competition in the synthesizer
industry comes from conventional insttuments. This war is largely fought in
music stores; there is very little mail-order activity in synthesizers. Unfor
tunately, when dealing with average consumers, technical specifications and
actual sonic performance may actually play a minor role in the buying
decision. For example, many pianos and organs are bought as furniture I

Considerations of styling, color, and perhaps the manufacturer's prestige may
actually govern which unit will be bought. Even if the intention is to
purchase and playa fine instrument, more often than not it will ultimately
sit unused in a corner looking good. Even though a 50-pound portable
synthesizer may cost the same, be easier to play, and could possibly sound
like a full orchestra, it stands little chance of being purchased under these
conditions.

Another striking feature of the synthesizer market is the incredibly fast
pace of product innovation and obsolence. For example, the major synthesizer
industry trade show is the twice-yearly NAMM show (National Association
of Music Merchants). It is not unusual for an innovarive product unveiled at
one show to be answered by several similar but improved products at the
next. What makes this even more amazing (at least to those whose
background is in the computer industry) is that products shown are expected
to be available, in production quantities, right then or at most 1-2 months
later. The usual computer industry development lag of 1-2 years to
announcement and 6 or more months of production delay after that has little
chance in the synthesizer industry. In fact, the complete marketing life cycle
(not useful life cycle) of a keyboard synthesizer is commonly 2 or perhaps 3
years at rhe most.
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Hybrid Keyboard Synthesizers

In the mass market, the term "synthesizer" really means "keyboard
synthesizer." As that name implies, the primary operator interface device is a
piano-like keyboard, usually with 61 keys (five octaves), although 73 or even
88 for high-end and 49 for budget units are also seen. The keyboard is
virtually always completely conventional. The keys are a standard size and
shape and move a standard distance in response to a standard force. Many
high-end units even attempt to simulate the inertia of piano keys by using
weights, throw-bars, or other mechanisms. As in the computer market, any
significant departure from such a "standard" keyboard meets vigorous
customer resistance.

Besides the keyboard, the operator typically has two hand-operated
variable controls available. These are frequently called "wheels" because of
their smooth action and have a spring return to their center position.
Usually, one of them is patched into all of the instrument's oscillators so that
the whole instrument can be shifted flat or sharp and is called the pitch wheel
or pitch bender. The other is available to be patched into any sound variable
and is usually called the modulation wheel. Added to these hand-operated
performance controls are one or two foot pedals that plug into jacks on the
instrument. Usually, one is a simple on-off switch to control note sustain,
while the other may be a variable control for volume or some other parameter.

The most visible distinction among keyboard synthesizers is in their
control or programming panel. Every manufacturer and model is intentionally
different, much like video games. Since most keyboard synthesizers are
microprocessor-controlled internally, common digital devices such as push
button switches, thumbwheel switches, calculator keypads, light-emitting
diodes (lEDs), and numeric displays are commonly used. It is not unusual for
a front panel to be 8-10 inches high and as wide as the keyboard, with much
of that area covered by dozens of individual buttons and lights and several
different displays, button groups, and a keypad or two. Recent units have
used alphanumeric and even low-resolution graphics liquid crystal and
fluorescent displays and membrane buttons.

Readers with a computer background may question the wisdom of
using all of this "stuff' when a small alphanumeric keyboard and CRT
display would be much neater and more general. Part of the answer is
historical, since current control panel practice is an evolution of simple early
panels in which a CRT did not make sense. Also, CRTs are not always as
rugged as might be desired for a portable live performance instrument.
Studio-oriented keyboard synthesizers do exist that make use of a CRT
display or in some cases a separate conventional CRT terminal. In the future,
liquid crystal display panels may be able to approach CRT resolution at a
competitive cost and thus negate these objections.

One very cost-effective method of implementing the sound generator in
a keyboard synthesizer is to use hybrid circuitry. "Hybrid" here means a
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Fig. 19-1. Typical microprocessor-controlled hybrid keyboard synthesizer

combination of analog and digital circuitry, applying each where it is most
advantageous. Control-type tasks are best handled by digital circuitry,
particularly if it is microprocessor based. For example, implementing a
multinote polyphonic keyboard would be extremely difficult with analog
circuitry but is a straightforward exercise with digital circuitry as was
demonstrated in Chapter 9. On the other hand, audio-signal-handling tasks
such as filtering are much more economical to perform with analog circuitry.
Thus, at this time, it is generally most cost-effective to use a hybrid approach
to designing a moderate-performance, moderately priced keyboard
synthesizer.

A T.'Ypical Hybrid Synth.esizer

Figure 19-1 shows a generic block diagram of a microprocessor
controlled hybrid keyboard synthesizer. Central, of course, is the control
microprocessor, which is typically one of the more powerful 8-bit units,
although increasingly 16-bit architecture processors with 8-bit data buses or
even true 16-bit units are being used. The microprocessor program always
resides in permanent memory, either masked ROM or programmable ROM,
and may be 8-32K or even more. EPROMs are frequently seen because sales
volumes are often not high enough to justify ROM masking charges. Also,
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the extremely short development schedules of most synthesizers don't allow
10-20 weeks' delivery time for masked ROMs.

Besides a small amount of scratch RAM for computation and temporary
storage, a larger CMOS RAM is normally used to hold patching configura
tions, sound parameters, and other information that specifies how different
sounds are synthesized. Each such configuration is called a program (not to be
confused with the ROM program that controls the microprocessor), and
typically there are 50-100 or more requiring 2-4K to hold them all. An
important feature is a backup battery to retain the RAM's content when the
synthesizer is off ln fact, it is common to memorize the control panel state
when power is removed so that it will "come up" in the exact same state when
power is restored. Another common feature is an audio cassette interface
similar to that on early personal computers for saving and restoring the
parameter memory content. Manufacturers often have parameter tapes
available for sale, and serious players can build a library of synthesizer voice
tapes.

The various console buttons, switches, and keypads are connected to
the microprocessor either individually or in a matrix arrangement if they are
numerous. Generally, software performs switch debouncing and even makes
simple momentary action pushbuttons act like alternate action latching
switches in conjunction with a light. The lights may also be directly driven
by register bits; however, multidigit seven-segment displays are usually
multiplexed by software. For extensive alphanumeric panels, which may have
20~40 characters, "intelligent displays" may be used, which automatically
refresh themselves. Then the synthesizer processor need only store bytes in a
small RAM in the display.

The music keyboard is generally interfaced just like the one described
in Chapter 9. Velocity sensing is performed by measuring the time
differential between two contact closures. A more recent keyboard design has
each key press two conductive rubber pads against patterns on a printed
circuit board. One pad touches when the key is about one-third depressed,
and the second touches at the three-quarter mark. The advantage of this
approach is somewhat less contact bounce and significantly lower manufac
turing cost in large volumes. One manufacturer even uses LEDs and
photocells for zero bounce key position sensing. Because the keyboard must
be scanned very rapidly and uniformly for accurate velocity sensing, it is
sometimes given its own independent microprocessor rather than burdening
the synthesizer's main processor with this task.

The actual sound-generating and control elements are on the right side
of Fig. 19-1. Typically, each synthesizer voice is produced by a moderately
small voice module that may either plug into an internal "synthesizer bus" or
be part of a large synthesizer board. Such a module usually has two VCOs,
two to four VCAs, and a VCF plus several analog switches for reconfiguring
these elements in a number of useful, but not totally general, ways. The
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Fig. 19-2. Rhodes "Chroma" keyboard synthesizer

needed control voltages are produced by a centralized, multiplexed D-to-A
converter, usually 12 bits, and the analog configuration switches are
controlled by external registers. Generally six to eight voice modules are
included, although some synthesizers may be expandable. A final analog
switch array selects the module outputs and mixes them into a stereo audio
output.

A multiplexed A-to-D converter is also included to read the pitch and
modulation wheels, variable footpedal, and other proportional operator
controls. If the keyboard includes pressure sensing, this too is connected to

the ADC. There may be either a single sensor under rhe entire keyboard or
individual sensors under each key. Often a signal from the voice module
output multiplexor is fed back to the ADC for diagnostic usage and automatic
tuning, which will be described in the next section.

The Rhodes Chroma

Perhaps the best way to become familiar with the specifics of hybrid
synthesizer technology is to briefly study a well-designed example unit. The
Rhodes Chroma, pictured in Fig. 19-2, is one such synthesizer that sells in
the $3,000-5,000 range. It is packaged into a wooden tabletop cabinet that
weighs about 70 pounds and has a five-octave, 61-key keyboard, also made of
wood. The control panel is mounted above the keyboard and is largely a
printed plastic overlay sheet with an array of 50 membrane switches, several
slide pots, several individual LEDs, a large two-digit display, and a smaller
eight-digit display. One interesting feature is a solenoid "tapper" that
literally thumps the control panel when any of the membrane switches is
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Fig. 19-3. Rhodes Chroma block diagram

activated. This gives a "tactile" feedback to the panel that is effective even in
the lOO-dB din of on-stage live performance. The customary "wheels" are two
spring-return-to-center slide pots mounted alone immediately to the left of
the keyboard.

Performance-wise, the Chroma has 16 oscillators that can be used for 16
independent, simple voices, although they are usually "paired" to make eight
complex voices. The elements of each complex voice may be configured 16
different ways with each voice independently configurable. Included in these
configurations are standard VCO-VCF-VCA, FM, and AM patches plus a
digital "ring modulation" patch and a "sync" mode in which one oscillator
"pulls" the frequency of the other. The oscillators as well as the filters and
gain control elements are all analog with an automatic tuning feature to
compensate for calibration errors and drift. Envelope generators, however, are
"virtual" in that they are implemented in software and applied via the
multiplexed DAC. Velocity sensing on the downstroke is standard, whereas
individual key pressure is an optional feature.

Figure 19-3 is a specific block diagram of the Chroma, which is quite
similar to the generic diagram described earlier. One difference is the use of a
separate microprocessor, from a completely different family, to scan the
keyboard contacts. The keyboard pressure sensors, however, are addressed by
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the main processor, which only looks at those associated with currently
pressed keys. As is customary in pocket calculators, the matrix arrangement
for the 10 seven-segment displays is also wired into the 71 membrane
switches, thus saving some circuitry. The 16 individual LEDs, however, are
driven directly by two 8-bit registers. An unusual feature is the external
computer interface that is intended for connection to a Chroma expander. The
4K scratch RAM is used for holding expanded copies of currently active
parameter lists and queues for data entering and leaving the external
computer interface. The 3K CMOS RAM is sufficient to hold 100 complete
patches, of which two can be in use at anyone time. The program ROM at
16K is rather large, but, as is usually the case with software, the control
program has grown to equal (actually slightly exceed) its capacity.

Since the A-to-D converter only needs to digitize eight variables that
all come from the operator, an 8-channel 8-bit unit with a 100-/Lsec
conversion time was sufficient. The 61 pressure sensors on the keyboard pass
through a separate multiplexor into one of the ADC channels. The D-to-A
converter actually consists of an 8-bit unit wired to supply the reference
voltage to a 12-bit unit. Thus, the 8-bit DAC determines the span and thus
the step size of the 12-bit main converter within a fairly narrow ± 6% range.
The variable scale factor is used by the automatic tuning routine that will be
described later. The single-channel DAC Output in conjunction with the
outputs of a strobe decoder and buffer registers are routed as a bus to a
synthesizer morherboard into which eight dual-channel voice boards are
plugged. The strobes then can address a particular board and a particular
parameter sample-and-hold on the board to give the effect of a multichannel
DAC. The output of each voice can also be routed to another bus line that
feeds into a zero-crossing detector used for automatic tuning. A special
programmable timer circuit coordinates synthesizer operation by interrupt
ing the control program at a constant rate, generating the cassette output
signal and measuring the period for the cassette input and zero-crossing
detector signals. All of these subsystems will be described in more detail in
the following sections.

Dual-Channel Voice Board

Probably the most interesting subsystem is the dual-channel voice
board, which is responsible for all sound generation in the Chroma. Eight
boards are used and each plugs into a slot on the synthesizer bus. Figure
19-4 is a simplified schematic diagram of the board. Operation is completely
controlled by 19 digital bits from three on-board registers and eight analog
voltages from an eight-way demultiplexor and eight sample-and-holds on
board. Thus, digital and analog demultiplexing is performed on each board
from the common synthesizer bus rather than at a central location. In the
drawing, a digital control signal is represented by a square-shaped terminal,
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Fig. 19-5. veo section of voice board

while an analog control signal uses a round terminal. Basically, the board is
two VCO-VCF-VCA chains with a variety of programmable cross-connections
between the two channels.

The two voltage-controlled oscillators, one of which is detailed in Fig.
19-5, are nearly identical and use the sawtooth-pulse type of circuit
described in Chapter 6. The 0 to + 5-V range pitch input voltage is scaled to
approximately 0.5 V/octave in a conventional current ourput exponential
converter. This current, which has a range of 100 nA to 120 /LA, then feeds a
conventional integrator, which uses a TL082 FET input op-amp and a 1,000
pF integrating capacitor.

The threshold comparator and discharge circuits, however, are part of a
4151 (Exar, Fairchild, Raytheon) "voltage-to-frequency converter" Ie. This
IC, which was designed for data acquisition rather than musical use, is a
commonly available generic device. Its discharge circuit, rather than trying
to short-circuit the integrating capacitor and discharge it as quickly as
possible, consists of a switched current source. During the sawtooth retrace
interval, which is fixed at 33 /Lsec by an internal onecshot (RC terminal), a
positive current of 150 /LA exits the IOllt terminal, which counters the negative
current from the exponential converter thus discharging the integrator. The
combination of 33 /Lsec and 150 /LA is set(via Rl) to discharge the integrator
from the 5-V threshold level back to exactly 0 V at low frequencies when IE is
small.

The point of all this is that the circuit is theoretically perfectly linear;
there is no inherent "high-frequency droop" that can only be minimized in
the usual short-circuit type of discharger. The price of this frequency accuracy
improvement is a slow (33 /Lsec) sawtooth retrace time and a significant
reduction in sawtooth amplitude at high frequencies. The slow retrace is
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taken care of by using the 4l51's output transistor and R2 to force the final
sawtooth output to zero during the retrace period. While this provides a fast
retrace, it flattens out the negative peak of the sawtooth. Although these
defects would be very detrimental to the triangle and sine shapers described
in Chapter 6, the Chroma uses only a rectangle shaper that is not greatly
affected. Instead, the filter is relied on when sounds of low harmonic content
are desired. As a practical matter, the sawtooth itself is not really affected
either because the defects become significant only at very high frequencies
where even the second harmonic is well beyond audibility.

Referring back to Fig. 19-4, VCO B has a synchronization capability
that is active when the sync switch is on. With sync on, oscillator A will
discharge the integrating capacitors of both oscillators. The effect is most
useful when oscillator B is set for a nominal frequency two or more times
higher than oscillator A's. B will then synchronize to an exact harmonic of A.

Besides the sawtooth, the only other waveform available from the
oscillator is a rectangle formed by comparing the sawtooth with a width
control voltage. Since the sawtooth amplitude is 0-5 V and the width voltage
covers the same range, duty cycles of 0-100% are possible. In fact, one way
to mute an oscillator is to select the rectangle waveform and set either duty
cycle extreme. In the Chroma, the rectangle width is commonly varied
rapidly to create dynamic spectra and even a moderately effective chorus
effect. One problem in doing this, however, is that the dc component can
cause annoying thumps and low-frequency overload in audio systems when
the width is vatied rapidly. The problem is solved elegantly by using an
inverting comparator in the rectangle shaper and then simply adding the
width control voltage to the rectangle wave so as to cancel out its dc
component!

The VCF section does use a specialized dual state-variable VCF chip,
the Curtis 3350. In the Chroma only, the low-pass and high-pass configura
tion is used, which is selected by a single mode digital signal. Scaling of the
frequency control input is the same as the oscillator scaling. "Q" or resonance
is controlled directly by a local 3-bit D-to-A converter driven by the QO-Q2
digital signals rather than by an analog voltage. Thus, Q is a static sound
parameter that cannot be "logically connected" to an envelope. The Q control
voltage developed by the 3-bit DAC is combined with the frequency control
voltage to form a constant Q filter configuration. The Q varies in an
exponential manner from under 1 for 000 to oscillation at 111. Some extra
transistors added to the VCF chip insure oscillation at the highest Q setting
but also gently limit the oscillation amplitude to about 3 V peak to prevent
distortion.

The VCA section also uses a specialized VCA chip, the Curtis 3360.
Exponential conversion of the volume control voltage is not performed;
instead gail1 varies linearly from 0 to 1. 0 as the control voltage varies from 0
to + 5 V. Before entering the VCA chip, the gain control voltage is single-
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pole RC low-pass-filtered with a time constant of about 1.3 msec. This
prevents an unnatural "tic" sound when an instantaneous attack is applied to
low-frequency sounds.

As can be seen, signal routing switches are scattered throughout the
block diagram. Most of the switches are type 4052 dual 1-of-4 analog
multiplexors. The first level of switching selects one of four possible sources
for each oscillator output. These are rectangle, a mix of sawtooth and
rectangle, white noise, and pink noise. Ir is interesting to note that an equal
mix of a rectangle and a sawtooth waveform yields a result equivalent to
mixing two sawtooth waves! The phasing between the two virtual sawtooth
waveforms is determined by the rectangle width. Thus, varying the rectangle
width will change the phasing as if the two waveforms were of slightly
different frequency. In fact, periodic variation of the width sounds exactly
like periodic beating between two oscillators and random variation gives a
remarkably good chorus effect. Most Chroma patches make use of this
surprising result to greatly increase the apparent richness of otherwise simple
synthesized rones. The two noise sources are generated externally on the
synthesizer bus motherboard and feed to all of the voice boards.
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Following the source selection switch for oscillator A is another switch
that selects between the oscillator output and a "ring-modulated" combina
tion of the oscillator A and B rectangle outputs. The ring modulator is really
just an exclusive-or digital gate (using CMOS logic that provides exact 5-V
amplitude outputs) and generates true ring modulation only when the input
waveforms are square. Nevertheless, the audible effect of ring modulation is
adequately produced even when the signals are nonsquare.

The switches immediately before and immediately after the filters
perform most of the patching function. Since all are controlled by the same
two patch bits, there are acrually only fout possible configurations. Follow
ing the B side VCA, another four-way switch also participates in the
configuration function. The switch afrer the A side VCA controls the
disposition of the board's final output onto one of four signal output buses.
The output signal is actually a current and the buses are current-sensitive as
described in Chapter 8.

Of the possible configurations, the Chroma's software allows the user to
select any of the 16 most useful ones by a number between 0 and 15. Nine of
these are shown in simplified form in Fig. 19-6. In addition to these basic
patches, the A and B waveforms, B oscillator sync, and filter modes can be
selected to yield several dozen effective patches. By using the two filters in
the parallel mode, a band-reject response is possible as well as dual-humped
resonances. The series filter configuration allows a bandpass response as well
as four-pole low-pass and high-pass shapes. It is interesting to note that
frequency modulation of the oscillators is not provided for. Conversely, the
filter center frequencies can be modulated. Since the oscillators cannot
produce sine waves but the filters can <by using the Q7 setting), this makes
sense. Also, many other strange effects are possible with lower Q settings.

Microprocessor Controller

The Chroma uses a Motorola 6809 ("B" version) 8-bit microprocessor
operating at its highest rated clock speed of 2 MHz. The 6809 has been
described by some as a "severely stripped 68000" and was indeed introduced
a year or so before the 68000. It is in many ways more like the 6502,
however. The bus control protocol, for example, is similar using a single
"Phase 2" clock with a machine cycle that is the same length as a clock cycle.
It has two 16-bit index registers and two 8-bit accumulators, which can be
linked into a single 16-bit accumulator, as opposed to the 6502's 8-bit index
registers and single accumulator. The addressing modes are similar but the
16-bit index registers make them more useful for large data arrays. There is
also an 8 X 8 unsigned multiply (10 cycles) that is probably used frequently
in the Chroma's control software. In all, the 6809 is about 50% more
powerful than a 6502 of the same clock speed in this type of application.

The program is stored in eight 2716 EPROMs, each of which holds 2K
bytes of program code. The fact that the current program version number is
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14 is testament to why EPROMs are used. Of course, if such an instrument
were being designed today, much larger EPROMs holding 8K or even all
16K bytes would probably be specified instead. The scratch RAM is eight
type 2114 lK X 4-bit static RAM chips for a total of 4K bytes. Again, a new
design would probably incorporate two type 6116 2K X 8-bit RAM chips
instead.

For the nonvolatile RAM, six type 4334 RAM chips are used. These are
functionally the same as 2114s but are CMOS to minimize battery drain
during standby. Unfortunarely, making a set of RAM chips nonvolatile is
much more difficult than just connecting a battery to the RAM's power lead.
During operation when the address and data lines are flipping about wildly,
CMOS RAM still draws a substantial amount of power so a circuit to switch
between battery and dc supply power is necessary. Also, while power is being
applied or removed from the other circuitry, its action is indeterminate. Even
a brief lOO-nsec pulse on the write line during this time could altet stored
data. In practice, fairly elaborate discrete transistor circuitry that responds
predictably to changing power voltages is needed to prevent such transients.

D-to-A Converter

The D-to-A converter is actually on a separate I/O board along with
drivers for the panel switches and lights. As shown in Fig. 19-7A, the D-to
A converter is really a two-stage device. The main converter is a 12-bit unit,
but its reference voltage comes from a second 8-bit converter. When the
reference converter's digital input is zero, the reference voltage for the 12-bir
converter is about -4.33 V. When the digital input is all ones, the reference
is about - 4.95 V. Thus, the nominal l.133-mV step size of the 12-bit DAC
(reference centered at - 4.64 V), can be varied + or - 6.7%. Normally the
oscillators are set for 0.43 V/octave, which is 384 DAC steps or 32 steps per
semitone; a very convenient number. It is also small enough so that frequency
stepping effects ate completely inaudible.

The automatic tuning routines measure the actual oscillator and filter
frequencies at selected low and high control voltages. From the result, an
offset and a slope factor for each oscillator and filter can be determined. When
an oscillator or filter sample-and-hold is selected by the software for
updating, the slope factor is written into the reference DAC and the desired
control value minus the offset is written into the main DAC. Except during
this final output operation, all software routines can assume that each
oscillator and filter has a precise tuning of 384 steps per octave and zero
offset. Note that no software multiplication is required to implement rhe
correction. In this particular application, even a single 16-bit DAC would
not perform the correction as well. If a 16-bit DAC was used anyway, a 16 X

l6-bit multiplication requiring three of the available 8 X 8 multiply
instructions would be needed to perform the correction.
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The analog demultiplexor in Fig. I9-7B has a unique feature that
allows the computer some control over the transition times of analog control
signals. For normal updating of the sample-and-holds, the top multiplexor
only is enabled, which gives an immediate voltage change on the large
(0.033 f-LF) hold capacitors. However, the actual control voltage is taken
across the small (0.0068 f-LF) capacitors, which with the I-MEG resistor gives
a time constant of 6.8 msec. When the control computer desires an
instantaneous voltage update, the bottom multiplexor is also enabled, which
charges both capacitors to the new voltage. Of course, slower transition rates
for envelopes are provided by writing successive values to the sample-and
holds in slow mode. Chroma software refreshes the sample-and-holds every
20 msec, which is 50 times per second. Because of the I-MEG tesistors, it
was essential to use EET input op-amp buffers. The demultiplexor is actually
on the voice boards, which greatly reduces the number of analog connections
otherwise required.

External Computer Interface

When it was released, one of the Chroma's unique features was a high
speed parallel interface between its 6809 control computer and any kind of
external digital device. Its primary purpose was to connect to a Chroma
expa1Zdel~ which is identical to the Chroma except the keyboard is missing and
the control program is slightly different. Increasing interest in personal
computers by players, however, prompted full documentation of the interface
hardware and command language so that an external computer could record
keystrokes, play them back, and operate the control panel. The "Interface
Manual" even shows an Apple II computer on the cover. The philosophy and
command structure is similar to MIDI, which was discussed in Chapter 9,
but, being parallel, the potential data rate is much higher.

The interface logic for data out consists of an 8-bit latch, a data out
ready flip-flop, and an acknowledge input for a total of 10 lines. When the
Chroma wishes to send a byte to an exrernal computer or an expander, the
byte is written into the data out register, which also sets the flip-flop. The
external device responds by reading the data out lines and then sending a
pulse on the acknowledge line, which resets the flip-flop. Having been reset,
the flip-flop interrupts the Chroma's program, which then knows that it can
send another byte.

The interface logic for data in uses a tri-state buffer for eight more data
in-lines and some gates to sense input data ready and generate input data
taken signals. When an external device has a byte ready, it places it on the
data in lines and raises the input data ready signal. This signal then
interrupts the Chroma, which responds by reading the data through the tri
state buffer, which also pulses the input dara taken signal. The remote device
responds by dropping input dara ready until it has another byte to send.
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The interface thus allows completely interlorked data transfer simul
taneously in both directions. Unlike MIDI, a data byte is not sent until the
receiver indicates that it is ready to receive. The interface is in fact completely
symmetrical; the expander has exactly the same interface logic as the Chroma
and a "flipper" cable is used to mate them. The 20 lines of a 6522 parallel
interface chip usually found in 6502-based personal computers can actually
be connected directly to the Chroma interface and the handshaking and
interrupt functions will operate properly.

Keyboard Scanner

A separate 8039 microprocessor is used to scan the Chroma's keyboard.
It is unknown why this very different, slow, and difficult-to-program
processor was used instead of a 6800 family member, but it is adequate. The
8039 is driven with an 8-MHz clock, which sounds fast but is divided on
chip by 15 to give a machine cycle of 1. 9 fLsec. A single 2716 EPROM holds
the rather simple scanning program. The 61 keys are scanned once per
millisecond using an algorithm similar to that described in Chapter 9. When
a depression or release is recognized, the key 10 number and a velocity value

+5

6.8 K

2>74145

2 I

i i
~

SWITCH
BANK SELECT
FROM 8039
OUTPUT PORT

Fig. 19-8. Simplified schematic of keyswitch array
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for that transition are written to latches that the main 6809 can read. The
6809 is also interrupted so that response to the keystroke is rapid.

Each keyboard key is equipped with a double-throw contact actuated
by the rear edge of the weighted, wooden keys. The 61 keys, therefore,
constitute 122 contacts, which are wired in a 16 X 8 matrix rather than to a
bunch of digital multiplexor chips as in the Chapter 9 example. One
potential problem with any kind of switch matrix is sneak paths that can occur
when three or more switches are closed simultaneously. This is ususally dealt
with by placing a diode in series with each switch but is handled differently
in the Chroma.

Figure 19-8 shows a portion of the keyswitch matrix. The 8039
outputs a 4-bit "switch bank" number and reads back the state of eight
switches in the bank. When a switch is closed, it draws a 0.5-mA current
through its series 10K resistor and a 100-ohm sense resistor. The positive
inputs of the comparators are all biased at 25 mV below + 5V, whereas a
closed key develops a 50-mV drop across the 100-ohm sense resistor. Besides
limiting the current, the 10K series resistors prevent the formation of any
significant sneak paths. The LM339 quad comparators are exceptionally
cheap but are relatively slow at 1. 2 /-Lsec, requiring a wait state to be added
when the 8039 reads a switch bank. Although this matrix arrangement is not
as straightforward as using digital multiplexots, it does keep high-ampli
tude, high-speed digital signals out of the physically large keyboard contact
atea where they might generate unacceptable radio frequency interference.

Control Program and Panel Function

The most critical design aspect of a mass-market keyboard synthesizer
IS the control interface it presents to the user. In the Chroma, this is
determined by the physical panel controls available and the logical structure
of the control program. Unfortunately, a complete descriprion of the user
interface would require a chapter by itself so it will be very briefly
summarized here.

Most panel operations revolve around the 50 numbered buttons, the
two-digit and eight-digit displays, and a single "parameter value" slide pot.
A few other buttons and lights are used to change operation modes and
perform specific functions, such as setting a keyboard split or tuning. One
impottant characteristic is that keyboard notes may be played at any time
regardless of the panel mode. The only exception is during tuning or cassette
dump/load operations.

There are two primary operating modes of the control panel. In the
"program select mode," each of the 50 numbered keys is associated with a
different "patch" or "sound." Simply pressing a button will instantly select
the new patch for all subsequent notes, while silencing any that may already
be sounding. Thus, during performance, different sounds may be selected
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rapidly and noiselessly. The large display always shows the currently selected
patch number.

In the"parameter select mode," the patch number is frozen in the large
display and each of the 50 keys selects a parameter instead. The left portion of
the small display shows the currently selected pard1J2efer number and the right
portion displays its value. The value displayed is what the parameter was last
set to. The value may be changed temporarily by moving the parameter value
slidepot. When movement is detected, the handle position is digitized and
the result written into the display and internal parameter value. Different
parameters have different numerical ranges. An on-off type of parameter for
example has only two legal values: 0 and 1. Therefore, the lower half of the
slidepot range will be converted to 0 and the upper half will be l. Another
parameter may have a range of 0-9, in which case the pot range is divided
into 10 regions. A few parameters can range between - 128 and + 127 and
the pot range is similarly divided. To aid in setting specific numerical values
without constantly looking at the display, the panel tapper is activated
whenever the slidepot handle moves into a new region. The whole operation
is remarkably effective, even for parameters having 256 possible values. To
permanently alter the displayed parameter value, another button must be
pressed; otherwise it will revert ro its previous value when another parameter
is selected.

There are in fact 50 parameters for a sound. The first 25 are called
control parameters and include such specifications as the voice board patch
configuration, keyboard algorithm (ways of assigning keys to oscillators),
output ch,mnel select, envelope parameters, and many others. There are
actually two envelopes present and both are of the ADR (attack-decay-release)
type. The second envelope can also be delayed with respect to the first
(another parameter) allowing the creation of the ADSR shape as well as many
others. Most envelope parameters can be modulated (altered) by other
variables such as keystroke velocity, foot pedal position, or even randomly.
The other 25 parameters are called audio parameters and include items such as
tuning offset, pitch control source, pitch control magnitude, waveshape,
pulse width control source and magnitude, filter controls, and many others.

In nearly all cases, oscillators, filters, and amplifiers on a voice board
are used together to make a single complex voice. Since there are 50
parameters for each half, the complex voice actually involves 100 distinct
parameters that could all be different, although most of them are usually rhe
same. These are referenced as the "A" and "B" groups. Depending on the
panel mode, the user can examine/alter either A alone, B alone, or both
simultaneousl y.

When "playing around" with a sound, the 100 parameters are actually
copied from their slot in the nonvolatile CMOS memory into a temporary
scratch area. The scratch sound can be altered in any way desired but will not
be permanently changed until a specific sequence of buttons is pressed. This
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copying, in fact, occurs whenever a patch is selected in the program select
mode and also includes "expanding" the compressed format used to conserve
space in the CMOS memory into a format the control program can
manipulate easily.

All-Digital Synthesizers

The previous section described what is essentially the epitome of analog
synthesizer design. Of course, mote basic waveshapes, filter modes, patching
flexibility, and voice boards could be designed in to make a bigger
instrument, but not really a different one. In the extremely competitive
synthesizer world, as soon as one instrument design is complete and in
production, work begins on a new design. Since instruments like the Chroma
have taken analog sound generation technology about as far as it can go, real
innovations must be in other areas. In the context of a hybrid instrument,
most of the activity has been in more powerful control programs and more
informative control panels. For example, many more software-generated
envelopes and low-frequency modulator oscillators have been included in
recent designs. Numeric readouts are being replaced by alphanumeric and
even limited graphics displays to allow effective communication with the
more complex control programs.

To come up with something truly new in a live performance syn
thesizer, it is becoming necessary to use digital synthesis techniques for the
soun'd waveforms themselves as well as the envelope shapes. Of course, one
immediate advantage of digital synthesis is its inherent accuracy. While
automatic tuning is effective (provided it is performed about twice an hour
and the room temperature is reasonably stable), it is not needed at all in a
digital instrument. Also, factory adjustments, which must be touched up
after a few years or when components are replaced, are not needed either.
Finally, some synthesis algorithms, such as FM with reflected harmonic
sidebands, are much more predictable when frequency uncertainties are zero.

The biggest advantage of digital, however, is that the whole spectrum
of synthesis techniques is available. It should not be a surprise that the
synthesis technique an instrument uses affects how the user "thinks about"
sound. Whereas analog synthesis is virtually synonymous with subtractive
(filter) synthesis, a digital system can be based on additive (harmonic),
frequency modulation, nonlinear, direct waveshaping, or even VOSIM
synthesis techniques. Besides these synthesis-from-scratch methods, modifi
cation techniques such as frequency shifting, dispersion, arbitrary filtering,
envelope modification, and others are potentially available. Finally, an
endless variety of parameter transferral, record-playback, and analysis
synthesis techniques are possible. No instrument uses all or even most of
these possibilities, but they do provide a rich source of ideas for instrument
designers.
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On the negative side, it presently costs substantially more to develop
and manufacture an all-digital synthesizer than a hybrid unit. If off-the-shelf
components are used in the design, engineering effort and tooling costs may
be affordable by a moderately small company, but then manufacturing costs
will be quite high. For example, the cost of a single parallel multiplier chip
can easily exceed the cost of 20 or more complete voltage-controlled
oscillators. On the other hand, using custom chips can bring manufacturing
costs down considerably, but then only the largest companies designing
instruments for the broadest possible mass market can afford the develop
ment expense.

Nevertheless, at the time of this writing, "digital" is a hot buzzword
not only in the synthesizer market but also the audiophile ("compact disks")
and recording markets (digital multitrack recorders and all-digital studios).
If a product is "digital," it is seen to be inherently better even if an objective
evaluation may show it to be less flexible or more difficult to use than an
equivalent oldet technology product. Thus, at this time, most new syn
thesizers being introduced are mostly, if not all, digital.

Synthesis from Sound Parameters

The development of digital synthesizers seems to be going in three
rather distinct directions according to what designers perceive to be the
greatest strength of digital technology. One of these is simply synthesis jl-om
scratch according to sound parameters in a live-performance keyboard
instrument. The instrument's functional and design goals are similar to those
of a hybrid synthesizer but with the advantages of digital technology, such as
freedom from drift, present. Because of digital's inherent accuracy, digital
instrument designers expect to be able to concentrate on providing more
flexibility in parameter control and interaction and not have to worry very
much about tuning correction, error accumulation, and the like. Beyond a
certain sophistication point in the synthesizer's design, it becomes almost
free (in production cost terms) to provide additional synthesis algorithms,
more parameter modulations, and so forth. All that is really added is perhaps
more memory to hold the additional programming and data. In fact, the
flexibility limit in a live-performance keyboard instrument is often not set by
the circuitry's capabilities but by an inability to design an effective human
interface so that the user can learn the instrument in a finite time and
effectively use all of the features. This problem is far more serious than what
might be thought.

A good analogy might be word-processing programs for personal
computers. Obviously, any small computer and a letter-quality printer is
theoretically capable of producing any kind of text; it could even have typeset
this entire book less figures (and for $3,000 one can purchase a laser printer
that could typeset the text and draw all of the figures, except photographs, as
clearly as you see them here). The rules of written English are fixed, and most
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Fig. 19-9. Synclavier digital keyboard synthesizer

printers accept the same command set, yet there are a dozen or more different
word-processing programs available for each computer type and they all operate
different~"y. Reviews of such programs reveal that none of them does everything
that might be desired, and different ones are weak in different areas. Most
significant, though, is that those judged easiest to learn and use are also the
most limited. Conversely, the few that are comprehensive are difficult to
master and even these don't even begin to address the integration of figures
into printed text. In essence, available digital hardware, both image
synthesis and sound synthesis, presently far outstrips designers' ability to
design effective and understandable user intetfaces. _

One way to tackle difficult control interface problems is to take a subset
of the problem and solve it well instead. Thus, rather than trying to provide
effective control interfaces for a variety of synthesis techniques, just one is
selected and perhaps embellished a little to broaden its range of application.
This approach shows up clearly in current keyboard digital synthesizers that
typically offer just one primary synthesis technique.

One example is the Synclavier (Fig. 19-9) manufactured by New
England Digital, which was also the first well-known all-digital keyboard
synthesizer to become commetcially available. The Synclavier is essentally an
additive synthesis instrument with provisions for limited FM synthesis. Its
internal hardware structure essentially consists of 8 (expandable to 32)
waveform table scanners. Waveforms are computed from up to 24 harmonic
specifications and placed into each table. A separate sine wave oscillator is
associated with each table scanner as well and can frequency modulate the
scanned out waveform. Thus, FM sidebands around each harmonic of the
stored waveform are possible. Each table scanner has its own amplitude
envelope and a single "note" can trigger up to four of these. Thus, a
moderately complex spectral evolution can be produced. Such a hardware
structure is relatively simple, being the same order of complexity as the
Fourier series generator described in Chapter 17 for each set of eight table
scanners.

The user interface for selecting and changing sound parameters is
similar to the Chroma's except that the parameter value control is a large,
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weighted, multiturn knob (such as on a short-wave radio)' with a range of
- 2048 to + 2047 units. The control computer and digital voice boards are
housed in a separate enclosure. A separate (and optional) graphics computer
terminal is used for the more complex sound parameter setting operations.
New software features are constantly being added to broaden the range of
application and distinguish the Synclavier from other keyboard synthesizers.
For example, emphasis is being placed on studio-oriented features, such as
storing and editing long keyboard sequences and music language input,
which ultimately will place it into the "toolbox" category to be described
later.

Reconstruction of Digital Recordings

Another distinctly different development direction is instruments that
effectively play back digital recordings of instrument sounds rather than trying
to synthesize them from scratch. Of course, this idea is not new, having been
tried centuries ago in pipe organs and more recently in the Mellotron (a
multitrack tape loop with a different sound on each track), but digital
technology and the very low cost of memory now makes its complete
realization practical. The user of such an instrument doesn't think "oscillator
A drives filter B in bandpass mode with envelope C modulating its center
frequency, etc. ," but rather "sound 27 is a muted trumpet, sound 63 is an
orchestra string section, sound 119 is a bass recorder, etc." Thus, in the pure
case, a user interface is very simple; just a bunch of stop-like numbered
buttons, or a keypad. Conventional wisdom says that this kind of instrument
should have a large market because most musically inclined people are
unwilling to learn and deal with sound parameters.

In designing such an instrument, one quickly finds out that, while
memory is cheap, it is not cheap enough to store the direct sound waveform of
every note of every instrument in the repertoire. Actually, one can get by
with direct digital recording of most unpitched percussive sounds such as
drums because volume, which can be successfully adjusted as a parameter
separate from the digital recording, is the only variable. Specialized drttm
synthesizers in fact do exactly that. Pitched percussive instruments like a piano
are much more difficult because both pitch and volume are variables. The
spectrum changes as a function of both frequency and of volume so external
control of gain and memory scan speed are not usually satisfactory methods of
controlling these two parameters. The situation is even worse for wind and
directly fingered string instruments because playing technique becomes a
third variable.

Thus, data compression of the digital recording becomes a crucial
requirement, otherwise, tens or even hundreds of megabytes of memory are
required. Unfortunately, manufacturers of emulation instruments are quite
secretive about the specific techniques used, but it is possible to speculate a
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Fig. 19-10. Kurzweil-250 emulation synthesizer

little. One possibility is to encode the waveform samples more efficiently. For
example, just the diffmnces from one sample to the next might be stored.
This is called difftrential pulse-code modulation and can easily compress well
behaved sample data by a factor of rwo. For pitched sounds, one might also
arrange to store the differences from one cycle to the next as well. Logarithmic
encoding of the samples is another way to achieve compression. Fully
implemented along with provisions for skipping the encoding during
particularly difficult sections like the initial attack, waveform coding can
achieve compressions in the range of 3-10 with little or no degradation in the
reproduced sound.

Another possibility is to store the time-varying spectrum of rhe
instrument sounds using one of the techniques described in Chapter 16 rather
than the waveform itself. Certain aspects of the sound not well tepresented by
the time-varying harmonic spectrum, such as noise components, can be
analyzed separately and added to the spectral description. The resulting data
may be greatly compressed because the individual spectral envelopes can be
approximated with line segments or higher-order curves and a variable frame
rate can be used. Spectral variations at different pitches and volume levels
may be handled by storing data for only a few well-chosen pitch and volume
points over the instrument's range and then interpolating for a specific case. Of
course, all of this processing "distorts" the recorded sounds substantially but
can still provide a nearly perfect audible reconstruction.

One quite successful emulation instrument is the Kurzweil 250 (named
after its inventor), which is pictured in Fig. 19-10. This is truly a top-flight
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machine with 88-key velocity-senstive wooden keyboard that has been fitted
with weighted throw-bars in an attempt to duplicate the feel of a real piano
keyboard. It has 12 standard orchestral sounds built in including grand
piano, string section, trumpet, acoustic guitar, and Hammond organ; 14
percussion instruments including all kinds of drums and cymbals; an
"endless glissando"; and a sine wave. Add-on ROM "voice modules" allow the
repertoire to be expanded with instruments like a full chorus, both male and
female. The control panel is devoted mostly to setting up various keyboard
algorithms and splits even to the point of each key controlling a completely
different sound. Splits can also overlap, which allows some keys to control
twO Ot more instruments playing in unison or at a constant interval. Limited
modulations of the stored sounds such as pitch bending, vibrato, and
"brightness" variations are also possible.

Internally, the Kurzweil 250 uses no fewer than 68 masked ROM chips
of 256K bits each for a total of over 2M bytes of storage for the standard
sound repertoire. A lO-MHz 68000 microprocessor controls everything.
Digi'tal circuitry resides on two very large (15 X 17 inches) circuit boards,
while a surprisingly large amount of analog circuitry fills another board of
similar size. Much of the analog circuitry is devoted to 12 completely
independent voice channels where each channel includes a 12-bit CMOS type
D-to-A converter, a sample-and-hold deglitcher, a programmable low-pass
filter, and a programmable gain amplifier. The sample rate of each channel is
also variable according to the instrument and note being played and ranges
from 10 to 50 ks/s. A typical instrument's range is broken up into
approximately 10 subranges with those at the extremes covering somewhat
more than an octave, while those in the middle are about one-half octave
wide. Different pitches within a range are produced by varying the sample
rate. Sounds are stored as an attack portion, a sustain portion, and sometimes
a decay portion. During exceptionally long sustains, the stored sustain
portion, which averages about 3;4 sec, is repeated. It appears that waveform
coding is used for data compression, and the compression ratio is estimated
to be in the 4-to-l range for instruments like the string section.

To the author's ears, the accuracy of emulation is, for practical
purposes, perfect. While the piano, violin, and other instruments actually
recorded to prepare the voicing ROMs may not be the best in the world, they
are probably better than what a potential buyer would otherwise have access
to. If one knows exactly what to listen for and devises a suitable test score,
some of the data compression artifacts can be detected. For example, with the
piano sound, one can tell where the subrange boundaries are, while with the
string section, repetition within long sustains can be detected.

The Kurzweil-250 seems to appeal mostly to people with a classical
music background who might otherwise purchase a grand piano or large
organ for their home. Aside from curiosity and challenging the company's
slogan, "you can't tell the difference," the usual keyboard synthesizer
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customer has shown only moderate interest. To broaden its appeal to
performing keyboard players, new features allowing greater flexibility in
modulating the stored sounds and routines for computing and temporarily
storing synthetic as well as sampled live sounds have been added as well as a
MIDI interface.

"Toolbox" Synthesizers

The third developmental direction (and solution to the man-machine
interface problem) is what will be called a "toolbox synthesizer." These
provide a large collection of more or less disjointed software and hardware
tools that can be used in sequence to build a composition. The control
interface problem is greatly simplified because each tool performs a specific
function and can be designed and implemented independently. It is the user's
responsibility to determine how to use the functions together to produce a
desired result. While they can be useful in live performance, a toolbox
synthesizer is really a studio synthesizer. As such, the major design goal is
maximum flexibility rather than efficiency in a performance environment.

Let's briefly look at what some of these tools might be and the sequence
in which they might be used to produce, say, a low-budget film soundtrack.
The composer would typically have a preliminary edit of the film and
instructions from the director available. With these, a detailed list of the
kind of music needed for each scene and its required duration is prepared.
Next, musical ideas and score fragments are composed and notated using
whatever method is familiar to the composer. Using the available score entry
programs on the synthesizer, the score is then entered. Typical methods
include direct music keyboard playing and the use of one or more music
languages. After entry, score segments can typically be saved and inserted
elsewhere, repeated, and modified in various ways such as transposition. For
film work, it is also necessary to adjust the segment durations to match the
scenes. This may be accomplished by deleting or adding phrases and small
adjustments in tempo.

Once the score, which may be just the melody line, is in the system,
the next step is orchestration. Up to now, some stock voice was probably used
and the score was devoid of dynamic and voicing markings. One approach
would be to search a library of already "designed" voices but, of course, it is
more creative to construct new ones. Usually there are many different "voice
editor" programs available using different synthesis techniques. For example,
one program may allow the drawing of individual harmonic envelopes for use
by an additive synthesis process. Another may allow interactive control over
an FM synthesis setup or interactive drawing of nonlinear distortion curves or
interactive design of digital filters. Yet another would begin by digitizing a
natural sound and provide numerous ways of modifying or distorting it.

Once a library of voices is constructed, the score is edited again to
include voice selection, dynamics, and additional musical lines. Depending



736 MUSICAL ApPLICATIONS OF MICROPROCESSORS

Fig. 19-11. Fairlight eMI "toolbox" synthesizer

on the synthesizer, the last step of combining musical lines may be done in
real time on the synthesizer or in srages using a multitrack tape recorder.
What is amazing (and gratifying) is that the entire process, which can result
in a truly impressive soundtrack, may be accomplished by a single person in
jusr a few weeks or months.

One example of whar is effectively a toolbox synthesizer is the Fairlight
CMI (Computer Musical Instrument), which was designed in Australia. This
instrument is very popular in the studio and has in fact been used to produce
countless film scores. The "terminal" part of the system, pictured in Fig.
19-11, consists of a movable 73-note music keyboard, an alphanumeric
keyboard, and a graphics display screen. The display is rather mundane with
a strictly black-and-white resolution of 256 X 512. Integrated into it,
however, is an extremely effective light pen with resolution to the pixel for
direct drawing of curves and pointing out displayed items. Except for the
display, all of the computer and synthesizer circuitry is housed in a separare
enclosure. Program and data storage is on 8-inch diskettes, and the two
drives are mounted in this enclosure as well. Two 6800 microprocessors are
used for the main control computer along with another in the music
keyboard. Both processors have access to all sysrem resources without mutual
interference by taking advantage of the 6800's 6502-like two-phase clock.
64K bytes of read/wrire memory plus 16K for the graphics display is also
present.

The synthesizer portion is also rather mundane but, as will be shown
later, is very effective in practical situations. The logic for each of the eight
voices is on a separate voice board. Each voice board has a 16K X 8 sample
memory driving an 8-bit waveform DAC followed by an 8-bit multiplying
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amplitude DAC. In scanning the stored waveform, different pitches are
produced by keeping the waveform pointer increment at unity and varying
the sample rate. This is allowable, since the logic for each voice is
independent of the other rather than being multiplexed. One interesting
feature is that the table scanner treats the 16K memory as 128 segments of 128
samples each. Under direction from the control computer, the scanner may be
instructed to cycle through a subset of the whole memory in integral
numbers of segments.

Generally, the sound of an entire note is stored in the 16K sample
memory including the attack, sustain, and decay. For pitched sounds, it is
desirable for one cyle to fit into one segment. When a note of an arbitrary
duration is played, the waveform scanner is instructed to scan sequentially
through the attack portion, loop repeatedly through the segments represent
ing the sustain portion, and finally scan sequentially through the remainder
of the memory for the release. Although waveform resolution is only 8 bits,
the dynamic range is considerably greater because of the separate gain control
DAC. Also, since each voice is separately D-to-A converted and the
quantization noise is purely harmonic due to the variable sample rate method
of pitch conrrol, the overall sound is of high quality after all.

The interactive graphics software supplied with the Fairlight is the key
to its musical usefulness. This software consists of several independent
programs that share common disk data bases. A proprietary, although
conventional, disk-operating system loads requested programs into memory
and maintains the files of voices and scores. Although the internal software
organization is not at all unusual, the user interface and operator's manual is
designed to hide the fact that multiple programs are being used and in fact
even hide the concept of a computer program. Each program has a distinctive
interactive graphics display format on the screen and is uniformly called a
"page." The user's manual continually describes what can be "done" on each
"page" as if each represented a portion of a massive control panel. The light
pen is used extensively by all of the programs. About the only use of the
alphanumeric keyboard is entering the names of new instruments and scores
and in using the system's composition language.

Of the dozen or so pages available, a few will be briefly described here.
Page 2, for example, is the disk file maintenance page, which allows all of the
usual list/load/save/copy/delete DOS functions to be performed by pointing
the light pen at a file name and a function name. Unfortunately, the floppy
disks cannot carry out the functions as fast as the operator selects them, but
certainly the approach is convenient.

Another page allows direct drawing of waveforms. A fine grid of 64
vertical lines is displayed for the light pen to "see" and the user can quite
literally draw, as fast as desired, one cycle of a waveform to fill one segment of
the waveform memory. Up to 128 different waveforms may be drawn to fill
the memory, but typically only a few are drawn and the waveshape interpolation
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function used to compute intermediate shapes. Direct spectral entry is
allowed on another page in a similar fashion. Here, 32 vertical grids are
shown, each representing four waveform memory segments. With the light
pen, up to 64 individual harmonic envelopes may be drawn with up to eight
displayed at once. The envelope of interest is shown with a thicket line. The
actual waveforms placed in memory are straight-line interpolations of the
display values over the fout segment intervals.

The "sound sampling" page is the most distinctive feature, however. An
8-bit A-to-D converter can sample from a microphone or high-level input
directly into the waveform memory of a separate "master voice module." The
sample rate may be varied over a wide range in order to fit the entire sound
into the 16K memory or to match the sound's pitch period to the 128-sample
segment size. Selectable low- and high-cut filters and an automatic trigger
threshold with adjustable pretrigger delay are available. After a sound is
captured, its overall amplitude envelope is displayed to allow level adjust
ment to make full use of the limited 8-bit dynamic range. As with the othet
pages, the light pen is used to select options and control operation.

Although these and other sound definition/capture programs are
independent, they are linked together through disk files and retained
contents of the waveform memory. Thus, the waveform drawing page may be
used to view, and modify, a sampled sound waveform. The harmonic entry
page may be used to view the spectrum of a drawn or sampled waveform.
Another page is available for designating which segments of the waveform
memory are to be the attack, looped sustain, and decay. It can even rearrange
the segments or generate new segments that are combinations of other
segments, all under light pen control. An important feature is that the
keyboard is always active. As soon as a waveform is in memory, it can be
played, at any pitch, at any step along the editing process.

A keyboard page is available for assigning different regions of the
keyboard to different voices and assigning the eight available voices to stored
sounds in various groupings. Another "patch page" is used to designate
which synthesis parameters are controlled by the pedals, joystick, keyboard
velocity sense, etc., all graphically with the light pen. A sequencer page is
used to capture, edit, and merge keyboard sequences to build up to eight
musical parts. A music language (MCL, Music Composition Language) and
text editor are available to allow complex scores to be typed in and compiled
into the internal sequence format. In all, the Fairlight CMI is a very flexible
insttument that combines the best features of direct computer synthesis and
performance-oriented keyboard synthesizers.

Direct Computer Synthesis Practice

Although keyboard and toolbox commercial digital synthesizers have
essentially taken over the market for "working" instruments, there are still
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many unusual applications and research situarions for which they are
unsuited. Several of these, such as experiments in human perception,
development of new synthesis rechniques, and data compression algorithms,
were mentioned earlier in this chapter. Add to these experimental composi
tional techniques and scores that simply do not lend themselves to "playing"
on a keyboard and one realizes that there is still a great need for direct
computer synthesis hardware and software. As would be expected, much of
this kind of work is done in a university setting, but there are also a number
of commercial studios and individual composers who make use of such
equipment.

Whereas a toolbox synthesizer increases flexibility by "deintegrating"
the usual keyboard synthesizer and making use of some standard compurer
graphics techniques, a direct computer synthesis system goes much further.
Firsr, there is the computer's operating system. Rather than being hidden
behind a limited function "shell" program, the full array of file maintenance
and other operating system commands are available. Although these com
mands must usually be typed in a rigid format, their great flexibility often
allows otherwise repetitive tasks to be performed with just one command.
Programs are even more individualized and disjointed. The data files that
link them together can be defined by the user according to the application
rather than having to conform to a rigid standardized format. In essence,
there is total freedom-and the responsibility to use it productively.

The most significant feature of direct-synthesis systems is that writing
new synthesis and manipulation programs is the norm. Full documentation
of existing programs and data file formats are available to make the job
straightforward. Contrast this with commercial toolbox synthesizers that
make user programming difficult to impossible in order to protect proprie
tary rights. In most cases, direct-synthesis programs rely on conventional
alphanumeric input rather than the nifty interactive graphics characteristic of
the Fairlight and others. One reason is that only 10-20% of the effort in
writing a typical interactive graphics program goes toward solving the
problem; the rest is in the graphics interaction routines. Thus, in research
situations, most programmers get by on the simplest user interface possible:
typed commands. Another reason is that graphics programming is generally
not "portable" among different computer types or even configurations. Thus,
one group using Digital Equipment (DEC) computers would have a tough
time sharing a well-done graphics program with another group using IBM
equipment.

Real.Time Direct Synthesis

One constant research objective is to design and build hardware that
can, in real time, perform the same synthesis and processing functions that a
generalized delayed-playback software package can. Two approaches have
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Fig. 19-12. Digital Music Systems DMX-1000 Signal Processing Computer

been taken to this problem. One is to choose a single but very general
synthesis technique, such as waveform table scanning and then build a very
large digital synthesizer using it. Sometimes the synthesizer structure can be
very simple, with the difference being made up in volume. One such
proposal has been to combine synthesizer boards each of which can produce
256 sine waves with individually controllable frequency and amplitude. The
theory is that if enough of these are constructed (a good starting point would
be the number of different perceivable frequencies that is in the low
thousands range), then any sound could be produced. Although such
machines are usually conceived as being one-of-a-kind and end up costing
tens to hundreds of thousands of dollars to build, they are sometimes the
basis of successful (and scaled down) commercial synthesizers.

Another approach is to split the difference between a general-purpose
computer, which is inherently slow, and a fixed architecture but very fast
machine like the one just described. The result is a "programmable signal
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processor" that is like a general-purpose computer but has an instruction set,
register complement, and architecture optimized for repetitive sample
calculation applications. It is the repetition (which makes pipelining
possible) and specialization that allows such a machine to run synthesis
calculations 5-50 times faster than a general-purpose computer of the same
complexity and logic curcuit speed.

An example of this approach is the DMX-lOOO Signal Processing
Computer from Digital Music Systems, which is pictured in Fig. 19-12.
This commercial, programmable, digital signal processor is actually an
outgrowth from work done in the Electronic Music Studio at MIT. Packaged
in a moderately small rack-mount enclosure, the DMX-lOOO has a universal
8-bit parallel interface that can connect to almost any computer. Most users,
however, drive it from a DEC PDP-Il, primarily because most of the support
software available is for that computer.

The DMX-lOOO uses what is called a "Harvard architecture," in which
the program memory is completely separate from the data memory. The
simplified internal block diagram in Fig. 19-13 reveals that there are actually
three memories: a 256 word X 32-bit program memory, a 4K X 16 data
memory, and a 64K X 16-bit delay memory. The difference between the data
and delay memories is that the latter is much slower (six machine cycles
versus one) and is also optional. It is typically used to implement signal
delays in reverberation simulation and digital filtering programs. The host
computer can read and write any of the memories either continuously while
the DMX-lOOO is stopped or once each sample period while it is tunning.
This allows programs to be loaded into the program memory and parameters
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to be dynamically changed in the data memory while the DMX-lOOO
program is running without interfering with it. The host can also read back
computed results or they can be sent directly to the D-to-A converters.

The computation logic is actually quite simple and consists of a 16
word register file, 16-bit arithmetic logic unit (ALU), a 16 X 16 parallel
multiplier, and numerous "pipeline" registers. In the block diagram, all data
paths are 16 bits wide. The register file and ALU, which is implemented
with four 2901 type bipolar bit-slice chips, can select any pair of the general
registers as its inputs and can add, subtract, and, or, exclusive-or, etc., them
together. The ALU result can be written directly back into one of the general
registers and also appears on the Y bus. Other data paths internal to the ALU
for shifting and a 17th Q register are also present but not shown. The Y bus
leaving the ALU is the main output bus .of the machine and can be latched
into any of the data and delay memory source registers, the multiplier
operand registers, or the D-to-A converters. The S registers of the memories
hold a 16-bit address, while the W registers hold data to be written, if any,
on the next machine cycle. The D bus is the main input bus onto which data
read from either data memory, either half of the 32-bit product, or the A-to
D converters may be gated. The D bus then wraps around to the ALU general
register inputs.

The DMX-lOOO operates with a machine cycle time of 200 nsec, and all
instructions require one machine cycle to execute. Every element of the
system, except the delay memory, can perform its function in one machine
cycle. Program memory is organized as a simple linear list of 256 sequential
instructions with no branching except for one implied branch from the end of
the program to the beginning. At the beginning of a sample period, four
machine cycles are used to allow external access to the memories, trigger the
ADCs, and other setup. Thereafter, instructions are executed sequentially at a
5-MHz rate until a halt instruction is encountered. At that point, the
program may either loop immediately to the beginning or wait for the next
sample pulse. Thus, one program loop is equal to one sample period. For a
completely full program memory with 256 steps, the maximum sample rate
is 19.3 ks/s. Program decision-making, which is necessary when computing
line segment approximations, for example, is implemented by conditional
execution according to the ALU condition codes. A failed conditional
instruction simply performs as a one-cycle no-op.

Programming the DMX-lOOO consists of establishing a bit pattern for
each instruction in the sample loop. The 32 instruction bits are divided into a
number of fields. For example, two 4-bit fields and another 3-bit field
determine which general registers or other data sources are selected for the
ALU inputs, while a 6-bit field determines the ALU operation. Additional
fields determine which of the Y bus registers are loaded and which of the D
bus registers are selected for the current machine cycle. Unlike most general
purpose computers, each element of the DMX-lOOO can be performing
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simultaneously. Thus, the ALU can be adding two values, the multiplier can
be working on two different values, and both data memories can be accessing
all in the same machine cycle. Minimizing the size of programs, which
directly minimizes execution time, involves careful study of the problem and
careful programming to maximize concurrency. Thus, pipelining is actually
the responsibility of the programmer, which can be much more effective than
automatic pipelining. In this respect, DMX-1000 programming is even more
difficult than traditional assembly language programming, but then there is
much more room for creativity. A specialized assembler that runs on a
PDP-ll is available to make the job somewhat easier. A complete music
language compiler, called MUSIC-WOO, is also available.

Using some of the stock coding supplied with the machine, it is
possible to program up to 24 table-lookup oscillators, 8 FM oscillators, 10
second-order digital filters, and various combinations of these and other
functions at a 19. 3-ks/s sample rate. Although this is not a "large" amount of
synthesizer functionality, the mix can be dynamically altered by rewriting the
program memory, which can be done very quickly. The real power of this
machine lies in its ability to "debug" instrument definitions and explore new
synthesis techniques in real time for a limited number of voices using the
exact same algorithms that a delayed-playback program would on a general
purpose computer. Even during a final delayed-playback run on the host
computer using the whole "orchestra," the DMX-lOOO can be used to greatly
speed up repetitive synthesis calculations.

DelayedaPlayback Direct Synthesis

For the most demanding applications, there is as yet no substitute for a
software-based direct-synthesis program running on a general-purpose com
puter in the delayed-playback mode. Such programs for mainframe com
puters have been in existence since the early 1960s, when the original work
was done at Bell Labs, and now form part of a large family tree. Currently
used members include MUSIC V, which is written in FORTRAN for
mainframes, MUSIC-360 which is in IBM 360 assembly language, MU
SIC-ll in assembly language for the DEC PDP-lIline, and C-MUSIC which
is written in the C programming language. Although the latter is typically
run on PDP-lls and VAXs (a "supermini" computer also made by DEC), it is
the only program in the series with the potential for running successfully on
some of the more powerful microcomputer systems. All of these programs are
similar in concept and usage with most differences due to the computers they
run on and extra music language features. Development and maintenance of
all of these programs is done at universities. Although some have stiff
licensing fees, the market is just too small for any of them to become a
profitable product.

To conclude this chapter, a brief look will be taken at the CARL
(Computer Audio Research Laboratory) music system, which is a continuing
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development at the University of California at San Diego (UCSD). CARL is
really a set of related programs that are normally configured ro run under the
UNIX operating system. This large time-sharing operating system runs
most efficiently on VAX and PDP-ll computers but has also been suc
cessfully implemented on the more powerful 16-bit microcomputers using
68000, 16032, and 80286 microprocessors. Virtually all of the programs are
written in the C language, which means that straightforward conversion to a
different computer using UNIX is at least theoretically possible. The record
and playback programs that operate the AIDIA conversion system, however,
must be in assembly language so they would have to be rewritten for a
different processor. All of the programs, including C language source code,
may be licensed for a very nominal copying fee and by agreeing to some
simple acknowledgment conditions.

One of the leading features of the UNIX operating system is an
elegantly simple "tree-structured" directory system for disk data files. Since
UNIX is a time-sharing operating system, each user has a separate branch of
the directory. Likewise, each project being worked on can be a branch off the
user branch and so forth. Directory links allow the same file to appear in
different directories, thus avoiding multiple copies. Unfortunately, sound
files are usually too big to be efficiently handled by the built-in UNIX file
system. Also, substantial delays may sometimes be encountered during
sequential access, which would be unacceptable during playback and
recording operations. This problem is solved by defining a separate,
simplified directory system for sound files, which is dedicated to a separate
rigid disk drive. By using algorithms that favor physically sequential
allocation of sound files and by using large block sizes, the CSOUND
directory system meets the real-time acccess and high-speed data transfer
required for digitized sound recording and playback.

At UCSD, for example, a 300M byte removable pack disk drive is used
for sound file storage. Space is allocated in units of cylinders that are about
300K bytes each. For most operations, sound files are dynamic in size, but
the A-to-D record program requires that the file length be specified in
advance so that the written file is known to be physically sequential on the
disk. Samples are stored in sound files as 16-bit, twos-complement integers
called shoytsams in CARL terminology. For stereo, shortsams are stored
alternately in the file. In fact, the system handles up to four channels of
sound data. Two sample rates are typically used; a 49,152 sis (= 3 X 214) rate
for final results and one-third that rate for pteliminary runs. At the higher
rate, a 300 M byte disk pack holds about 43 minutes of monaural sound.
Elsewhere in the system, particularly within CMUSIC and the other sample
processing programs, samples are manipulated as single-precision 32-bit
jloatsa1!lJ. The use of floating-point arithmetic is virtually mandated when a
high-level language such as C is used and does not greatly reduce
computation speed on the large computers typically used to run UNIX.
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Fig. 19-14. Dataflow connections of UNIX programs. (A) Generalized UNIX
program. (8) Four programs connected by UNIX pipes.

Another leading feature of UNIX is that otherwise separate programs
can be "chained" together into networks with a simple command. This is
used within CARL to combine sample generation and processing program
modules almost like connecting them together with patchcords. Figure
19-14A is a "dataflow" diagram of a typical UNIX program. Programs are
run by typing their names and perhaps some arguments on the UNIX
command line. The program can read the arguments, which are usually file
names and program options, from the command line input. Any error
messages that may be generated are sent out over the errors channel, which
can go to either the terminal or a file. Most programs also read and/or write
data files using the standard UNIX file system. Such files may contain
additional action specifications, data to be processed, or new data created by
the program. For interactive programs, the terminal is used to receive
additional operator commands and to display messages or results. Most
important, however, are the STDIN and STDOUT data streams. These are
simple sequential streams of bytes that are normally text characters but in the
CARL system are sound samples. It is these two data streams that may be
"connected" to other programs using the UNIX "pipe" facility.
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Figure 19-14B shows how several CARL system programs might be
connected together using the pipe facility and the command line a user
might type to effect this combination. SNDIN will read shortsams from the
sound file called DEADSOUND, convert them to floatsams, and then
output them through its standard output to a UNIX pipe. The vettical bar
immediately after the sound file name on the command line designates a pipe
connection to the following program name. FILTER in turn gets the name of
the coefficient file to use (BRIGHTCOEFFS) from the command line, filters
the floatsams from its standard input, and outputs the filtered result to its
standard output, which in turn is piped to the LPREV program. LPREV is a
reverberation program that reads reverberation parameters trom the com
mand line and reverberates samples passing from its standard input to

output. The D parameter specifies the ratio of reverberated to original sound,
and the G parameter specifies the reverberation time. Many other parameters
are available, which take on default values when not specified. The results of
LPREV are finally piped to SNDOUT, which converts floatsams back to

shortsams and writes them onto a new sound file called LIVESOUND. Since
UNIX is a time-sharing operating system, all four of these programs are
actually loaded and run simultaneously. Thus, the pipes are actual in-memory
communication channels rather than temporary files as would be required in
other operating systems. Much more complex interconnection patterns with
parallel signal paths are also possible using special "branch" and "merge"
programs.

C-MUSIC is the heart of the CARL system for synthesis applications.
This program reads text from a score file and produces floatsams on its
standard ourput for piping to other programs or writing into a sound file.
The score file (or standard input if no file is specified) may have been prepared
by the user with a text editor or may be the output from a macroexpander or
high-level composition program. The brief discussion that follows should
convey the flavor of C-MUSIC, which is also generally applicable to MUSIC
V, MUSIC-ll, and other family members.

A C-MUSIC score consists of statements, each of which is terminated by a
semicolon. Text enclosed in curly brackets (n) may be placed anywhere as
comments. Score statements are grouped into four overall sections as follows:

1. Options
2. Instrument definitions
3. Function (table) generation
4. Notelist

The options section contains statements that specify several global
attributes applicable to the current "run" of C-MUSIC. These include the
sample rate, number of sound output channels (one to four), the sizes of
internal buffers, the random-number generator initial seed, and the default
function length. The latter is the size of waveform and envelope shape tables
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used by the synthesis routines and is usually 1,024 entries. Options can also
be specified on the command line, in which case they override those in the
score.

At this point, it is probably better to describe the norelist, which is the
actual score, first. The most fundamental notelist statement is the NOTE
statement. It consists simply of the keyword NOTE followed by several
parameter or "P-fields," each separated from the others by blanks. PI is the
keyword "NOTE" itself, while P2 is the "acrion time" and P3 is rhe name of
the instrument that will play the note. The action time specifies when the
note should start and is normally given in seconds. P4 is the duration of the
note, also given in seconds, and is the last required parameter. Additional P
fields may be used if the instrument that will play the note requires them. By
convention, P5 usually gives the amplitude and P6 the frequency of pitched
notes. As many P-fields as desired may be used according to the complexity
of the' corresponding instrument definitions. Below are a few valid note
statements in their simplest form:

NOTE 0.00 BLATT
NOTE 0.15 BLEEP
NOTE 0.20 BUPP

NOTE 0.50 BLOPP
NOTE 1.25 BLURP

.10

. 15

.05

.35

.25

1.0 16
.707 220HZ
- 3DB 4*261HZ

- SOB 1.5KHZ
ODB 55HZ V5

{
Two octaves above1
middle C J

5.7HZ 0.2SEC
3*V7 +2

The first note is played on an instrument c'alled BLATT starting
immediately at time zero and lasting for one-tenth of a second. Its amplitude
is unity (the maximum amplitude allowable in C-MUSIC) and the frequency
is 256 Hz. Actually, the frequency field gives the waveform table pointer
increment value; thus, the wave frequency is actually P6*SR/FL, where P6 is
the given P6 field value of 16, SR is the sample rate (default is 16,384 Hz),
and FL is the wavetable or function length (default is 1024). The second note
is similar but the "postop" hertz is used so that frequency can be specified in
hertz rather than wavetable increments. Needless to say, this is usually done.
The third note illustrates the decibel postop, which is useful in amplitude
specification and the fact that arithmetic expressions can be used in
specifying P-field values. In fact, nearly any kind of expression normally
permitted in a programming language including functions such as SIN,
COS, LN, EXP, SQRT, and even RAND can be used. In the fourth note, the
"K" postop, which is a 1024 multiplier, is also included in the frequency
specification to yield 1,536 Hz. Two additional parametets needed by the
BLOPP instrument are also included. The SEC postop converts the given
number, which is a waveform period here, into an increment. The last note
makes use of variables in expressions for its P7 and P8 fields. V5 and V7 have
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2. Dse BI P5 P6 PI D

3. ose B2 BI P6 FI D

4. ase B2 P5 BI FI D

Fig. 19-15. OSC Unit generator

presumably been defined previously in VAR statements, which influence all
subsequent notes using them. Generally, in any source of significant size,
variables, expressions, and macros (which have not been described) are used
to make human reading and editing of the score much easier than these
examples might imply.

The notelist can also contain VAR statements, which have already been
mentioned, SEC statements, and MERGE statements. Besides V variables,
the VAR statement can also specify P variables whose values are used as
defaults when an instrument requries a P-fie1d but the note statement does
not specify one. The SEC statement defines the beginning of sections of the
score in which local time always begins at zero. Thus, the timing of whole
sections of the score may be made relative to other sections without having to
change all of the note beginning times. Normally, note beginning times
must be in sequence so that each is later than its predecessor. By using
MERGE statements, one can cause C-MUSIC to sort note statements into
time order before processing them. This allows, for example, horizontal score
entry (one voice at a time; see Chapter 18) to be used instead of vertical entry
and expressions involving variables (even the RAND function!) to be used in
the starting time field. The TER statement is used at the end of the score and
can specify an amount of trailing silence for notes and reverberation to decay.

The most interesting part of the score, and one that is responsible for C
MUSIC's flexibility, is the instrument definitions section. Instruments are
defined by "patching" together unit generators in a manner analogous to
voltage-controlled analog modules. Each unit generator is specified by a
single statement within an instrument definition that gives the generator's
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name followed by several parameters, which specify where the inputs come
from and where the output goes. Available unit generators include several
kinds of oscillators, amplifiers, mixers, several different filters, delay lines,
mathematical operators, nonlinear distorters (table lookup elements), noise
generators, and the content of existing sound files. As many unit generators
as desired may be combined in an instrument definition, and, since 32-bit
floating-point arithmetic is used, error accumulation is generally not a
concern.

Figure 19-15 shows a schematic representation of the OSC unit
generator along with a prototype OSC statement. The statement begins with
the keyword, OSC, followed by the name of an I/O block that will receive its
output. I/O blocks are different from constants and parameters and are used
to pass sample values among the unit generators in an instrument. The
reason they are special is that signal samples are calculated in blocks to
improve computation speed. I/O blocks are identified as B1, B2, ... up to
the limit of memory. The second and third fields specify the output
amplitude and the increment for the table lookup pointer, respectively. Each
may be parameters from note statements (P-type variables), V-type variables,
constants, or other I/O blocks. The resulting amplitude value simply
multiplies sample values read from the wavetable. The frequency of the
oscillator is I*SR/FL, where I is the resulting increment value, SR is the
prevailing sample rate, and FL is the length of the wavetable. The next field
specifies which wavetable to use. Wavetables are created later in the function
generation section and are identified by number. Like the amplitude and
increment fields, variables may be used to specify the function number to be
used.

The last field effectively specifies the initial value of the waveform table
pointer. If the letter D (for "dynamic" variable) is used, then the initial value
is zero. Use of a P-type or a V-type variable allows the oscillator's initial phase
to be controlled. Internally, a temporary storage location is allocated to hold
the wavetable pointer when a note using the oscillator starts and is freed
when the note ends. Every time a note starts, a new storage location is
allocated so an instrument may play any number of notes simultaneously.

Also shown in Fig. 19-15 are some valid OSC statements. Example 1 is
the simplest possible OSC statement. It outputs to I/O block number 1, uses
function number 1 for its wavetable, and always starts its waveform at the
beginning of the table. The amplitude of the note is specified by the fifth P
field in note statements that play it, and frequency is specified by the sixth P
field. Example 2 is similar except that the wavetable to be used may be
specified in the note statements rather than being constant in the i,nstrument
definition. In example 3, the amplitude is the content of another I/O block
from a previous statement that presumably has samples of an envelope shape.
The same can be done for frequency as in Example 4 in which the content of
B1 sets the instantaneous frequency.
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Instrument Definition Statements

SET FUNCLENGTH = 8K
INS 0 GENFM; {P5=DUR, P6=AMP, P7=PITCH}

OSC BI P6 P5 F2 D; (AMP ENVELOPE)
OSC B2 1 P5 F3 D; {DEV ENVELOPE}
OSC B3 1 P5 F4 D; {MOD FREQ ENVELOPEl
OSC B5 B2 B3 Fl D; {MODULATION OSCILLATOR}
ADN B6 B5 P7;
OSC 87 81 86 Fl D; (CARRIER OSCILLATOR)
OUT B7;

END;

Fig. 19-17. Generalized FM instrument

Other unit generators, some of which are diagrammed in Fig. 19-16,
use similar statement formats. The FLT generator, for example, is a
generalized second-order digital filter (see Chapter 14). It has a signal input
and output, both of which are I/O blocks, and five coefficients, which can be
any kind of variable or constant. Thus, the filter characteristics can be
specified as constants, parameters in note statements, or by other signals via
the I/O blocks. Also, since arithmetic expressions are allowed in any of the
coefficient fields, the FLT statement may be set up for control in familiar
terms such as center frequency and Q factor. FLT also requires four temporary
values for the internal delays, which can be set to any specific initial value or
allowed to default to zero. SNDFILE is not really a generator at all; it instead
reads samples from an existing sound file. The various parameters include an
amplitude factor, an increment for the read pointer (which should be 1.0 to
read every sample), and starting and ending positions in the file. If more
samples are read than exist between start and end positions, the pointer
wraps around to the beginning as if the file was a huge waveform table. The
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VERSION generator carries sound file reading even further. With VER
SION, a particular note recorded in a sound file can be identified in terms of
file positions for the beginning of the attack, beginning of steady-state,
beginning of decay, and end of decay. Then, with additional parameters, the
note can be replayed at a different pitch and with a different duration (by
truncating or repeating the steady-state samples). Transitions from one
envelope segment to the next are smoothed by interpolation, the degree of
which can also be specified.

Many unit generators are quite simple. ADN for example has one
output and any number of inputs that are simply added together to form the
output. LOOKUP has an input, an output, and uses a wavetable to translate
the input to the output. Two parameters also specify the expected range of
inputs. Besides use as a nonlinear waveshaper, it can be used in a myriad of
ways to tailor response curves in instruments more efficiently than using
complex expressions in parameter fields. SEG is an envelope generator that
uses a waveform table for the envelope shape. The table is divided into a
number of segments (usually three), which correspond to envelope phases.
Parameters determine the amount of time spent in each segment according to
either constants in the SEG statement or variables from the NOTE
statement. A very useful feature is that the duration of designated segments
may be calculated automatically from the total note duration.

Complete instrument definitions require an INS statement at the
beginning and an END statement at the end. The INS statement includes an
"action time" field, which can be set nonzero to avoid using memory for the
instrument definition until needed. If the instrument is to be heard, the
OUT unit generator must also be included. OUT accepts the final
instrument output as an I/O block and sums it with other instruments that
may be playing into the C-MUSIC standard output sample stream, which
will ultimately go to a sound file. For stereo or quad output, OUT requires
two or four inputs. If an instrument is to sound in only one channel, the
other inputs are set to zero.

Figure 19-17 shows a complete, generalized, FM-type instrument
block diagram and its corresponding definition. Wavetable F2 is expected to
have an overall amplitude envelope shape, F3 a deviation envelope, and F4 an
envelope to vary the modulation frequency. Fl is just a sine wave for classical
FM, although it could be some other shape for complex FM. The instrument
is controlled by three P-fields in NOTE statements. P5 and P6 are the usual
duration and amplitude parameters, while P7 sets the average ratio of
modulation to carrier frequency. Below is the complete C-MUSIC instrument
definition for this instrument, which is called GENFM. Note that, since FM
synthesis can be adversely affected by table lookup truncation error, the size
of F1 has been set to 8,192 samples.

The function generation score section specifies the content of waveta
bles. This section consists of a series of GEN statements, each of which will
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generate the contents of a numbered F table. The standard C-MUSIC
function generator programs are identified by number; thus, GEN2 is a
Fourier series waveform generator, while GEN3 is a line segment generator
useful for defining envelope shapes. The reason for this is historical; user
written function generators can have any desired name. Figure 19-18
outlines the five standard GEN programs. The length of tables produced by
the GEN programs can be specified with the SET FUNCLENGTH
statement (in the options section) and defaults to 1024. Table lookups
performed by the unit generators almost never use interpolation, since it is
much slower and adequate memory is usually available for long tables.
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Low-Cost SYllthesis
Techniques

While research and high-end applications of computer music synthesis enjoy
the most glamour, more utilitarian applications are also important and can be
interesting as well. A professional synthesizer, such as described in the
previous chapter, would probably be considered "successful" if more than
5,000 were sold during its lifetime. At, say, $3,000 each, the gross income
would be $15 million. A successful research system may have sales of only a
few hundred units, but, even at its much higher price, there would be less
total income. A popular musical toy, however, may very well sell in the
millions of units. Even though the price might be only $30 or so, the income
generated could be much greater than the two previous examples.

Designing sound-generation circuits for a high-volume toy or game is
actually much more challenging than designing a professional or research
synthesizer. In the latter case, the designer is interested mostly in a "clean"
design that performs flawlessly. Manufacturing costs, while kept in mind
during the design, are usually not of prime importance. In a high-volume
product design, elimination of a single resistor with an installed cost of one
cent can save $20,000 over a 2 million unit production run. That kind of
savings is sufficient to justify having an engineer spend an entire month or
more full-time studying whether that resistor can be removed. An excellent
design in this context is one that is cheap to produce and performs adequately
and safely.

Although fussing over individual components is often productive, the
initial selection of synthesis technique is by far the most important decision
to be made in a high-volume product design. In this chapter, some low-cost
techniques will be examined and then their application to several low-cost
products will be described.

Applications of Low-Cost Synthesis

Many types of products today use electronic sound generation in their
operation. Mechanical sound generators, such as bells, buzzers, Sirens,
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whistles, etc., are seldom heard anymore. Electronic generators are cheaper,
offer a much wider variety of distinctive sounds, and can be smaller and
louder with less power input than their mechanical counterparts. In
consumer products, the use of sound generators is increasing dramatically.
Cars beep when the key is left in, watches buzz on the hour, alarm clocks play
reveille, and smoke alarms squeal when guests light up. The use of speech
synthesis is also frequently heard in products such as microwave ovens,
elevators, cars, and children's toys.

In video game design, proper selection and use of sound effects is
almost as important as the screen graphics. In a well-designed game, every
type of movement and event has a different sound associated with it. A
trained listener can determine the state of the game and perhaps even keep
score merely by listening. Often, a separate microprocessor is used exclusively
to generate game sounds. Although uninformed charges that video game
sounds are "carefully selected for maximum subliminal effect" are sometimes
made, in reality they are chosen for generation ease. Most shots and
explosions are simply bursts of filtered white noise, while the typical "laser
zap" can be generated with a dozen instructions or so in the mircoprocessor
program. However, more recent arcade game designs use multipart musical
sequences and even speech synthesis to encourage players.

Moving into more musical applications, there are a large number of
low-cost musical instruments on the market ranging from $30 toy keyboards
to complete polyphonic synthesizers for a few hundred dollars. Many of these
emphasize an ability to store keyboard sequences and play them back later,
since this is easily implemented and requires little if any additional hardware.
There are even $10 musical calculators that "play" the answer with a different
pitch for each digit, $3 musical Christmas cards that playa rune when
opened, and musical car horns for use late on Saturday nights. Several games
make use of random note sequences to test the player's ability to remember
them.

Except for the inexpensive synthesizers, most of these devices are
monophonic and use a square or pulse waveform for the sound source. Where
size is important, such as in the Christmas card, piezoelectric transducers are
used. There are flat ceramic disks about 1 inch in diameter that give an
extremely tinny sound due to a high self-resonant frequency and lack of a
baffle. The toy organs and synthesizers usually have a standard dynamic
speaker built in and occasionally an ourput jack for an external audio system.

Another large application area is in home and personal computers.
Virtually every such computer made since the late 1970s has some means of
sound generation built in. Sound is most commonly used in computer
games, many of which are modeled after successful arcade versions. In
business applications, audible feedback from keystrokes and discreet error
beeps can dramatically improve operator accuracy. All computers with sound
capability have music programs available for them. Even the simplest sound
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generators can, with proper programming, produce a complete range of note
frequencies. In many cases, three or four simultaneous notes are possible and,
in rare cases, timbre variations as well. For popular computers with minimal
native sound generation capacity, there are usually a number of indepen
dently manufactured add-ons available. These typically consist of a plug-in
synthesizer board and matching music software. The sophistication of these
boards ranges from 3 square-wave voices to 16 fully programmable waveform
generators. Frequently, the software includes a suitably simplified interactive
graphics score editor and perhaps an instrument definition editor as well. A
couple of products even include a music keyboard for live as well as
programmed performance.

Techniques for Low-Cost Synthesis

The techniques used in low-cost sound-generating devices are not really
differen.t from those studied so far. Instead, the emphasis is shifted from
considerations of flexibility and quality to those of cost and distinctiveness.
In many product designs in which sound generation is just a small part, free
choice of a synthesis technique might not be possible; available resources may
have to be used instead. Thus, strange and ingenious circuit designs with
limited general applicability sometimes evolve. Here, a few of the more
straightforward low-cost synthesis techniques will be explored.

Interface Chip Timers

Many microprocessor-driven devices use one or more "peripheral
interface chips" (PIC) in their design. A high-volume, relatively simple
product may even use an all-in-one-chip microcomputer that also includes
PIC functions. Most modern PICs include one or more programmable
timers. These are normally used to simplify timing-related programming but
can also sometimes be used as oscillators for sound generation.

Such timers are usually programmed in one of two ways. A single-shot
timer for example typically has a 16-bit "counter register" that may be
written into under program control. After writing, the register counts down
at a fixed rate and generates an interrupt and perhaps an external pulse when
it reaches zero. The timing reference is usually the microprocessor clock,
which sometimes is passed through a programmable prescaler where it can be
divided by a power of two before clocking the register. The counter register is
normally readable as well so that the microprocessor program can determine
how much time remains in the current interval. A free-running timer is
similar except that it has an "interval register" that is separate from the
counter register. When the counter reaches zero, it is automatically reloaded
from the interval register and starts timing a new interval. Thus, variations
in interrupt response time do not affect cumulative long-term accuracy such
as keeping track of the time of day from I-sec timing intervals.
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Obviously, the free-running type is much more suitable as a program
mable oscillator because a frequency control word can be written into the
interval register once and the timer will then generate pulses at that
frequency automatically without program intervention. Generally, the mi
crosecond-wide pulses produced must be shaped before they can effectively
operate a speaker. One possibility is to use the pulse to discharge a capacitor
that is being constantly charged through a resistor or current source. This
produces a sawtooth wave that' is useful over a range of two to three octaves.
Another possibility is to have the pulse trigger a single shot to produce a
much wider pulse and thus a rectangular waveform. Sophisticated multichan
nel timer chips such as the Intel 8253 can be programmed so that one timer
determines the frequency in free-running mode and triggers another timer in
single-shot mo.de, thus producing a programmable duty cycle. The Motorola
6840 produces the same effect by splitting its 16-bit timer register into two
8-bir halves, one of which determines the waveform high time and the other
determines the low time. Of course, the pulse ourput can also toggle a flip
flop for a square wave, a function built into some timer ICs.

One particular peripheral interface chip that has been used extensively
for sound generation in low-cost personal computers is the 6522 "versatile
interface adapter" (VIA). This remarkable IC has two full 8-bit I/O ports,
two timers, and a multimode 8-bit shift register. In a typical computer, the
ports are used to interface to a printer and control internal functions, while
the timers and shift register are either not used or are connected to a small
amplifier and internal speaker. Timer 1 is a standard 16-bit unit that can
operate in free-running mode and produce a pulse or half-frequency square
wave output. The other timer is more interesting, however, because it can
operate in conjunction with the shift register. Although its counter is also 16
bits, the interval register is only 8 bits, which limits frequency resolution
somewhat. In one of its operating modes, the internal 8-bit shift register is
rotated one position on each Timer 2 timeout. By writing different bit
patterns into the shift register, different eight-segment waveforms can be
produced on the shift register output pin for a number of different timbres (it
is instructive to determine how many audibly different patterns there are).
One can even set the shift register to shift at its maximum rate and then use
different bit patterns to simulate a pulse-width modulated nine-level D-to-A
converter for producing somewhat smoother waveforms. Also, since the two
timers are independent, two simultaneous tones are readily produced. In all,
the 6522 provides quite a lot of sound-generation function often for little or
no added cost.

Timed Program Loops

Of course, the classic method of producing simple sounds by computer
IS the timed program loop. It is, in fact, so simple and fundamental (and
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interesting to novices) that it is frequently used as a programming example in
elementary microprocessor technology courses. The basic idea is to provide an
addressable flip-flop, either alone or as one of the bits of an output port,
which an assembly language program can set to a one or a zero at will. The
logic level voltage then is either connected to an on-board transistor switch
driving a speaker or an external amplifier/speaker.

To produce a pulse of a constant frequency, the student is instructed to
write a program to set the flip-flop to a one, immediately set it to a zero, and
then enter a delay loop, which perhaps decrements a register until it becomes
zero. After the delay, the program would jump to the beginning for another
pulse. When the student has mastered this, techniques for making the delay
variable, perhaps by reading the delay parameter from an input port, are then
introduced. The utility of subroutines might be illustrated by altering the
program for square or rectangular output using a single timing subroutine
called with a different delay argument for the high and low portions of the
waveform. Depending on the course, multitask programming might be
introduced by having the student write a program to simulate two or three
such oscillators, simultaneously producing different frequencies.

While this seems trivial compared with what has been covered earlier in
this book, there are legitimate applications beyond being a teaching aid. In
1976-77, three-voice music programs using timed loops were state of the art
in microcomputer music. Even today on many machines, such as the IBM PC
and Apple II, it is the only viable way to produce sound without hardware
add-ons. The musical Christmas cards and car horns mentioned earlier are
really nothing more than minimal 4-bit single-chip microcomputers mask
programmed to play square-wave note sequences from stored scores using
simple timed loops. Almost any computer program, even business programs,
can benefit from the judicious use of sound, and usually a few dozen bytes of
extra code are all that is needed.

Besides playing buzzy little melodies, single-bit timed-loop routines
can produce a wide variety of sound effects as well. White noise is readily
generated by programming one of the shift-register random-bit generators
described in Chapter 15 and sending the bits to an output port. Some control
over the noise spectrum can be secured by running the generator at different
sample rates. Laser zaps and police siren effects can be produced by rapidly
varying the delay parameter in a timed loop tone routine.

Figure 20-1 shows a simple but very effective "strange sound"
generation program. The basic idea is to use two 16-bit simulated registers
where the second (REG2) is successively added to the first (REG1). Each time
REG1 overflows, the value of REG2 is incremented. After each inner loop,
the lower half of REG1 is written to an output port. Each bit of this port will
have a different sound sequence and more can be had by modifying the
program to output the upper half of REG1 instead. The sounds produced by
this routine are really wild and well worth the hour or so required to translate
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0001 0000 ; STRAGE SOUND EFFECT GENERATOR
0002 0000
0003 BFFO PORT $BFFO OUTPUT PORT BITS TO AMPLIFIER
0004 0000
0005 0000 *= 0 SIMULATED REGISTERS IN PAGE 0
0006 0000 0000 REGI •WORD 0 16-BIT OUTPUT REGISTER
0007 0002 0100 REG2 •WORD 1 16-BIT INCREMENT REGISTER
0008 0004
0009 0004 *= $700 PROGRAM ORIGIN
0010 0700 •ENTRY
0011 0700 A500 SSOUND LDA REG1 ADD REG2 TO REG1 WITH
0012 0702 18 CLC RESULT IN REG1
0013 0703 6502 ADC REG2 LOWER BYTE
0014 0705 8500 STA REG1
0015 0707 BDFOBF STA PORT MAKE LOWER BYTE AUDIBLE
0016 070A AS01 LOA REG1+l UPPER BYTE
0017 070C 6503 ADC REG2+l
0018 070E 8501 STA REGl+l
0019 0710 90EE BCC SSOUND REPEAT UNTIL REGI OVERFLOWS
0020 0712 E602 INC REG2 INCREMENT REG2 WHEN REGI OVERFLOWS
0021 0714 DOEA BNE SSOUND AND REPEAT INDEFINITELY
0022 0716 E603 INC REG2+l
0023 0718 DOE6 BNE SSOUND
0024 071A E602 INC REG2 ; DON'T LET REG2=0
0025 071C 4COO07 JMP SSOUND

Fig. 20-1. Sound effects generator

and enter the program into virtually any kind of computer. As written, the
sequence of sounds repeats every 20 sec on a I-MHz 6502-based computer.
For practical use, as a sound-effects generator, desirable points in the
sequence are determined, and the registers initialized to the corresponding
values. The loop is then run the desired number of iterations and terminated.

One difficulty with timed loops is that the microprocessor is fully
occupied while producing sound. Enough time for simple tasks, such as
looking at a control panel, can be taken between notes, however, with little
audible effect. A related problem is that the microprocessor must execute
instructions at a known, stable rate. Computers that stop or interrupt the
microprocessor to refresh memory, for example, would probably produce very
rough sounding tones.

Simplified Direct Synthesis

For much more controlled sound effects and listenable music, many of
the digital synthesis techniques described in Chapter 13 can be used, in
simplified form, for low-cost sound generation. A common requirement,
however, is a cheap D-to-A converter and a linear power amplifier (the single
bit timed-loop techniques could use a one-transistor switch). In large
volumes, 8-bit D-to-A converter chips are well under $2, while half-watt
audio amplifier ICs are under a dollar. For really low cost, one can get by with
an 8-bit CMOS register, eight weighted 1% resistors, and a power
Darlington transistor emitter-follower amplifier. In either case, a two-stage
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4-VOICE WAVEFORM TABLE SCAN SYNTHESIS SUBROUTINE FOR 6502
CALL WITH 4 FREQUENCY PARAMETERS IN FREQI-FREQ4
TONE FREQUENCY = (FREQ PARM)*.12715 HZ
CALL ALSO WITH TEMPO AND OUR SET; OUR IS ZEROED ON RETURN
CHORD DURATION = TEMPO*DUR*.00012 SECONDS
SAMPLE PERIOD = 120US = 8.33KS/S FOR IMHZ PROCESSOR CLOCK

0001 0000
0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 BFFI
0009 0000
0010 0000
0011 0000 0000
0012 0002 0000
0013 0004 0000
0014 0006 0000
0015 0008 00
0016 0009 00
0017 OOOA 0000
0018 OOOC 00
0019 0000 0000
0020 OOOF 00
0021 0010 0000
0022 0012 00
0023 0013 0000
0024 0015 00
0025 0016
0026 0016
0027 0700 AOOO
0028 0702 A608
0029 0704 BlOC
0030 0706 8DFlBF
0031 0709 A50A
0032 070B 6500
0033 0700 850A
0034 070F ASOB
0035 0711 6501
0036 0713 850B
0037 Oll5 BI0F
0038 0717 8DFIBF
0039 OllA ASOD
0040 onc 6502
0041 071E 8500
0042 0720 A50E
0043 0722 6503
0044 0724 850E
0045 0726 B1l2
0046 0728 8DFIBF
0047 072B A510
0048 0720 6504
0049 072F 8510
0050 0731 A511
0051 0733 6505
0052 0735 8511
0053 0737 B1l5
0054 0739 8DFIBF
0055 073C A513
0056 073E 6506
0057 0740 8513
0058 0742 A514
0059 0744 6507
0060 0746 8514

PORT

FREQI
FREQ2
FREQ3
FREQ4
TEMPO
OUR
VIPT
VITAB
nPT
nTAB
V3PT
V3TAB
V4PT
V4TAB

CHORD
CHORDO
CHORDI

$BFFI

*= 0
. WORD 0
.WORD 0
.WORD 0
.WORD 0
. BYTE 0
.BYTE 0
.WORD 0
. BYTE 0
•WORD 0
.BYTE 0
.WORD 0
.BYTE 0
.WORD 0
.BYTE 0

*= $700
LOY flo
LOX TEMPO
LOA (VITAB),Y
STA PORT
LOA VIPT
ADC FREQI
STA VIPT
LDA VIPT+l
ADC FREQl+l
STA VIPT+l
LDA (V2TAB),Y
STA PORT
LOA V2PT
ADC FREQ2
STA V2PT
LOA V2PT+l
ADC FREQ2+l
STA V2PT+l
LOA (V3TAB),Y
STA PORT
LOA V3PT
ADC FREQ3
STA V3PT
LOA V3PT+l
ADC FREQ3+l
STA V3PT+l
LOA (V4TAB),Y
STA PORT
LOA V4PT
ADC FREQ4
STA V4PT
LOA V4PT+l
ADC FREQ4+l
STA V4PT+l

OUTPUT PORT BITS TO D-TO-A CONVERTER

STORAGE MUST BE IN PAGE 0 FOR SPEED
FREQUENCY PARAMETER FOR VOICE 1
FREQUENCY PARAMETER FOR VOICE 2
FREQUENCY PARAMETER FOR VOICE 3
FREQUENCY PARAMETER FOR VOICE 4
CONTROLS TEMPO, NORMALLY STATIC
CONTROLS CHORD DURATION
VOICE 1 WAVE TABLE POINTER
VOICE 1 WAVEFORM TABLE PAGE ADDRESS
VOICE 2

VOICE 3

VOICE 4

KEEP Y=O FOR INDIRECT ADDRESSING
SET X TO TEMPO COUNT
GET SAMPLE FROM VOICE 1 WAVE TABLE
OUTPUT TO THE DAC
ADD THE VOICE 1 FREQUENCY PARAMETER
TO THE VOICE 1 WAVE TABLE POINTER
LOWER BYTE

UPPER BYTE
REPEAT FOR VOICE 2
USE TIME-DIVISON MULTIPLEXING TO
MIX THE 4 VOICES

REPEAT FOR VOICE 3

CARRY NOT CLEARED PRIOR TO ADDING
FREQUENCY TO POINTER TO SAVE TIME
ALSO INTRODUCES SLIGHT RANDOM
FREQUENCY ERROR WHICH LIVENS UP
THE SOUND

REPEAT FOR VOICE 4
VOICE 4 IS SOMEWHAT LOUDER SINCE ITS
SAMPLE "DWELLS" IN THE DAC LONGER

Fig. 20-2. Simplified four-voice waveform table scan for 6502
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0061 0748 CA DEX DECREMENT AND CHECK TEMPO COUNT
0062 0749 D005 BNE CHORD2 BRANCH TO TIME WASTE IF NOT RUN OUT
0063 074B C609 DEC DUR DECREMENT AND CHECK DURATION COUNTER
0064 074D DOB3 BNE CHORDO GO RELOAD TEMPO AND CONTINUE IF <> 0
0065 074F 60 RTS ELSE RETURN IF DURATION RAN OUT
0066 0750 EA CHORD2 NOP EQUALIZE LOOP TIME BETWEEN RELOAD
0067 0751 EA NOP TEMPO AND NOT RELAOD TEMPO
0068 0752 4C0407 JMP CHORD1

Fig. 20-2. Simplified four-voice waveform table scan for 6502 (cant.)

R-C filter or a judiciously selected woofer-type speaker can usually provide
sufficient low-pass filtering. Once an audio DAC is present, whether it be in
a game or a personal computer, the sounds producible are limited only by the
imagination and skill of the programmer.

The most straightforward synthesis algorithm to use is waveform table
scanning. Typically, the waveform table will be 256 entries with 8 bits per
entry and no interpolation. For 6502 and similar microprocessors, the
general scheme illustrated in Fig. 13-4 can be used to scan the waveform
table. In fact, a complete routine capable of producing four simultaneous
tones at a sample rate of8.33 ks/s (for a I-MHz 6502) requires only 85 bytes.

Such a routine is listed in Fig. 20-2. It is called with the 16-bit
frequency parameters for the four voices (zero is used for silence) stored in
FREQI-FREQ4, a duration parameter stored in DUR, and a tempo
parameter stored in TEMPO. The number of samples produced before
returning is the product of TEMPO and DUR. Note that the four voice
samples are mixed by presenting them successively to the D-to-A converter
rather than adding them up. This avoids scaling and as written makes the
fourth voice somewhat louder than the other three due to its increased dwell
time. In effect, the low-pass filter performs the mixing function. With a
smooth waveform stored in the table (to avoid aliasing of high harmonics),
the routine is very effective in producing four-part organ music with just a
hint of roughness due to the short table and programming shortcuts taken.
In fact, including a Fourier series routine to compute the waveform table
(perhaps from random harmonic amplitudes) requires just a couple of
hundred additional bytes.

Other synthesis techniques have also been used in a similar context.
Most 8-bit microprocessors are capable of producing one or two FM or
nonlinear waveshaping voices. The VOSIM alogrithm has even been used to

produce remarkably good synthesized speech, in real time, with nothing
more than the audio DAC and some exceptionally clever programming. The
increasing use of 16-bit internal architecture microprocessors with multiply
instructions in even cost-sensitive products will extend further what can be
done with two to three dollars worth of sound generation hardware.
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Fig. 20-3. SN76477 Complex sound generator block diagram

Sound Generator ICs

In many cases, specialized ICs are used for sound generation in games
and personal computers. While this may not be the lowest cost alternative,
such chips can greatly simplify programming by those unfamiliar with
sound-generation principles and free up the processor for other tasks during
sound generation. Actually, there are only a few sound chips on the open
market to choose from. Many more are custom-designed units used only by
one manufacturer, often in only one product.

One simple and inexpensive sound chip is the Texas Instruments
SN76477. This is really a sound effects rather than a music generator and is
"programmed" by connecting different value resistors and capacitors to
several of its pins. However, the configuration of elements and, hence, the
specific sound produced can be controlled by digital inputs that may either
be a microprocessor output register or mechanical switches. In the block
diagram in Fig. 20-3, it can be seen that the major sound sources are a
voltage-controlled oscillator and a pseudo-random bit noise generator with a
variable low-pass filter. The "super-low frequency" oscillator, which need not
necessarily oscillate at a low frequency, can modulate the VCO frequency and
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Fig. 20-4. AY-3-8910 Programmable sound generator

also trigger the envelope generator. By suitable selection of component values
and setting of the configuration bits, quite a number of sound effects such as
a chugging train, breathy whistle, "saucer lands," ray gun, gunshot, bird,
clock, etc., are possible. In fact a popular toy consisting of the chip, several
rorary switches, some pots, a few slide switches, a battery, and speaker was
designed and sold as "The Sound Studio."

Another common sound chip is the General Instruments AY-3-891O.
This by contrast is intended to be driven exclusively by a microprocessor and
has been used in countless add-on music synthesizer boards for personal
computers. Besides the sound generation circuit, its 40-pin package includes
two 8-bit general-application I/O ports, although a 28-pin version
(AY-3-8912) with one port and a 24-pin version (AY-3-8913) with none are
also available. Figure 20-4 shows the internals of this chip, which are
essentially three square-wave tone generators, a pseudorandom noise gener
ator, three mixers, and a single envelope generator driving three multiplying
DAC gain controls. Twelve-bit values control rhe frequency of the tone
generators, while a 5-bit value controls the noise sample rate. A full 16 bits
control the envelope generator rate, but the multiplying DACs themselves are
very coarse with only 16 logarithmically distributed amplitude levels. The
envelope generator can operate either in the normal single-shot mode or it
can constantly recycle. Aside from rhe fixed square-wave rimbre, it is possible
to get some decent sounding music from one of these chips, considering the
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cost. Most add-on synthesizer boards use three, however, which allows for a
pretty impressive kazoo choir.

In the area of custom sound chips, it is now relatively easy and practical
to program a single-chip microcomputer to accept commands on one of its
ports and respond by generating a sound, using software, on one or more of
its other ports. The 6500/1, for example, is a 6502 CPU with 2K of masked
ROM and 64 bytes of RAM plus a timer and four 8-bit lIO ports all in a 40
pin Ie package. The Motorola 6801 is similat with a 6800 CPU but has 128
bytes of RAM and an 8 X 8 hardware multiply instruction. The Rockwell
6500/21 is unique in that it has two 6502 CPUs sharing the same ROM and
RAM on a single chip, which would allow for very smooth sound generation
where one CPU calculates the samples while the other updates waveform
parameters. By adding an 8-bit DAC and filter to one of the ports on any of
these units, quite a flexible and powerful sound and complex waveform
generator can be had, often for under $10 in production quantities. One
problem with all single-chip microcomputers is that RAM capacity is
extremely limited. Thus, waveform tables, if used by the synthesis al
gorithm, must be fixed in the ROM.

As briefly mentioned in Chapter 17, one-chip digital signal processor
ICs, which are programmed and applied much like the one-chip microcom
puters, are also available. Advantages include on-chip converters and much
greater processing power, which allows more complex synthesis algorithms to
be used. However, their high cost, even in high volumes, rules out their use
in the kinds of products being discussed here. Of course, if the product does
indeed have a large volume potential (over WOK units) and the sound
generator development budget is large enough ($100K and up), a completely
custom sound chip can be designed. This in fact has been done for several
home computers and musical instruments, some of which will be described
in the next section.

Low-Cost Synthesis Products

There are, of course, dozens of products that use low-cost sound
generation and synthesis techniques in their operation. Most of them ate
uninteresting, but a few are unusual or clever enough to be described here.
However, the marketing lifetime of these kinds of products is often extremely
short, sometimes just a single "season." Therefore, it is entirely possible that
few, if any, of these products will be actively marketed by the time you read
this. Nevertheless, this section will illustrate which low-cost synthesis
techniques and variations have been successful in real products.

"Toy" Keyboard Instruments

Toy electronic musical instruments seem almost by definition to be
keyboard instruments. Actually, to a prospective buyer (a parent in most
cases), an electronic horn or flute or ukulele somehow seems illogical.
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One very inexpensive ($29) device marketed by Radio Shack is a two
octave electronic keyboard with built-in battery and speaker. It has a number
of short single-note melodies already built into its memory that can be played
automatically plus provision for user playing and storage (until power is
switched off) of new note sequences. While the preprogrammed melodies
have proper rhythm and accedentals (sharps and flats), note durations are lost
when they are programmed by the user, and the keyboard has only white
keys. Thus, the unit is strictly a toy, although the tone, which is a
rectangular wave, is solid and robust. Only one IC, which is a reprogrammed
calculator chip, and a few other components are present on the single printed
circuit board, which also includes the keyboard contacts.

Casio is a company best known for calculators and digital watches. In
the mid 1970s, in an attempt to inject some excitement into the calculator
business, it began offering calculators with built-in digital clocks. The most
popular models also had melody-playing alarms and a mode in which each
keypress would play a different note and the "=" key would play our the
entire answer through a piezeoelectric speaker. This later evolved into a line
of keyboard musical instruments that ranged from a $50 monophonic
calculator/clock with a "real (miniaturized) music keyboard" and dynamic
speaker to a $500 8-voice polyphonic wood-cased unit with full-sized four
octave keyboard, plus a number of models in between. Although there were
no headlines in the popular press, these units stunned low-end synthesizer
makers and experimenters (such as the author) with the capability that was
being offered at prices less than one-quarter of prevailing levels.

Probably the most impressive member of the line, from a
price-performance standpoint, is the Casiotone MT30. This $150 unit
comes packaged in a 23-inch long plastic case with a three-octave, almost
standard keyboard (key spacing is 85% of normal), 4-inch speaker, and
ourpLit jack for an external speaker or amplifier. It is eight-note polyphonic
and has a repertoire of 22 preprogrammed timbres. Although there is no
provision for user creation of sounds, there are vibrato on/off and sustain on/
off switches. The more expensive models differ by providing standard-sized
keys, more keys, variable controls for effects like vibrato and sustain, and an
"automatic arpeggio feature," in which a short keyboard sequence can be
memorized and then repeated automatically while a melody is played over it.

Upon disassembling the unit, one finds a small (5 X 6 inch) circuit
board with seven integrated circuits and about 75 discrete components
mounted. One of the integrated circuits is an audio power amplifier, while
another is a dual op-amp. Four more are CMOS hex inverters, which leaves
just one 64-pin chip to do all of the work. Part of the keyboard switch
matrix, which includes a series diode for each key, is mounted on this board,
while the remainder is on another 3 X l1-inch board. The contacts are
actually conductive rubber pads that bridge two parallel traces when a key is
pressed. Both boards are single-sided.
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Obviously, the key to the unit's operation lies in the 64-pin custom IC,
which is also used in the other models. This all-digital IC both scans the
keyboard and performs all of the synthesis calculations for up to eight
simultaneous voices. Its final output is a 16-bit sampled digital signal,
although only 10 bits are actually D-to-A converted in the MT30. The chip is
driven by a 1. 14-MHz tunable L-C oscillator and essentially simulates eight
independent variable sample rate oscillators whose digital outputs are added
together every two clock cycles to produce a composite digital waveform. The
channel sample rates are quantitized in units of two clock cycles (1. 75 jLsec)
and vary between 5 and 20 ks/s according to the note played. The DAC itself
is external and in the MT-30 consists of CMOS buffers (4049) driving an
R-2R resistor ladder network constructed with 1% and 5% resistors. The
dual op-amp is used in the two-section (four-pole) Butterworth low-pass
filter.

Most of the preprogrammed timbres are standard items such as piano,
pipe organ, cello, accordion, glockenspiel, clarinet, plus a couple of
electronic sounds such as "synthe-fuzz." The quality of emulation is certainly
not up to professional standards but at least the sounds are distinctive. A
more bothersome defect on the MT30 is severe distortion near the end of
decay envelopes, which is probably due to having only lO-bit D-to-A
conversion with 7-8-bit linearity likely. This is probably much less of a
problem in rhe more expensive models. The synthesis technique used is
straightforward wavetable scanning. Each note begins by scanning Table A
during the attack and then gradually shifts to Table B for the sustain and
decay. This can be thought of as a keypress actually triggering two fixed
waveform notes at the same pitch but with different amplitude envelopes.
The chip apparently has a small RAM that is capable of holding four pairs of
wavetables at once. A front panel slide switch can instantly select one of them
for playing. In "set mode," each white key represents a timbre and playing it
copies a waveform from ROM into the particular wavetable RAM currently
selected by the switch. Thus, any combination of four timbres can be placed
on-line for playing. Waveforms are apparently stored in compressed form in
the ROM, probably as a line-segment approximation, since the actual
waveshapes seem to be quite simple.

Being so cheap, the Casio instruments have encouraged a bit of
experimentation among musician/hobbyists. One. simple modification is to
add a wide range variable clock oscillator to the synthesizer chip. With a
good sound system and the organ voice lowered two or three octaves with the
variable clock, a pretty convincing "mighty Wurlitzer" sound can be
produced. The latent automatic arpeggio feature can also be easily activated.
All kinds of wild distortions are possible by gating off or scrambling the
digital Output words before they reach the DAC. Thus, a suitably modified
Casio keyboard can become quite a special-effects device in a professional
performance as well as an amazingly versatile toy.
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Personal Computers

Nearly every personal computer on the market since the late 1970s has
some kind of sound generator built in as standard equipment. Initially, these
were nothing more than single output port bits that could be toggled by
software such as were found in the Apple II and IBM PC computers. A few
more addvanced machines, such as OSI, MTU, and Apple Macintosh,
included an 8-bit DAC for sound generation. Commodote PET computers
invariably used the shift register in their 6522 parallel I/O chip for sound.
Other machines targeted more for home and game use often utilized
specialized sound-generator chips having a few simple oscillators or even
complete miniature synthesizers. For many of the popular computers with
poor built-in sound capability, a number of add-on boards having sur
prisingly sophisticated synthesizers appeared. In the following section, a few
of the more interesting sound-generation subsystems used in personal
computers will be described.

The Apple II is a representative example of bit toggling sound. One
feature of the Apple is a clever internal I/O port technique in which an 8-bit
addressable latch (74L5259) functions as eight independently programmable
latched output bits, and a 1-of-8 decoder functions as eight independently
programmable pulse outputs, all in two 16-pin ICs. For sound, one of the
pulse bits is used to toggle a flip-flop, which in rum drives a 2-inch speaker
through a transistor buffer as shown in Fig. 20-5 . Note that the coupling
capacitor will eventually turn the driver transistor off when sound is not
being generated, thus preventing de current in the voice coil. To operate the
generator, the program merely writes to address $ C030 whenever the
waveform is to change polarity. Besides error beeps and buzzy one- and three
voice music programs (some with amazingly sophisticated graphic score
entry front ends), "digital playback" of speech has been accomplished with
the port. For this, speech is first differentiated (6 dB/octave high-pass
filtered) and digitized with a I-bit ADC at a sampling rate of 20 ks/s or more,
which is about 2.5K bytes per second. For playback, the bit stream is
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examined and the sound port toggled whenever the stream changes from 1 to
o or vice-versa. For proper reproduction, the resulting waveform should be
integrated (6 dB/octave low-pass filtered), but the sound is intelligible right
out of the built-in speaker. The quality is compatable to that of severely
distorted CB radio.

The Ohio Scientific C8P computer was probably the first to include a
D-to-A converter for producing sound. Unfortunately, the designers chose an
exponential rather than a linear DAC, which is very good for playback of
digitized speech but difficult to program for multipart music synthesis. The
machine also lacked an internal amplifier and speaker. The Micro Technology
Unlimited MTU-130 computer, which was introduced in 1981, used an 8-bit
DAC and had an unusually powerful built-in amplifier driving a 3 X 5 high
compliance speaker. Figure 20-6 shows the audio circuit used in the
MTU-130 and subsequent models, which requires just two ICs for the DAC,
six-pole filter, and power amplifier. The DAC was driven by an internal 8-bit
parallel output port. Actually, the company manufactured several similar
add-on DAC boards for other 6502-based computers such as the Apple II and
PET well before the MTU-130 came out.

While there was nothing particularly innovative about the audio
circuit, the 6502 music software available to drive it and the add-on boards
was quite remarkable. The software was based on the routine listed in Fig.
20-2 but with an extension to allow, in effect, an independent envelope for
each harmonic during the course of a note. This was accomplished by
replacing the time wasting instructions at CHORD2 with code for
periodically changing the memory page number of the waveform table at
VxTAB, thus in effect dynamically switching through a sequence of waveform
tables. The actual program used a separate 256-entry table with pointers to
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waveform tables to allow the dwell time at each wavetable to be variable and
to prevent a long note from "running off the end" of the table sequence in
memory. Since a typical instrument used 15-30 waveform tables of256 bytes
each, a machine with 64K of memory was a distinct advantage. The included
Fourier series routine would allow instruments to be defined in terms of line
segment approximations to the envelope shape of each of their significant
harmonics. Thus, arbitrary dynamic spectrum variation was provided for,
which allowed surprisingly accurate emulation of conventional instrument
sounds as well as a tremendous variety of contrived sounds. About the only
defects in the sound produced were a slight background noise level and
occasional clicks on sustained notes in one voice, while the program briefly
stopped sound generation to set up for notes in the other voices. The program
also suffered from the lack of a convenient score entry method.

More recently, the Apple Macintosh computer design also includes an
8-bit audio DAC. Besides having the much more powerful 68000 micro
processor available for computing sound samples, the DAC hardware
repeatedly reads a 370-byte portion of memory automatically. A fixed
frequency 22.26-kHz sample clock controls the delivery of data to the DAC
rather than the execution time of a program loop. The presence of this clock
and automatic data transfer circuit greatly simplifies sound-generation
programming as well as solving the click between notes defect noted
previously. In addition to the sample clock, an interrupt is available to signal
when the 370-byte "sound buffer" has been completely scanned out by the
DAC and is wrapping around to be scanned out again. Thus sound
generation can operate on an interrupt basis and appear to be almost
automatic. The interrupt service routine would compute 370 new samples as
quickly as possible and return. Any time remaining from then until the next
interrupt (which occurs 16.7 msec later) would be available for interpreting a
music score, computing new waveform tables on the fly, updating the screen,
and other uses. For example, with six voices and an algorithm similar to Fig.
20-2, a new sample would require about 30 microseconds to compute. To
fill the 370 sample buffer then would require about 11.1 msec to which about
100 f.Lsec of interrupt save and restore overhead should be added. This leaves
about 5.5 msec available 60 times per second to perform other tasks.
Although the capability for some truly impressive (for a personal computer)
music generation is there, the author knows of no Macintosh music program
that even begins to exploit it.

In 1980, Atari introduced their model 400 and 800 computers, which
were unique at the time for using three custom integrated circuits along with
a much faster than normal 1. 79 MHz 6502 microprocessor. Two of these
chips were dedicated to the Atari's video graphics display (Atari was best
known at the time for arcade video games), while the third handled the
alphanumeric keyboard, serial I/O bus, and sound. The sound-generator
portion, which is block diagrammed in Fig. 20-7, probably represents the
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ultimate that has been achieved with I-bit D-to-A conversion. Since the
Atari computers were primarily game machines, the ability to produce sound
effects figured heavily in the sound-generator's design.

Basic pitched sounds are generated by four independent sound chan
nels, each with an 8-bit divide-by-N counter, a noise modulator, and a 16
level volume control. To increase the range of accurate frequency generation
from 8-bit dividers, a basis frequency of 16 or 64 kHz can be selected.
Additionally, the channels can be combined pairwise to produce one 16-bit
divider and two 8-bit ones or two 16-bit dividers. A useful feature is that a de
level can be selected rather than the frequency generator output, which then
makes the volume control act like a 4-bit D-to-A converter.

For sound-effects use, the noise modulator serves to distort the pure
square-wave tone in a number of different ways. Pulses from a channel's
frequency divider are routed through an AND gate prior to toggling the
output flip-flop. The other input to the gate can be a logic ONE (for pure
tones), or various combinations of 4-bit, 5-bit, and 17-bit shift-register
random-bit generators that are constantly clocked at 1. 79 MHz. The effect is
to delete some of the pulses that would otherwise reach the flip-flop and thus
distort the sound. With the 17-bit generator, which can also be truncated to
9 bits, the resultant spectrum resembles bandpass-filtered noise with a center
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Fig. 20-8. Commodore-64 SID chip

frequency equal to the undistorted tone frequency. The shorter registers can
generate a repeating beat pattern with the tone generator and thus produce a
wide variety of droning-type sounds.

One final feature, which like the others is pure .logical bit manipula
tion, is called "high-pass filtering." This amounts to a D-type flip-flop
clocked by one of the frequency dividers and an exclusive-or gate as shown. If
the flip-flop is clocked at a low frequency, the bottom input to the exclusive
or gate is relatively stable, and thus nearly all activity at the top input will
pass to the output. As the clock frequency is increased, the two gate inputs
differ, on the average, less and less, and thus the output consists of narrow
pulses for those times when they do differ. The effect is most useful with
noise signals, although an interesting chorus-like sound can be obtained if
the flip-flop clock is very nearly equal to the tone frequency.

At the time of this writing, the Commodore-64 computer is by far the
most popular in terms of number of units sold. It also has the greatest built
in musical capability of any microcomputer (with the possible exception of
Macintosh's unrealized potential) and sells for only $200. Like the Atari
machine, the secret lies in a custom chip, which, in this case, is dedicated to

sound generation and A-to-D conversion of the game "paddle" pots. Unlike
the Atari chip, however, the Commodore SID (sound interface device) chip is
a hybrid having both digital circuits like counters and analog circuits like a
programmable state-variable filter on the same chip.
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Figure 20-8 is a functional block diagram of the SID integrated
circuit. The unit basically consists of three tone generators, three envelope
generators, a completely programmable multimode filter, and an overall
volume control. A limited degree of patching among the elements and an
external audio input is also possible. Standard sawtooth, triangle, and
variable-width pulse waveforms are available from the tone generators as well
as a noise waveform. The latter is produced by the voice's pulse output
driving a shift register random number generator in which 8 of the bits are
D-to-A converted to provide a truly random-looking waveform. A full 16 bits
of frequency control and 12 bits of pulse width control make tuning errors
and any stepping effect completely inaudible. The envelope generators
operate automatically and have independently programmable attack, decay,
and release durations (16 values for each from milliseconds to seconds on a
quasi-exponential scale) and a programmable sustain level. High-pass,
bandpass, and low-pass outputs from the filter can be selected, while 2,048
different cutoff frequencies and 16 different "Q" factors can be programmed.
Quite obviously, SID is a miniature polyphonic analog synthesizer on a chip!

As shown in Fig. 20-9, no fewer than 29 8-bit registers control the
SID chip. Twenty-five of these perform actual control functions and are write
only. Each of the three voices is controlled by a set of seven registers. Most of
the bits and fields are self-explanatory, but a few are not. When set, the
RING MOD bit causes,the voice's triangle wave output to be a pseudo-ring
modulation of its selected waveform and that of the next lower numbered
voice. The modulation is actually an exclusive-or of the digital representa
tions of the waveforms but sounds much like analog ring modulation. The
SYNC bit causes this voice's waveform generator to reset when the next lower
voice's waveform completes a cycle. The GATE bit triggers the envelope
generator when it changes from a zero to a one and holds a sustain for as long
as it is set. When it is reset, the release phase of the envelope starts.

Four more registers are used to control the filter and output amplifier.
The mode bits are cumulative, thus setting HP and LP gives a band-reject
response. The FILT1, 2, 3, and X bits select whether the corresponding
source goes through the filter first or just passes directly to the output. The
remaining four registers can be read to give the current position of two
potentiometers, samples of the selected Voice 3 waveform, and samples of the
Voice 3 envelope. The latter two functions, along with a software copy loop,
allow Voice 3 to modulate other parameters such as the filter. The 30FF filter
control bit disconnects Voice 3 from the audio circuits when th,is mode is
used.

The flexibility, ease of control, and relative precision of the SID chip,
not to mention the couple of million Commodore-64 computers sold, have
inspired some truly remarkable music software. Besides the usual score enter!
edit/play type of programs, which are generally well done, there are also
interactive sound-effect programs and even "live-performance" keyboard play
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Fig. 20-9. SID register layout

routines that display an analog synthesizer "console" complete with patch
cords and control knobs operated by the game controls. The sound quality
from the SID chip is generally quite good, although there are a few problems.
One of these is a noticeable leakage from silent voices into the output, which
creates a continuous background drone unless a zero frequency is selected as
welL

Although the chip's exact internal structure is secret" it is probably
based on the liberal use of multiplying D-to-A converters like the 7530
described in Chapter 7. The basic waveforms are undoubtedly produced by
simple processing of the upper 8 bits of a 24-bit accumulator-divider dtiven
by the computer's I-MHz clock. The selected waveform is then converted into
its analog equivalent by an 8-bit DAC The digital envelope generator
controls the amplitude of this analog signal with a multiplying DAC;
probably 8 bits as welL The analog signals from each of the three voices are
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finally analog mixed, multiplied by the 4-bit volume DAC, and sent out.
The filter most likely consists of two op-amp integrators (the integrating
capacitors are connected externally) and three multiplying DACs; two to
control the integrators' gain and thus cutoff frequency and one to control the
Qfeedback path. Athough the SID (official type number is 6581) was never
made available on the open market, it could have formed the basis of an
interesting keyboard synthesizer in which one chip would be used for each
voice. Oscillators 1 and 2 would have produced the rone, while Oscillator 3
could have been used for modulation.

For popular computers without adequate built-in sound capability,
there always seem to be a number of plug-in expansion boards available from
independent companies to fill the need. S-100 computers were the first ro
enjoy this kind of support and even now have the highest-quality synthesizer
expansions available, some well beyond the realm of "low-cost" items. The
Radio Shack TRS-80 and Commodore PET computers also inspired a few
music add-oilS as well, but the Apple II has by fat the greatest number of
audio accessory boards available. Many of these are simple square-wave units
based on the General Instruments AY-3-8913 chip described earlier, although
at least one used a triple timer chip, while another was simply an 8-bit D-to
A converter with filter and amplifier. Perhaps the last word in Apple II
synthesizers, however, is manufactured by Mountain Computer and is called,
very simply, the MusicSystem.

The MusicSystem consists of two Apple II plug-in boards permanently
connected together (Apple boards are very small at 2.75 X 5.5 inches) along
with a quite sophisticated graphics score editor program. Functionally, the
synthesizer implemented by these boards is quite simple. It amounts to 16
table lookup oscillators, each with an independent 16-bit frequency register,
8-bit amplitude register, and 8-bit waveform table page number. Waveform
tables of 256 bytes are held in the computer's main memory and accessed by
the boards using DMA (direct memory access). An interesting feature of the
Apple II Plus, in fact, is its ability to perform DMA without any overhead
associated with switching between the 6502 microprocessor and DMA
devices. The synthesizer performs a DMA cycle every 2 f-Lsec, which cuts the
microprocessor speed exactly in half With these DMA cycles going to the
synthesizer voices in a round-robin fashion, each voice can get a new sample
every 32 f-Lsec, which is equivalent to a 31.25-ks/s rate. Multiplication of
sample values read from memory by amplitude register contents is performed
by a multiplying DAC, while mixing is performed by time-division
multiplexing. They are, essentially, a hardware implementation of the table
lookup software routine described earlier. The synthesizer boards are con
structed entirely from standard digital and analog integrated circuits and sell
for around $400.

Using the 16 oscillators in a straightforward manner, one can obtain up
to 16 static organ-like tones simultaneously. With software synthesis of
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envelope shapes and periodic updating of the amplitude register contents, any
kind of envelope can also be added to the tones. For dynamic spectta sounds,
the included software could combine from two to four oscillators, each with a
different waveform table and delayed envelope shape, and rhus effect
interpolation among a series of waveforms. Actually, one could get the same
effect for as many segments as desired with just two oscillators by alternately
reassigning an oscillator's waveform table when its amplitude has cross-faded
to zero.

The availability of such a high-quality, flexible synthesizer board set for
the Apple II inspired at least two companies to offer a music keyboard and
live-performance-oriented software to go with it. Alpha-Syntauri, for exam
ple, manufactured a four-octave velocity-sensitive keyboard that plugged into
an interface board in another of the computer's expansion slots. Although the
6502 microprocessor only ran at half speed when the synthesizer was
operating, there was plenty of power remaining to scan the keyboard and
even update the display. Quite a lot of performance-oriented software similar
to that built into stand-alone keyboard synthesizers was offered for the
system. Additionally, an elaborate interactive graphics sound creation
program, reminiscent of the Fairlight eMl, was also oHered. Passport
Designs offered a similar setup initially with their own digitally controlled
analog synthesizer plug-in board. Later, however, they switched to the
Mountain synthesizer for its greater number of voices and flexibility.
Although both of these systems were quite popular with amateur and
semiprofessional musicians, the sound quality produced by 8-bit truncating
oscillators with 256-entry waveform tables was not quite up to professional
standards.
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Future

Frequently, when glvmg talks at computer shows and technical society
meetings, I am asked what the future holds in the field of electronic and
computer music synthesis. The reply is often prefaced with the observation
that short-range technology predictions, i. e., in the 2-1O-year range, are
usually overly optimistic, while longer-range predictions are often woefully
short of the mark. In effect, the evolution of technology given a relatively
stable base of underlying scientific knowledge is regulated primaril'y by
economic factors, while revolutionary changes are driven by scientific break
throughs that are inherently unpredictable.

For example, short-range predictions in 1940 about future technology
in electric power generation were likely incorrect due to economic effects of
the war. Meanwhile, nobody foresaw the development of nuclear power that
occurred after the war, and most certainly none foresaw its present decline. In
the early 1950s, it was said that only a handful of computers would ever be
built because there would never be a general need for computation. Yet 20
years later, tens of thousands were in use by every medium- to large-sized
company, university, and research laboratory in the country, and today, more
than 30 years later, they number in the millions with no end in sight. Of
course, many predictions are just plain wrong, regardless of the time scale. In
1973, shortly after the 8008 microprocessor was introduced, an industry
spokesman claimed that microprocessors would never do much more than
control traffic lights and certainly wouldn't have enough power to run
programming languages like BASIC. Yet, less than a year later, the 8008 was
running BASIC and even APL, a much more complex language.

There are at least four differeqt approaches or mindsets one can take in
making predictions and not all are the result of conscious, rational thought.
First, one might take the "philosophical" approach in which the predictions
made represent what the predictor thinks should happen to best serve society.
The "wishful-thinking" approach is based on an unconscious hope that, by
making a certain prediction, the chance of it actually happening is increased.
This is seen most often in business and economic forecasting, particularly by
the government in power. A group of people given significant time and
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resources are most likely to use a "scientific" approach in which a mathe
matical analysis of related past events and current trends is undertaken.
While the resulting conclusions can then be objectively defended, such a
thinktank approach is often not any more accurate than the first two highly
biased approaches. The final method amounts to just an informal analysis of
recent history and current trends along with some imagination that might
have a chance at foreseeing major breakthroughs. This is within the power of
an individual to do without a lot of effort and is what will be engaged in
here.

The Music Technology Development Cycle

In this book, a large number of sound- and music-synthesis techniques
have been described, explored, and in many cases, applied to practical use in
equipment. Virtually all of these techniques were theorized long (20 + years)
before their use in a practical commercial product. Harmonics, harmonic
analysis, and harmonic synthesis, for example, were known about in the last
century and even played around with (using special organ pipes) but only
recently could be fully applied in a musical instrument. Experiments in
drawing sound waves directly onto movie film were performed shortly after
soundtracks were developed, but only recently has the technique proved
practical on computer graphics screens. In essence, the kinds of musical
applications discussed in this book are technology driven. It is technological
advances, usually in other fields, that allow the application of most synthesis
techniques to progress beyond the theoretical and experimental stage.
Unfortunately, the electronic music field is generally not large or lucrative
enough to drive technology itself

Just a little study will reveal a remarkably consistent development
sequence that applies to many fields besides music. First, there is the
conception followed by theoretical study and eventually publication of a new
technique in a scholarly paper. These are seldom seen, let alone understood
by anyone besides other researchers in the same field. If the technique is of
sufficient interest, it is then implemented on a one-time basis using
institutional funds in an effort to learn more about its properties. In the past,
this often meant building large, expensive, and specialized machines, but
now it might amount to writing a program to simulate the process and then
buying enough computer time to study its action. Generally, a couple of
additional papers are published outlining the results of actual use followed by
a period of dormancy during which nothing much happens. At this point,
many ideas die, but eventually technology advances to the point where it
becomes possible to incorporate the good ones into a "high-end" product of
some sort. With further advances in technology, the new technique gradually
becomes competitive with other existing techniques in "mid-range" products
and begins to be used extensively. In the final stage, a truly good technique
will become trivialized by common usage in "low-end" and toy products.
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Thus, accurate prediction of the future of electronic musical instru
ments largely depends on an accurate knowledge of the "pool" of techniques
available and accurate prediction of the course of electronic technology.
Presumably, the former requirement has been met by reading this and related
books listed in the bibliography, so we need only take a look at past and
current trends in electronic technology.

Major Trends in Electronic Teclmology

Several major trends can be identified in electronic techhnology at this
time. Probably most obvious is a shift to digital techniques and circuits when
possible. While analog components such as op-amps, precision resistors,
voltage-controlled oscillators, etc., are better than ever and are constantly
improving, it is an evolutionary progression that merely gets a little closer to
the limits imposed by the laws of physics. Actually, analog components have
not really improved all that much and breakthroughs have been minor and
rare. From the author's viewpoint, the greatest recent advance in analog
circuit components was the introduction of "BIFET" op-amps in the
mid-1970s. General-purpose versions of these offered 111,000 the bias
current,S times the bandwidth, and 20 times the slew rate for a price that
was only slightly higher than bipolar units. For synthesizer use, the other
breakthrough was the integrated transconductance amplifier (3080 type) and
more recently other integrated functions such as voltage-controlled oscillators
and filters. Contrast these relatively minor improvements to those about to be
described in the digital arena and the reason for the shift should be obvious.
An additional factor to consider is an ongoing de-emphasis of linear circuit
design techniques at colleges and universities as well as in the trade press. It
is getting to the point in many companies that digital engineers are in
abundance, but the one competent analog engineer there is a precious
resource.

Memory Cost and Capacity

In the digital realm, the most dramatic advances are being made in
memory devices. During the 1960s, core memory advanced from 1024
0.080-inch cores on a frame with a cycle time of 20 fJ-sec to 64K and more
0.015-inch cores on a frame with a cycle time of 750 nsee. Costs likewise
declined from a dollar or more pef bit down to about 2 cents. Semiconductor
memories got rolling in 1972 with the 1103 lK bit RAM chip, which was
competitive with core in terms of speed and cost. 4K memory rcs were
introduced in 1975, while 16Ks were available in 1977 but were not
competitive until 1979. 64K RAM chips became competitive in 1982 and at
the time of writing in early 1985, 256K RAMs are very nearly competitive at
about $5 each in small quantities. In addition, 1M bit chips are working in a
few labs, and at least one paper proposing a technique to realize a 4M bit
RAM chip has been published.
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Let's take a look at this data for a minute. First, the size of RAM chips
has very consistently quadrupled about every 3 years and shows no signs of
abating. Second, even though the chip capacity is rapidly increasing, the
pricing of each new generation is roughly the same on a per-chip basis if not
actually declining. Third, today's typical 256K RAM chips at 250-nsec cycle
are only about twice as fast as the original 1103s at 570 nsec were. Spanning
the 25 years from 1960 to the present, the density of memory in bits per
square inch on a printed circuit board has increased from about 50 to about
500,000; a factor of 10,000 to 1. Speed has increased from 20 fLsec to about
250 nsec, a factor of only 80. Cost, however, has declined from about $4.00
per bit to .002 cents per bit in 1985 dollars, a factor of 200,000 to I!

In 1960, it would have cost over 60,000 1985 dollats or about the price
of an average home for the memory to store a 1,024-entry waveform table for
a music program. In 1985, that same table costs only 32 cents to store in
read/write memory and even less in mass-produced masked ROM, which at a
given time tends to be twice as dense and half as costly. In 3 years, the
likelihood is that it will cost less than the price of a gumball to store such a
table. Of all of the current technological trends, the declining cost of
random-access memory will have by far the greatest influence on the future of
music synthesis.

Small system disk storage has also progressed substantially from the
original 8-inch 128K byte floppy disk drives introduced in 1972. Production
Hoppies can now store 1.2M bytes on a 5-inch diskette or 800K bytes on a
3.5-inch diskette, and four times these densities have been demonstrated.
Prices have also dropped from $2,000 (1985 dollars) for the original drives to
just over $100 today. Small rigid disks have increased in capacity from 5M to
20M bytes and declined in cost from about $2,000 to under $300. For
constant cost in the $3,000 range, small drives have increased from 10M to
over 300M bytes. Now, optical read/write disk drives are poised for
introduction with capacities from 500M to 2,000M bytes on a potentially
very low-cost, removable, Hexible disk.

Microprocessor Power

Microprocessor ICs are likewise improving in performance and price,
although not nearly as dramatically as memories. In 1972, the standard 8008
cost $120 and could execute its rather weak instruction set at an average rate
of one instruction every 30 fLsec. In 1976, the 6502 cost $25 and executed a
substantially stronger instruction set at rhe rate of one every 3 fLsec for a
power increase of perhaps 20 to 1for one-fifth the cost. In 1984, the 68000,
which is probably eight to ren times again as powerful as the 6502, could be
purchased in the $25 range as well. Waiting in the wings (they were not
generally available in early 1985) are 32-bit bus versions of the 68000 and
other established 16-bit architectures that will be three to four times faster
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than their l6-bit predecessors given equal speed memory. Current prices are
extremely high (around $500 for what samples are available) but will
probably lower to the $2 range in about 3 years.

Now let's take a look at these figures. Since 1972, the power (speed) of
microprocessors has increased about 600-fold while the cost has declined by a
factor of 10 (remember inflation). More importantly, note that the rate of
speed improvement is slowing down substantially, while the price point for
high-end mature devices is stabilizing at the $25 level. The reason for the
slowdown in speed improvement is that microprocessors are approaching the
limit imposed by the speed of memory rcs and is not far from the physical
limit of signal propagation along a bus system. Although the 600-fold speed
increase doesn't sound like much compared to the 200,000-fold decrease in
memory cost, consider this: The Concorde supersonic jet transport flies less
than 600 times faster than a child can walk!

Although microprocessors themselves are now much faster than they
once were, it often seems that the software that runs on them has not
improved nearly as much, if at all, speedwise. In 1973 with the 8008,
production programs were carefully handcrafted by a single person in
assembly language. In 1985 with the 68000, production programs are more
likely to be written rather hastily by a large group in a high-level language.
Thus, a substantial portion of the available speed increase is being squan
dered by a decline in the quality of programming practice. This trend will
likely continue as the cost of programming continues to increase in
proportion to the cost of hardware. Of course, in specialized cases, such as a
core sample computation loop, and with the proper motivation, this
increased power is available for use. In fact, this potential for much better
performing software given old-fashioned craftmanship and attention to detail
means that opportunities still exist for creative individuals in the microcom
puter software industry.

Custom Integrated Circuits

During the 1970s, all commercial (as opposed to military and
aerospace) electronic systems were designed and constructed in basically the
same way. Standard logic integrated circuits, memory ICs, and micro
processors were arranged on two-sided printed circuit boards, several of
which would then be plugged into a backplane bus to make a system.
Competitive edges were obtained by better design (fewer components
required), using the latest high-density memories and high-speed processors,
and selecting the optimum mix of features for the market being served. As
standardization set in, the applicability and effectiveness of these competitive
techniques declined until all of the competing systems were basically the
same. At that point, only twO system variables were left for competitive
positioning: price and physical size. Since printed circuit technology is very
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much mature, a given numbet of components on a board will fall into a
narrow range of physical sizes and costs. Other ways of reducing the cost and/
or size of the standardized system were needed.

Enter the custom integrated circuit. When one considers that a mid
range microprocessor, which might be the equivalent of a 12 X 12-inch
boatd with 150 TTL IC packages mounted on it, is only 11100 the size and at
$5 perhaps 1/50 the cost, a powerful incentive to use custom ICs is seen.
However, until fairly recently, development of even a modetately complex
custom IC was a quartet million dollar proposition and not to be considered
unless the production volume was to be in the hundreds of thousands.
Nevertheless, some companies, notably Atari and Commodore who were
mentioned in the previous chapter, did indeed incorporate custom ICs into
their products, which gave them a tremendous competitive edge, both price
and performance-wise. Even in nonstandarized systems, another distinct
advantage of using custom ICs is that a competitor, in order to duplicate the
function, must either assemble the equivalent discrete logic at a substantial
cost disadvantage, develop its own custom chip, or buy it from you at a
healthy markup.

There are now available three degrees of chip customization. The
highest level is called "full custom," in which the designer (actually a team)
constructs the circuit from individual transistors in an optimum fashion that
minimizes the chip area needed while meeting performance objectives. For
example, an internal gate that drives only two other internal gates may use a
different circuit topology or smaller transistors than one that drives five
internal gates. Or the physical arrangement of the transistors might be
altered in order to better fit an available space. This level has the best
performance, highest development cost, and takes the longest (2-3 years)
but is the densest and cheapest to manufacture. It is generally the approach
IC manufacturers themselves use when developing new standard products.

The next lower level is called "standard cell" design. In effect, it is
similar to choosing standard logic ICs and interconnecting them on a printed
circuit board. In laying out a standard cell chip, the patterns of transistors
and other components required for a particular standardized circuit function,
such as a D-type flip-flop, are called up from a computer database, placed on
the mask pattern, and interconnected with other such cells. The cells are
fixed in drive capability, shape, and functional features just like discrete logic
ICs are and thus require more space on the silicon chip. For large chips, even
a modest increase in area can drive up manufacturing costs substantially
because of reduced yields as well as fewer chips per wafer. However, standard
cell chips are much less expensive to develop, perhaps one-quarter of the cost
of full custom, because of greatly reduced design effort by less skilled
designers (the cells can be treated as black boxes), and many fewer design
iterations to get working chips. However, once a standard cell chip is
designed, it is manufactured the same way as a full custom chip, which
means that minimum-order quantities are quite large.
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"Gate arrays IS the term used to identify the bottom level of IC
customization. A gate array is a chip that already has a regular array of a few
different cell types but without interconnections. Each cell in the chip's
central area might be an array of three small transistors and five resistors that
can be interconnected to form, say, a two-input NOR gate. By using
components from adjacent cells, more complex functions such as flip-flops
can also be formed. Around the chip's periphery might be other cells
containing larger transistors for driving outputs or protection networks for
receiving inputs. Design of a gate array then is purely a signal-routing
problem, which may actually be more difficult than designing a standard cell
chip. Additionally, gate arrays are less space-efficient than standard cells
because typically only 60-70% of the available cells can be used due to
routing space limitations. If a given design will not fit into a particular-sized
gate array, then the next larger available array will have to be used instead.

The advantage of gate arrays, however, is that the customization process
only affects the last one or two mask layers out of the dozen or so required to
make a complete wafer. Thus, a gate array wafer can be passed through the
first 10 masking steps and then stocked in large quantities. When a customer
needs a run of a particular pattern, a few wafers are drawn from inventory, the
last one or two masking steps performed, and then they are ready for testing,
dicing, and packaging. The process is much like that used to produce
masked read-only memories and can cost as little as $5,000-10,000 for
having the masks made and the test sequence programmed. Most impor
tantly, minimum-order quantities of chips may only be in the hundreds.

There is even a fourth level that is becoming significant and has
exciting future potential. The same technology that is used for programma
ble read-only memories is now being used to establish the interconnection
patterns in relatively simple gate array type chips called "programmable logic
arrays" (PLA). These niight typically have eight flip-flops, 32 16-input AND
gates, eight four-input OR gates, and four or five miscellaneous gates around
each flip-flop to control signal polarities, feedback, etc. Such chips can
usually replace 5-10 standard logic ICs in the control sections of digital
circuits. Since the user establishes the interconnection pattern with spe
cialized programming equipment, the chips themselves can be mass pro
duced, stocked, and sold in single-unit quantities if necessary.

Initially, all PlAs were programmed by blowing fuses on the chip and
thus could only be programmed once. In 1984, however, erasable PLAs were
introduced that could be erased by ultraviolet light as with erasable read-only
memories. Even very small companies or individuals can use PlAs, since the
only monetary investment is a programmer that can be built or purchased for
$2,000-5,000. The major deterrents to widespread use of these arrays in
1985 are relatively high power consumption, speeds about half that of
standard logic, and component costs higher than the logic they replace. The
erasable versions, however, have the potential to solve the power problem and
perhaps the component cost problem, since they are inherently denser.
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Innovations in Packaging

As mentioned earlier, one way to compete in a market in which
equipment specifications have become standardized is to make your product
more compact. Since the late 1960s, the standard package for integrated
circuits has been the dual-inline package or DIP. Common logic functions,
like gates and flip-flops, use 14-, 16-, and 20-pin packages that take up
roughly 1/2 square inch on a printed circuit board. Larger functions like
microprocessors, read-only memories, and peripheral interface chips use 24-,
28-, 40-, and 64-pin packages that take from 1 to 3 square inches. As long as
DIPs are used, everybody is limited to about the same circuit density. The
main advantage of DIPs is that no specialized equipment is required to
handle or insert them onto boards, although some relatively simple handling
equipment is helpful in mass production. They are easy to work with when
prototypes are built and there is a tremendous variety of sockets, wire-wrap
panels, test clips, and other accessories available.

Recently, however, a number of high-density packaging alternatives
have become available. The first ICs to be affected were large advanced
microprocessors requiring 64 and more package pins. The "leadless chip
carrier" (LCC) and "pin-grid array" (PGA) packages, for example, can contain
a 68000 chip in under lin2

, while the 64-pin DIP equivalent requires 3in2
•

Even larger mictoprocessors, such as the 80186 and the 68020 are being
offered only in such packages because DIPs with more than 64 pins are not
available. Sockets are required for the LCC package but the PGA type can be
soldered directly onto a board. A third new package type, called "surface
mount" (SMT), has pins that lie parallel to the circuit board surface and are
soldered on top rather than leads that pass through holes to be soldered on
the bottom. Both large and small logic functions as well as ttansistors are
available in SMT packages and are about one-third to one-quarter the area
and much thinner than DIP equivalents. Sockets are generally not available
for SMT components.

Using these new package styles can effect a dramatic increase in circuit
functionality that can fit onto a standard-sized board. SMT 256K RAM
chips, for example, can be packed about three times closer together, thus
making possible 4M bytes of memory on a single 5 X lO-inch S-100 style
board. With DIP packages, only 1M byte would be possible. In a system
requiring 8M bytes of memory, the supplier of 1M byte boards is at a
substantial competitive disadvantage even if his boards are cheaper per byte.
With PGA and SMT components, one could package a 32-bit 68020
processor, 68881 floating-point processor, a hardlfloppy disk controller, a
CRT display generator, a couple of serial and parallel ports, and 2M bytes of
memory all on one board measuring perhaps 8 X 8 X less than 1/2 inch
thick.

The big disadvantage of these new packages, particularly the SMT
types, is that specialized equipment is necessary to handle them. In addition,
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multilayer printed circuit boards and more expensive processing are necessary
to run the increased number of signal lines that the increased component
density requires. Since such boards are generally not repairable, a new board
design may have to go through several iterations to perfect the layout before
any systems at all can be shipped to custOIners. The net effect is that small
companies may be unable to afford the new packaging technology. Also,
since many advanced functions are only being offered in these packages, such
companies may wind up being locked out of new devices as well.

Jncr-easing J(nowledge Base

In 1972, when microprocessors were introduced, knowledge about how
computer systems were organized, how to program them, what their
potential was, etc., was very rare indeed. Now, virtually anyone graduating
from an engineering curriculum can program and electrical engineering
graduates almost certainly know considerable detail about computer system
organization and can design simple logic and interface circuits. Most of those
specializing in digital technology can design a complete microprocessor
based system and program it in assembly language given written perform
ance requirements. A good number will even know how to design chips and
may have actually participated in a class project in which a custom chip was
designed and prototypes produced.

Along with this greatly expanded knowledge of the mechanics of
designing and building complex logic and microprocessor-based systems is
increased knowledge of the algorithms that can be applied to make them
perform useful tasks. The standard undergraduate linear systems courses
(applied differential equations, etc.) are now supplemented (or perhaps even
replaced) by courses in digital signal processing. Thus, many engineering
students now are expected to know much of the material found in Chapters
13 and 14 of this book, although generally not in a musical context. Even
music students may find that one of their required courses is a semester in
electronic music production and another specifically in computer music with
hands-on experience in both.

Besides formal training opportunities in these areas, a wealth of written
and even social (clubs, etc.) information can now be found with virtually no
effort at all. Computer-related magazines fill the racks at nearly every
drugstore and computer-related books are one of the largest categories in
many bookstores. New books, such as this one, distill technical information
that was once accessible only in research papers scattered among dozens of
scholarly journals.

The net result of this is that knowledge of many of the principles and
techniques described in this book is becoming relatively common. Lack of
know-how is becoming less of a barrier between a perceived musical need and
action to meet it through digital and computer technology. The ready
availability and relative cheapness of sophisticated logic components and
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powerful computers allows nearly anyone who wishes, to write software and
build hardware to test some new idea the individual may have thought of
Translation of viable ideas into products is easier now than ever whether a
new company is started for the purpose or an established one is approached.
It is the expansion of knowledge that drives exponential growth of all
technology and will surely continue to apply to musical technology as well.

So now it is time to get out the old silicon dioxide sphere and make
some predictions for the next 10 years. One must, of course, assume that no
major political or economic disruptions will occur in the meantime. Ten
years from now it will be interesting to see how accurate these prognostica
tions prove to be.

The Predictions

In analog components, look for continued gradual improvement in
general-purpose op-amp performance and less of a price differential for
premium-performance units. Someone will introduce a comprehensive line of
digitally controlled analog functions including oscillators, amplifiers, and
filters in which the digital side will interface directly with a microprocessor
bus. Another company will introduce a large-scale mixed analog-digital chip
that performs almost exactly like the dual voice board used in the Chroma
synthesizer described in Chapter 19 but is programmed much like the SID
chip described in Chapter 20. Finally, somebody will offer a hex or octal
voltage follower op-amp in a 14- or 18-pin IC package.

In memory components, 1 Mbit RAM chips will be introduced in 1987
or 1988. While American manufacturers talk about putting these in some
strange new package because the chip is too big to fit a standard DIP,
Japanese manufacturers will introduce theirs in a standard IS-pin DIP that is
pinned to be compatible with current 16-pin DIP-packaged 256K RAMs.
Look also for 256K X 4-bit organization in a 22-pin DIP and a
"pseudostatic" 64K X 16-bit device in a 40-pin SMT package. EPROMs
with a 64K X 16-bit organization should also be introduced. Grave
problems will be encountered while developing 4M bit RAMs so these are
not likely to be available at all until 1993. The solution will be larger chip
sizes made practical by virtually defect-free silicon crystals grown in space.
Pricing of each generation will remain about the same at the chip level,
which means that, by the early 1990s, read/write memory will be 1/16 of its
1985 cost. That lK X 16-bit waveform table will then cost less than 2 cents
to store in RAM or 1 cent to store in ROM.

No really new developments are expected in 8-bit microprocessors,
although construction of current designs in CMOS and higher available clock
rates will become the norm. Even so, 8-bit units will descend to the status of
current 4-bit devices and continue to sell in large quantities. Current 16-bit
microprocessors will become so cheap (less than $5) that they will be used in
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all low-end computers, while the 32-bitters being introduced in 1985 will be
the norm for business-oriented personal computers. Somebody will finally
figure out how to integrate a microprocessor and a dynamic RAM array on
the same chip and thus offer one-chip microcomputers with enough RAM
(like 8K) to be useful.

For consumer music products, look for portable synthesizers using
digital playback of recorded sounds as their "synthesis" technique to become
available for under $1,000 and with standard voice complements including
all common acoustic instruments. Velocity- and pressure-sensitive keyboards
will also be the norm on such instruments. Even cheap toy instruments
(under $100) will have outstanding sonic capability (using real synthesis) but
with cheap keyboards and cases. The typical home personal computer will
have at least an eight-voice synthesizer as standard equipment, again using
prerecorded sounds. A few sounds will be built in, while an infinite variety of
others can be read from the standard optical disk drive on demand.

In ptofessional live-performance synthesizers, design emphasis will
shift from providing accurate emulation of acoustic instruments and an
endless variety of contrived ones to improving the degree of interactive
control the musician has over the sound. Keyboards will still be the
dominant control device but will become divorced from the synthesizer and
sold separately for the most part. Since even consumer keyboards will have
independent pressure sensing, professional units must have additional control
"dimensions," such as the key displacement mentioned in Chapter 9. These
separate keyboards and other controllers will initially communicate with the
synthesizers via MIDI. However, by 1990, look for a new music protocol to
be developed as the weaknesses of MIDI become apparent. The new protocol
will still be serial but will probably be based on some local area network
protocol and matching interface chips developed earlier for business com
puter systems.

All-digital recording studios will also become common during this
period. Studio synthesizers will more and more become just another "box"
that is wired into the studio digital sound system. They will also be so good
that a single individual, suitably armed with a digitized library of orchestral
instrument sounds, will be able to "synthesize" a symphony orchestra with
no qualifications and no audible compromises. One would hope that such a
capability would not be used to produce yet another rehash of the classics. In
any case, it will literally be possible to produce a piece of music that never
exists in analog form until it reaches the speaker wires in the listener's home!
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Papers

Ashcraft, A., et al. "Noise in Real Time Digital Sound Generation."
Proceedings 2nd Symposium on Small Computers in the Arts, 1982.
IEEE Catalog Number 82CH1831-7.

Chamberlin, H. "Design and Simulation of a Real-Time Digital Sound
Synthesizer." Master's Thesis, North Carolina State University, 1973.

Chowning, John M. "The Synthesis of Complex Audio Spectra by Means of
Frequency Modulation," Journal of the Audio Engineering Society, Vol.
21, No.7, Sept., 1973.

Le Brun, M. "Digital Waveshaping Synthesis."Journal ofthe Audio Engineering
Society, Vol. 27, No.4, 1979.

Schottstaedt, B. "The Simulation of Natural Instrument Tones using
Frequency Modulation with a Complex Modulating Wave." Computer
Music Jottrnal, Vol. 1, No.4, Nov., 1977.

Periodicals and Organ:izations

Computer Music Journal, The MIT Press, Journals Department, 28 Carleton
Street, Cambridge, Massachusetts 02142.

ElectroNotes Newsletter; 1 Pheasant Lane, Ithaca, New York, 14850.
International Midi Association, 11857 Hartsook Street, North Hollywood,

CA 91607. (Copy of current MIDI specification available for $1. 50.)

Acronyms

ADC
ADSR
AGC
AR
BCD
BIFET

BPF
BPI
CAS
CMOS
CPU
CRT
DAC
DIP

analog-to-digital converter
attack-decay-sustain-release envelope generator
automatic gain control
attack-release envelope generator
binary coded decimal
process name used by National Semiconductor Inc. to refer to the
integration of bipolar and field-effect transistors on the same chip
bandpass filter
bytes per inch
column address strobe
complementary metal-oxide field-effect transistor logic
central processing unit
cathode-ray tube
digital-to-analog converter
dual-inline package---most popular form of integrated circuit
packaging



DMA
DOS
FET
FFT
FIFO
IC
1M
I/O
JFET
LPF
LSB
MIPS
MOSFET
MSB
NFET
OTA
PLL
PROM
RAM
RAS
rms
RMW
ROM
SAH
SFT
SiN
VCA
VCF
VCO
VFO

BIBLIOGRAPHY

direct memory access
disk-operating system
field-effect transistor
fast Fourier transform
first-in-first-out buffer memory
integrated circuit
intermodulation
input/output
'junction field-effect transistor
low-pass filter
least significant bit
million instructions per second
metal-oxide field-effect transistor
most significant bit
N -channel field-effect transistor
operational transconductance amplifier
phase-locked loop
programmable read-only memory
read/write memory
row address strobe
root-mean-square
read-modify-wri te
read-only memory
sample and hold
slow Fourier transform
signal-to-noise ratio
voltage-controlled amplifier
voltage-controlled filter
voltage-controlled oscillator
variable-frequency oscillator
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Accumulator dividet, 595-597
IAccuracy DAC, 224, 370
IAcquisition time, 412
lADe. See Analog-to-digital convetsion
IAddressing modes

6502, 156-157
6ROOO, 167-168

Algorithmic input, 325-326
Alias distortion. See Distortion, alias
AM. See Amplitude modulation
Amplifier

differential, 199-200
nonlinear, 48-54
operational, 180-181, 790
operational transconductance, 200-209
voltage controlled, 87-88, 197-209

Amp1icude
measure, 16
modulation, 32-33
parameter, 16-18
response, definicion of, 54-56
response, effect of finite pulse width,

382-383
Analog switch. See Switch, analog
Analog synthesis. See Voltage control

synthesizer. See SyntheSIzer, voltage
controlled

Analog-ro-digital conversion, 110, 221,
258-269

audio, 411-415
dual-slope, 260-261
integtilted circuits

ADC0803, 267
ADC0808, 269
ADC0816, 269
MM5R63, 261
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Analog-to-digital conversion (continued)
linear search, 261-262
single-shot, 259-260
successive approximation, 262-266
tracking, 262

Analysis
frequency, 570-571
homomorphic, 574-577
linear prediction, 573-574
sound, 543-588
spectral shape, 571-577

Analysis-synthesis, 70-74, 565-569
Aperature delay, 412

uncertainty, 413
Arithmetic

binary, 422-423, 645-660
complex, 446-449
fixed point, 645-660
floating point, 174, 645-646
fractional, 647-649
mixed number, 425-426
multiple precision, 648-649
program, 654-657

Array processor, 625
Attack. See Envelope, amplitude
Autocorrelation, 586-587
Automatic gain control, 113

Bandwidth, definition, 56-57
Bessel functions, 98
Bit reversal. See Decimation
Bounce, contact, 299, 306, 714
Buffer

display, 343-346, 351
first-in-first-out, 368, 411
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Bus
other, 353
5-100, 130, 132-133, 137, 353
6502, 153-155, 157
68000, 160-164

Butterfly diagtam, 451-453

Capacitor, hold, 255-256, 725
Cascade, filter, 60, 62, 386
Cassetee, rape, 140, 714
Cepstrum, 577, 587
Chebyshev polynomials, 390, 474-476
Chebyshev filters. See Filter, lowpass,

Chebyshev
Chorus effect, 69-70, 120, 512-514

simulator, digital, 513-515
Clippers. See Amplifier, nonlinear
Clock

audio DAC riming, 367-368, 410
real-time, 147, 275, 302

Coding, DAC, 243-245, 373-377
Coloration, sound, 69
Compact disk, III
Compllraror, window, 262
Compensation

bulk resistance, 196
discharge, 196
finite pulse width, 393-395
linearity in 3080, 205-207
op-amp, 243
temperature, 186, 195, 220

Composition
algorithmic, 325-337
by editing, 357-364

Compression, data, 439, 732-734
Computer

signal processing, 623-625, 739-743
synthesis, direct, 38-39, 417-480,

672-703, 743-755
Control blocks, NOTRAN system, 675,

677, 680
Conrroller, musical instrument, 325
Convolution, direct, 500
Corner peaking, 89, 219
Current mirrot, 201-202
Current-to-voltage converter, 203,

242-243
Cutoff frequency, 56, 383-384

slope, 50, 60-61, 383-392

DAC. See Digital-w-analog converter
Decay. See Envelope, amplitude

Decibel, 17
Decimation, 446-447, 450
Deglitcher, DAC. See Glitch, DAC
Delayed-playback synthesis, 639-699,

743-755
Deviation, frequency modulation, 95-97
Digital control of synthesizers, 178,

287-290,715-725
See also Synthesizer, computer

controlled
Digital filrers, 406-408, 481-515
Digital filter

all-pass, 495-499, 511
arbitrary response, 500-507
cannonical, 495
impulse invarient, 487
lowpass, 330-331, 406-408, 485-487,

493
multiple feedback, 492-494
program, 485-486, 490-491, 660-663
stare-variable, 489-492, 660-663, 678
tuning, 491-492
90 degree phase shift, 514-515

Digital integrator, 331, 418-419, 489,
491

Digital-to-analog converter, 106,
221-236, 245-252, 257-258,
346-347, 367-378,409-411,
599-601, 635-636, 715, 723-725

Digital -to-analog converter
audio, 106-107, 367-377, 408-411,

635-636
companding. See Digital-w-analog

converter, exponential
display, 346, 349
duty-cycle, 226-227
exponential, 235-236, 375-377
floating point, 373-375
integrated circuit

AD7523, 724
AD7530, 248-250
AD7541, 250, 724
AD7546, 377,409-411
DAC08, 245-248, 771
DAC312, 251, 266-267
DAC349, 251
PCM51, 377
PCM52, 377
1408, 245-246, 347

intelligent, 257-258
resistive divider, 229-231
resistor ladder, 231-232
resistor string, 227-229
segmented, 232-234, 251, 373
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Digitizer, graphic, 324, 355
Direct memory access (DMA), 154-155,

164, 346, 351, 368, 701-702
Disk

fixed media, 142-143, 700
floppy, 140-142, 700, 702
hard, 142-143, 700-744
Winchester, 142-143

Dispersion. See Phase response
Display

alphanumeric, 145
bit-mapped, 352-353
color, 353
computer graphic, 340-354
list

editing. See Editing, display list
format, 343-344

raster, 349-353
vector, 341-349

Distortion
alias, 418, 423-424, 426, 430, 467,

601-604
DAC glitching, 377-379
harmonic, 601-603, 635
intermodulation, 601-602
slew limiting, 379-382

Division, software, 651-652, 658-660
Disk operating system (DOS), 148. See

also Operating system

Echo. See Reverberation
Editing

display list, 344, 354
functions, graphic display, 360-364
sound using tape recorder, 44-45
text, 149

Envelope
amplitude, 32-33, 642
generation, analog, 90-91
speerral, 28, 471-472, 476, 571-477
tracking, 71

Equalizer, 61
Exponential converter, 184-187, 194-196

DAC. See Digital-to-analog converter,
exponential

function, 82-83
truncared, 682-683

Fast Fourier transform. See Fourier
transform, fast

Feedback shifr register. See Sequence
generation, digital

FFT. See Fourier transform, fast
Filter

active, 213-217, 396-401, 404-406
all-pass, 495-499
bandpass, 212, 286, 494,551-558

FFT equivalent, 559-564
band-reject, 57, 213,499-500
cascade implementation, 60-62, 386
comb, 63-64, 499-500
constant bandwidth, 89-90

Q, 89-90, 217-218
curaff frequency, 56, 384
definition, 54-60
design data, 396-400, 403
design program, 395
digital, 119. See also Digital filters
dispersive, 495-499, 568
hetrodyne, 557-558
high-pass, 56, 213
interpolation, 407, 518-525
jitter, 594, 628
low-pass, 56, 109, 115,212, 383-411

audio reconstruction, 383-411
Butrerworth, 388-390, 398, 393
Cauer. See Filter, low-pass, elliptical
Chebyshev, 390-391, 393, 397-400
elliptical, 391-392, 401-406
iterative R-C, 386-387
iterative R-L-C, 387-388
vector generator, 348·349
4-pole, 219-220

negative impedance converter, 405-406
notch. See Filter, band reject
parallel implementation, 386
passive, 387-388, 401-404
ringing, 528-530
R-L-C, 212-213, 387-388, 402
spectrum analysis, 551-558
state-variable, 214-217
stare-variable, digital. See Digital filter,

state variable
tracking, 635
transversal. See Digital filter, arbitrary

response
voltage controlled, 88-90, 210-220
IIF. See Noise, pink

Filterbank analyzer, 551-558
Flanging. See Filter, comb
Floating point, 373-375, 628, 645
FM. See Frequency modulation
Formant

definition, 63
tracking, 72, 571-577. See also

Spectrum tracking
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Formant (continued)
usage, 359-360, 571-573

Fourier series, 117,430-433,435,
610-619

Fourier rhnsform, 435-464
computer, 624-625
discrete, 436-439
fast, 441-458
fast, complex-real conversion, 455-458
forward, 439-458
inverse, 439-440, 455, 664-665
program, BASIC, 440, 441, 453-458

6502 assembly, 664-665
68000 assembly, 667-672

slow, 439-441, 444-445, 610-612,
664-665

in spectral analysis, 558-565
Frequency

fundamental, 22
generation, digital, 590-598
genetator, harmonic, 612-613
hatmonic, 22-26
modularion, 32, 91-100, 465-467, 471

complex, 467, 471
patch, 99-100

negative, 99-100, 188, 420
parameter, 13-15
response. See Amplitude response

Future predictions, 779-789
Fuzz effect, 48

Gate, music keyboard, 292-294
Gilbett multiplier, 207
Glitch, DAC, 225, 231, 377-379,410
Graphics

bit-mapped, 132
vector, 341-349

Handshake protocol, 258, 300, 725-726
Harmonic

definition of, 22-26
Fourier transform, 437-439, 459-465
inexact, 618-619
Nyquist frequency, 439
tracking, 558

History
microprocessor, 127-138, 782-783
memory, 136-137, 781-782
sound synthesis, 34-41

Hold droop, 253, 413
step, 413

1mpulse response
of concert hall, 510
offilter, 500-507, 518-522

Input-output, memory-mapped, 150
Instruction set

arithmetic, 652-653
6502, 155-158
68000, 169-17 3

Integrator, digital. See Digital integrator
analog, 189-190, 214-217

Interlace, raster scan display, 350-351
Interpolation

between waveforms, 433-435, 460,
679-681

in curve editing, 361-362
linear, 421-423
noise. See Noise, interpolation
polynomial, 515-517
segmented DAC, 233
sinc function, 407, 519-524

Interrupts
application of, 294-295, 302, 311-312,

316, 368, 772
6502, 155
68000, 164-166

Interval timer. See Clock, real-time

Jetsound ellen. See Filter, comb
Jitter

in audio DAC, 367-368
in digital oscillator, 594-598

Joystick, 323-324, 355

Keyboard
function, 356-357
music, 91-92, 291-320

assignment problem, 296-297
polyphonic, 297-312
pressure sensitive, 317-318
three-dimensional, 319-320
two note, 295-297
velocity sensitive, 298-299

text, 144

Ladder, R-2R, 231-232
Language

APL, 644
assembly, 149-150, 643, 645

6502, 264, 418-420, 654-657,
662-666

68000, 265, 669-671
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Language (continued)
BASIC, 131-133, 150-151, 394-395,

428, 432, 453-455, 457-458,
644

C, 150-151, 645, 744
FORTRAN, 151-644
music. See Music languages
Pascal, 151, 644
PUM, 644
portability, 645
machine. See Language, assembly
music, 321, 672-699

level, signals in voltage controlled
synthesizer, 81-84

Light pen, 355-357
Linear integrated circuits for analog

synthesis
CA3080, 200-206, 216-217, 635
CA3280, 207, 216
Curtis 3350, 720
Curtis 3360, 720
SSM2020, 207-209
SSM2040, 218-220, 636
4151, 719-720

Linear prediction, 573-574
Linearity, DAC, 223-224, 227-230, 234,

369-373
Logic replacement, 151-152

Machine, finite state, 306-307
Memory

dynamic, 136, 607
history of, 136-137,781-783
segmentation, 135, 137, 159-160, 167,

645
Microcode, 624-625, 643, 741-743
Microcomputer

Altair, 130
Apple II, 131-134, 136, 138, 275,

352, 725, 761, 770, 777-778
Atari 400 & 800, 133, 138, 772-773
Commodore-64, 138, 145, 352,

774-777
definition of, 126-127
Exidy Sorcerer, 134
H8, 133
IBM PC, 137, 144,275, 352, 761
IMSAI, 130
Lisa, 138
Macintosh, 138, 145, 174, 352, 353,

772
MARK-8, 129
MTU-130, 134, 702, 771

Microcomputer (continued)
PET, 131-134, 777
S-100 bus computers, 131-133, 137,

144, 275, 777
1'1 99/4, 133, 138
Tandy 2000, 352
TRS-80, 131-134, 136,777
VIC-20, 138

Microprocessor, definition of, 126-127
Bellmac-32, 135
COSMAC, 129
IMP-16, 129, 134
LSI-11, 135, 151
Microflame, 135
Micro Nova, 135
PACE, 129, 134
SCMP, 129
2-80, 130, 133-134, 137-138, 645
2-8000, 135
1600, 129
16032, 135, 174,744
2650, 129
4004, 127-128
6501, 129
6502,129, 131, 133, 134, l37, 138,

152-159, 163-164, 257-259,
264, 275, 298-304, 314, 346,
418, 420, 426, 619, 645-646,
648, 653-657, 662-666,
702-703, 762-764, 767,
771-772, 777

65C02, 154, 157
6503, 302
6512, 153
6800, 129, 134, 163-164, 736, 767
6809, 722-723
68000, l35, 138, 159-174,259,265,

275, 314, 320, 352, 427,
645-646, 667-672, 703, 722,
744

68008, 160
68010, 160
68020, 160, 167, 174
8008, 128-129
8039, 726
8080, 129, 130, 151, 160
8086, 135, 137, 167,645
8088, 137
80286, 744
9900, 133, 134

Microprocessors, description of, 40-41,
152-174

MIDI, 312-316, 711, 725-726, 789
Mixing, sound, 117
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Modem, 147
Modificarion

sound, 43-74
specrrum, 49-68, 566-568

Modularion index, 95-97, 467, 471
Modularor, balanced, 65-68
Modulator, ring, 65-68
Module

insrrument, 272, 285-289
voltage controlled, 75-78, 8L(-94

Monitor, software, 148
color, 353
raster, 342, 349-351
X-Y graphic, 341-342

Monotonicity. See Linearity, DAC
Mouse, 355
Multiplexing

ADC, 269
address on 4116, 607-608
analog, 254
DAC, 225, 252-256, 276
digital module, 604-605, 607,

612-615
Multiplication

hardware, 169, 615-616
software, 159, 650-651, 657-658

Multiplier
analog. See Gilbert multiplier
rate, 593-594

Multiplying DAC, 226, 249-250
Muse, 335-357
Music, definition of, 4
Music languages

C-music, 743-755
MUSIC V, 122-123, 673, 743
MUSIC-II, 743
MUSIC-360, 743
NOTRAN, 121-123, 672-699
representation, horizontal/vertical, 687

Negative impedance converter, 405-406
Noise generator

analog synthesizer module, 93
generation, digital, 531-536
interpolation, 421, 427-429, 466
pink, 93, 331-332
quantizarion, 111-112, 369-370,

601-603
unwanted analog, 289, 396, 401, 405
unwanted digital, 288-289, 410
white, definition of, 30

Nonlinear amplifier, 48-54
synthesis. See Synthesis techniques,

nonlinear

Notebender T". See Keyboard, three
dimensional

NOTRAN music language. See Music
languages, NOTRAN

Nyquist's theorem, 111

Offset voltage
analog switch, 237, 239
op-amp, 204, 243, 250

Operating system
CP/M, 133, 136, 137, 144
MS-DOS, 137
OS-9, 174
UNIX, 138, 174, 645, 744-746

Operational amplifier. See Amplifier,
operational

Organ, Hammond electronic, 36
Oscillator

digital, 530-531, 590-598, 604-610
sawtooth, digital, 418-419
sawtooth-pulse, 182-183, 189-192, 194
quadrature, 530-531, 557
sinewave, digital, 530
triangle-square, 182-183
volrage controlled, 84-87, 181-197,

598-599
Oscilloscope, 9
Overlap, in use of Fourier transform,

460-461, 564-565
Overtone. See Harmonic

Parameter
NOTRAN language, 689-691
sound, 8-31
variation, 31-34

Patching
automatic, 277-284, 721
definition, 78-80
fixed, 284-290
manual, 271-273
pinboard matrix, 78-79

Percussive sound synthesis, 527-541,
676-679

types of, 527-528
Phase cancellation mulriplier, 616-618

locked loop, 597-598
parameter, 20
response, definition, 54-55

of all-pass filter, 495-499
of low-pass filter, 392-393

Phosphor, display, 342
PipeJining, 129, 609-610
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Pitch, musical, 14-15
petception, 11-13, 578-582
tracking, 71, 578-588

Pole count, filtet, 219, 391
Polyphony, definition, 291-292
Portamento, 92
Ptessure, music keyboard, 298, 315,

317-320, 716
Printets, computer, 145-147

Q control, 217,491
definition, 56, 88-90, 387-388

Quantization error, 111-112
Quefrency, 577, 587-588
Queue, data, 299-302, 311-312

RAM
definirion of, 139-140
dynamic, 136-137, 781-783
history. See Memory, history
sratic, 136

Random number generator, 531-535
Rasrer scan display, 349-353
Raster unit, graphic display, 340-341
RCA synthesizer, 37-38
Record, discrete Fourier transform,

436-438, 458-461, 564-565
Refresh

display, 345-346, 350-351
dynamic RAM, 136, 607
multiplexed DAC, 257, 725

Relay, mechanical, 281
Resolution, binary arithmetic, 648

ADC, 259, 261
DAC, 221-223
display, 349-353
time-frequency, 548-550

Reverberation
digital,508-512
electronic, 68-69, 120
using tape recorder, 46-47

Reverberator
all-pass, 511-512
delay line, 508-512

Rhythm display, 362-364
Ribbon controller, 321-323
ROM, definition, 139

Sallen and key filter. See Filter, active
Sample

definition of, 106
playback, 114-115, 701-703

Sample (continued)
rate conversion, 518-525

definition of, 106
envelope, 641, 674
selection, 109-110, 384-385,744
variable, 601, 734, 769

storage, 111, 114-116, 699-700, 744
Sample-and-hold

analog synthesizer module, 93,
326-328

audio ADC, 414-415
audio DAC, 379-381
DAC deglitcher. See Glitch, DAC
errors, 412-413

Scaling, binary in synthesizers, 178
Sequencer module, 92-93, 104, 125
Settling time, 224-225
Sequence generation

analog, 326-333
digital, 333-337, 531-535

Sideband, 97
Signal flow graph, 487-489

rouring, 271-284
Signal-to-noise ratio of audio DACs,

111-113, 367-377
Sine

mathematical definition of, 18-20
mechanical definition of, 20-21

Slew limiting distortion, 379-381
of sample-and-hold, 329-330, 379-381

Software
microcomputer system, 148-151
music synthesis, 121-124, 639-645,

672-699, 743-755
Sonogram. See Sound spectrogram
Sound generator integrated circuits

Atari, 772-773
AY-3-891O, 766
Commodore SID, 774-777
SN76477, 765-766

Sound spectrogram, 544-552
Spectrum analysis

definition of, 27-31
modification. See Modification,

spectrum
phase-derivitive, 461-465
plotting methods, 544-548
shih, 64-68, 513-515
tracking, 72, 569-577
See also Formant tracking

Speed transposition
digitized sound, 518-525
tape recorder, 45-46

Standards, analog synthesizer, 177-179
Statistics, 328-332, 535-536
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Status, MIDI, 314-315
Stochastic music, 330-332
Storage, mass, 140-143, 699-700
Sustain. See Envelope, amplitude
Switch, analog, 236-242
"Swirched-On Bach," 40
Synthesis goals, 408
Synthesis techniques

direct computation of, 418-424
FM, 94-100, 465-467, 471
Fourier transform, 458-465
nonlinear waveshaping, 48-54, 120,

473-480
percussive sound, 527-541
speech, 357-360
VOSIM, 468-473
waverable scanning, 424-435, 762-764

Synthesizer, analog. See Volrage-controlled
synthesizer

commercial product, Fairlighr eMI,
736-738

Kurzweil 250, 733-735
Rhodes Chroma, 715-729
Synclavier, 731-732

computer-controlled, 178-180,
271-290, 589-637, 712-729

hybrid, 712-729
types of, 707-710
voice modular, 180, 625-637
voltage-controlled. See Voltage-

controlled synthesizer

Table lookup, 118,424-429, 522-524,
674

interpolation, 421-423
Tape recorder

multitrack, 47-48, 102-103,275
use i~ synthesis, 37, 43-48

Teleharmonium, 35-36
Theremin, 37
Timbre, 21-31
Timer, interval. See Clock, real-time
Top-octave generator, 592
Track-and-ground, 381-383
Trackball, 355
Tracking error, 412-413
Transconductance gain block, 199-200
Tremolo. See Amplitude modulation
Trigger, music keyboard, 293-294
Tuning, automatic, 102, 715, 723, 729
Tuning systems, 14-15

Vector generator, 347-349
Vibrato, 32-70. See alJo Frequency

modulation
Vibrator, nonlinear simularion, ') 37-541
Voice module, hybrid, 627-637, 717-722
Voiceprint, 548
Voltage control, limitations of, 101-103
Voltage-controlled oscillator. See

Oscillator, voltage-controlled
Voltage-controlled synthesizer, 39-40,

75-100, 177-220
VOSIM. See Synthesis techniques, VOSIM

Wah-wah effecr, 48, 63
Waveform computation, 115-119

drawing, 9-10, 36-37
Waveshaper, 192-193, 195, 598-604
Wheel, pitch, 315, 318-319
White noise. See Noise, white
Window, spectral analysis, 560-564,

569-570



Hal Chamberlin 
By Sonikmatter dot com on 2002-01-30  

Interview by Brian Cowell. 

Way back in 1980 a book titled "Musical Applications of Microprocessors" 
became the companion for many Engineers designing musical instruments in the 
20th century. In 1985, the book was expanded from its original 660 pages to a 
whooping big 800-odd pages. Till this day, the book (albeit outdated) is still seen 
as a source of learning for many students in this field. The man who wrote that 
book is Hal Chamberlin. 

For the last 16 years, Hal has been employed by Kurzweil (now known as 
Kurzweil Music Systems). There, he has been quietly working away on both 
hardware and software for the many products that Kurzweil make. 

Sonikmatter caught up with Hal (at the Young Chang factory in Korea) while he 
was finishing up on his design of the "remote control" for the new Kurzweil KSP8 
Effects Module. Here is what he had to say: 

SONIK : What has been your employment history? 

HAL : Employment history is as follows: 

• 1990 - Now: Young Chang Research Institute (Kurzweil) 

Senior Systems Engineer  

• 1986 - 1990: Kurzweil Music Systems 

Senior Engineer  

• 1985 - 1986: Worked as an Independent Consultant for Key Concepts, 
MTU, and Kurzweil  

• 1979 - 1985: Micro Technology Unlimited (MTU) 

VP of Engineering. (Also owned 50% of the company)  

• 1976 - 1979: Hendrix Electronics 

Design Engineer 

SONIK : Where did you do your schooling, and what degree's did you achieve? 

HAL : North Carolina State University: 1973 - Master of Science: 

1973 - Master of Science: Major - Electrical Engineering 



(Communication) Minor - Computer Science 1970 - BS Electrical 
Engineering 

SONIK : What do you do at Kurzweil R&D on a "day to day" basis? 

HAL : Before going to Korea full time about three years ago, I was listed as a 
"Senior Systems Engineer". At the time that title was assigned (somewhere 
around 1993). There was no standard list of titles and job descriptions so all of the 
senior people were just asked to suggest a title they felt was descriptive.  

Basically I did product development - about 2/3 hardware and 1/3 software.  

Analog hardware is my specialty but half of my board designs also include a 
microprocessor and digital circuitry. And if a micro is involved, I'm usually the 
one to program it. Often I'm called upon to help in systems integration and solve 
puzzling system problems. Perhaps the toughest such problems are the dreaded 
"spontaneous hard reset" which is memory loss at power-down or power-up, and 
audio hum. While the former usually has a "magic bullet" solution, the latter often 
is a tug-of-war with radio-frequency emission and safety regulations. 

Around 1992 I began visiting the Young Chang piano factory in Inchon, South 
Korea. At first it was very short trips of up to 2 weeks to oversee manufacturing 
startup of a new product or to solve a specific problem. 

Later, from about '95 - '98, it became a 3 months on 3 months off arrangement as 
they began to embrace computerized automatic testing of boards and complete 
units.  

By February of '98, precisely on my 50th birthday, I left Waltham for a 2-year 
residency that was renewed last year. I still do product development, about half 
the time, but now must also maintain the test systems and program them for new 
products. 

A typical day starts with a bike ride to the factory complex at 6:55AM, stopping 
at the company weight room (where all the piano movers train) for a 30-minute 
workout, then on to the Development Office where we are expected to be at our 
desks promptly at 8:00. After receiving e-mailed questions and issues for the day 
from Waltham (which has just finished its workday), I conduct an hour "class" for 
some new engineering recruits.  

The remainder of the morning is spent chasing down answers to the e-mail and 
often solving manufacturing problems like a sudden increase in failures of a 
particular production test. 

Lunch is at the factory cafeteria from 12:00-1:00 then the afternoon is, hopefully, 
free to work on whatever my current development project(s) is. 

Presently that is the remote front panel for the KSP8 and up until a couple of 



weeks ago, the new "target=" _blank?V Series" of grand pianos featuring a PC2 
sound engine. 

Towards the end of the day I compose a sort of newsletter ("Factory Facts"), 
which contains answers and solutions to the morning's e-mail plus a list of 
questions and issues from the factory. It arrives in Waltham about the time people 
there start trickling in. I usually leave about 7:00PM but often much later for the 
20-minute bike ride back to the apartment the factory has provided. 

SONIK : How have you found the food in Korea? 

HAL : I'm basically an omnivorous person and so am willing to try most anything 
that's presented. Generally I find that the food is excellent and even the most 
humble of restaurants serve tasty meals. The food is definitely spicy and it's not 
unusual for a five-course meal to be completely red with red pepper. Kimche is 
really very good after a short acclimatization period. 

Fish and mollusks of all kinds are the primary protein sources although chicken 
and more recently pork and beef are becoming common. Koreans really don't 
distinguish among breakfast, lunch and dinner - hot fish soup for breakfast is as 
likely as boiled barley might be for dinner. The food is largely fat-free and 
healthful if one steers clear of the 3-layer pork, fried chicken in bars, and 
American pizza chains that are invading the country.  

Skim milk, however, is unheard of. Koreans are really into whole foods - whole 
fish in soup, a whole chicken boiled in your bowl, and whole shrimp inside a 
thick breading among others.  

However I do miss some staples that are difficult or expensive to get here - peanut 
butter must be imported and honey, while domestic, is quite expensive.  

SONIK : When you look at your career to date; what is it that you think stands out 
the most? 

HAL : For sure my 1980 "Musical Applications of Microprocessors" book is the 
most significant accomplishment and is directly responsible for where my career 
has headed since then. Actually the impetus to write it came from a friend whom 
I'd only met by mail.  

He had written a couple of technical books himself and suggested I contact his 
publisher. At its peak it sold about 200 copies per month, which amounted to a 
nice end-of-year bonus for a while. It is long out of print now after being bounced 
among 3 different publishers so the rights have reverted back. I still get occasional 
e-mail requests for photocopies. 

But even before that I believe I had a significant role in the development of East 
coast amateur computing in the 70's and especially musical applications of the 
same. This through (MTU), editing "The Computer Hobbyist" magazine/



newsletter, writing numerous articles in other publications, and delivering quite a 
few lectures and demonstrations to amateur computer clubs. 

More recently I hope that some of my more innovative product design efforts at 
Kurzweil like the MidiBoard, and ExpressionMate and contributions to others 
have been a source of inspiration, or at least satisfaction to many. And I hope to 
expand that role in the future when my time is up here in Korea. 

Of course there are some regrets and "might have beens" too.  

What if I had opted to go full time with IBM instead of partnering with Dave Cox 
to form Technology Unlimited in 1971?  

Or accepted that interview with Wayne Green for editor of a "new computer 
magazine" which turned out to be Byte?  

I guess that's what makes life so interesting. 

SONIK : How did you become involved with the original Kurzweil Music 
Systems? 

HAL : Actually that is a pretty interesting story. As you know, I had written 
"Musical Applications of Microprocessors" which really covered just about 
everything in the world of synthesis at that time. Included was a description of 
and plans for a velocity sensitive computer interfaceable music keyboard.  

Meanwhile, a small group in Boston, called Key Concepts, had developed a 
keyboard instrument similar to a clavichord but with a mechanism in each key 
that would tighten or loosen its string as the key was slid forward or backward. It 
was an amplified acoustic instrument that worked pretty well but they knew that if 
the idea was to have any commercial future, it had to involve an electronic 
keyboard and be connected to a synthesizer. 

Sometime in 1983, I believe, one of the team members happened to get a copy of 
my book and upon reading the chapter about keyboards was moved to contact me 
through the publisher. I was offered a free trip to Boston (I was then working at 
MTU, in North Carolina) to see if I might be interested in working on a "radically 
new kind of keyboard". I took the bait and was very intrigued with the concept 
and excited as well at the prospect of really getting away from computers per se' 
for awhile and into instrument design.  

Anyway, in a little over a year of after-hours work, a 61-key prototype with 
sliding, polyphonic pressure sensitive keys was working quite well. It was 
attached to a Rhodes Chroma via its Apple-II interface. A slight software mod 
allowed the Chroma to respond to the poly-pitchbend, poly-pressure signals 
produced. Known as the "Notebender Keyboard", it was shown publicly a couple 
of times and loaned to the Berklee School of Music for a while. Lyle Mays was 



invited to try it for an afternoon and did some amazing stuff. 

The next step of course is arranging for productization, manufacturing, and 
marketing. After "scouring the world", Key Concepts quickly concluded that the 
Notebender was just a bit too radical for immediate market acceptance and 
besides, the Chroma seemed to be the only instrument that could use its signals. 
Then there was the problem of raising capital to pay for detailed design, tooling, 
beta prototypes, and so forth.  

So the sliding keys were backburnered in favor of adapting the unique pressure 
sensor I'd developed to a traditional wood keyboard that was already tooled and 
readily available from Pratt-Read. Instead of the Apple-II synth interface, which 
nobody else had adopted, we tried out the new "Musical Instrument Digital 
Interface" (MIDI), which, if nothing else, was simple to implement. While it 
didn't have a Poly Pitchbend command, its Poly Pressure command seemed OK 
for the task at hand. 

The result after a few more months was two "MIDIBoard" prototypes, which Key 
Concepts again shopped around to major synth manufacturers at the time (New 
England Digital, Fairlight, [what a pain it was sending their unit to Australia], and 
Kurzweil). All were interested this time but Kurzweil was right in town and was 
willing to sign a development contract with follow-on royalties. I soon found 
myself locked in a room at Kurzweil working frantically on the software to get a 
couple of units ready for the 1985 NAMM show.  

Concurrent with all this I had separated from MTU and after about a year of 
"consulting" decided to apply for a position at Kurzweil. Following a "grueling" 
interview, which consisted mostly of lunch with the top engineers, I was accepted 
and soon moved to Waltham. Besides MIDIBoard manufacturing support, my 
first assignment was to write a sound editor, on an Apple-II computer, for the just 
released K150 additive synth.  

SONIK : Can you tell us about the "cheesy" advert you appeared in the mid 80's 
that had the caption like: "our product is so great because it was designed by Hal 
Chamberlin"? 

HAL : Well, they say that 80% of advertising is getting people to remember the 
ad. So if you've remembered it for 16 years, I guess it was successful in that 
respect. On the other hand, you don't seem to remember the company or the 
product. 

The ad in question was actually run by MTU, whom I mentioned previously as 
my former company before joining Kurzweil, after I had left. The product was 
DigiSound-16, one of the very first if not the first standard product audio A-to-D 
and D-to-A converters for use with mini- and personal computers.  

Back in 1985 a major part of any serious software synthesis project was the 



conversion subsystem, especially if one wanted to stream data to or from the disk 
or other storage media. DS-16's universal (one would call it a "parallel port" 
nowadays) interface, and built-in 32K FIFO buffers are what set it apart. It was 
the last product I did at MTU and their business is still based on a long line of 
successor products and highly specialized software for the broadcasting industry. 

Anyway, I participated in a long photo session for the manual cover and computer 
magazine advertising and quite a lot of film was shot. Naturally the terms of 
departure allowed MTU free use of all materials I had developed including those 
photos. Why my former partner chose that particular shot (which had 
exceptionally bad lighting) I don't know. As for the tagline, I disavow any 
involvement. 

SONIK : At the time of writing your book, did you ever envisage where synths 
were going, and did they? 

HAL : For the first edition (1977-80) I was focusing almost completely on 
individual experimentation, having fun while learning, building your own 
synthesizer, etc. in the best Electronotes Newsletter tradition. I was not 
particularly aware of a synthesizer industry within the reach of poor students other 
than kits from companies like Paia and Emu. Essentially everything I saw that 
was being called a synthesizer was being sold to universities and professionals. 

The landscape and my experience were much different in 1984-1985 when the 
second edition was being prepared. Emu had really grown and New England 
Digital, Ensoniq, and of course the Japanese companies had quite a variety of 
synthesizers, keyboard and otherwise, promoted and priced for average 
individuals. And of course there was my direct experience with Kurzweil doing 
the Midiboard project. Accordingly a new chapter was created just to cover some 
representative commercially available synthesizers. Some really low cost 
technology was coming out then as well, such as the original Casio portables and 
the SID chip used in Commodore 64s so another new chapter about the cost-
cutting tricks they used was added as well. 

But to answer the question, the last added chapter dealt directly with 
technological progress and indeed made some "bold" 10-year predictions about 
electronic components and synthesizers. The component technology predictions 
were mostly correct except for the one about DRAMs larger than 4M having to be 
made aboard the space shuttle to get the defect rate down. I also pretty much 
missed the dramatic effect that on-chip cache memory would have on future 
microprocessor speed.  

For synthesis, the prediction that sample-based instruments would be less than 
$1000 certainly held up as did the one that PC sound cards using sampling would 
become standard. I was a little off in predicting that pro level synths would 
separate into sound modules and controllers and that mainstream controllers 



would become a lot more sophisticated and expressive. Although quite a variety 
of alternate controllers have been introduced, we're still using piano keyboards 
with mono pressure (sometimes) and 2 wheels for the vast majority of instruments 
with no signs of that changing.  

Another prediction that's fallen short was that MIDI would be replaced by a LAN 
type technology. A number of proposals have been offered and tried during the 
intervening 16 years but we're still far from any general replacement for MIDI. 
One accurate prediction though was that all-digital studios would become 
common. 

For the next 10 years? Well, by 2012 MIDI will be replaced, synthesizers will 
become just virtual black boxes buried in the software architecture of the digital 
studio, and alternate controllers and multi-dimensional keyboards will become 
mainstream. 

SONIK : Will you be writing another book in the future Hal? 

HAL : I really get asked that a lot. The short answer is probably no, not as long as 
I'm working at Young Chang/Kurzweil because its quite difficult to get enough 
quiet time to do any really thoughtful writing.  

The first edition of MAM took about 2-1/2 years of 3 hours per night and 8-12 
hours on weekends but then I was just a common engineer at a fairly large 
company designing high-resolution display monitors at the time. The update in 
1985 took about a year while I was independent. The current schedule, which 
seems to keep getting tighter, just doesn't allow the necessary time to even 
contemplate another book. 

However, if I hit the lottery and retired or began working for the government, I 
don't think I'd try a comprehensive book again -- the field has simply grown too 
big and diverse for that now.  

Actually the most enduring interest over the years has been in the sections on 
musical controllers like keyboards and ribbons. Even more so, the non-
mathematical treatment of fast Fourier transforms and digital signal processing 
continues to be popular. So perhaps a title like "Musical Applications of Sensors" 
or "Digital Signal Processing without the Mathaches" would be within my 
knowledge sphere and do well in today's market. 

SONIK : How do you find it now at Kurzweil as against working for the original 
Kurzweil Music Systems in the 80's? 

HAL : All companies must mature as they age and Kurzweil is no exception. I 
read somewhere that a large majority of Fortune 500 companies don't last beyond 
20 years. Not that Kurzweil is a Fortune 500 company but we are just months 
away from that 20 year mark.  



In the beginning the company was supported by venture capital money and the 
overriding concern was to develop the K250 to the highest level allowed by the 
technology of the time essentially regardless of cost and get it shown. Although I 
hadn't yet joined, the fuel to power 20-hour days leading up to the first NAMM 
showing came not from stock options but from the thrill of creating something 
both groundbreaking and far beyond what had been achieved by others at that 
point. 

When I did join about 4 years later, it was time to get to work designing products 
that were profitable AND had a large enough market to make back the vast 
deficits rung up earlier. The Arnold chip and K1000 series contributed the most to 
this effort in the late 80s. I maintained a wall mural stock chart and it was thrilling 
to see the price creep up gradually before and just after the 1000PX was shown 
and began production.  

Certainly the months surrounding the bankruptcy and sale to Young Chang in 
1990 were a low point but soon afterward we were running on adrenaline again as 
the K2000 was coming together. That was many years ago though and I'll have to 
admit that things had gotten to be rather routine afterwards as we crunched out 
product after product to keep manufacturing busy and sales up.  

Recently however the development, launch, and initial acclaim of the KSP8 is 
feeling like old times again even from halfway around the planet. 

SONIK : Do you think the music consumer market failed to see the idea behind 
the Kurzweil EXPRESSIONMATE controller? 

HAL : I have to give credit for the original ExpressionMate idea to Chris 
Martirano of Kurzweil's marketing department. Shortly after the K2500 
reintroduced long ribbons to the synth market, he suggested I take that design and 
incorporate it into a standalone device that would let anyone add long ribbon 
functionality to their own synth setup. Add a few jacks for extra pedals and a 
breath controller and put in an arpeggiator and we'd have quick new product that 
could build on the ribbon technology I'd developed with our Korean membrane 
switch vendor. 

Once I'd started programming the little 6502 derivative processor inside and 
discovered that it was possible to play notes right on the ribbon then bend or 
modulate them plus some other things the K2500 didn't do, the project took on a 
life of its own. Which made it late, but great. Now it's really a performance 
instrument it its own right with three arpeggiators and an extensive MIDI 
processing, routing, and merging section for its two MIDI ins and outs. 

I think its best feature is the note playing capability. Either 1/3 or the whole length 
is virtually divided into 13, 37, or "scale length" little zones. Each zone is 
associated with a note, either along a straight ahead chromatic scale or 15 other 



standard scales or 8 user specified scales.  

Notes latched in an arpeggiator is another option. When a zone is touched, the 
corresponding note-on is generated. If contact is maintained and the player's 
finger moves away from the initial contact point, a MIDI controller, like pitch 
bend or modulation, is activated to modify the note. A different mode 
continuously tracks finger movement through the virtual zones and plays their 
notes as it passes through thus producing a variety of strumming and arpeggiation 
effects. And one can have two or even three of these going on at once for those 
with 3 hands. 

Likely the biggest problem is that the feature set outgrew the user interface. There 
are 135 general parameters and 16 arpeggiator parameters nearly all of which may 
have different values in the 3 layers. That plus 21 global parameters, most of 
which specify signal routing, is just too much to communicate via a 2x20 
character display, a few LEDs, and 10 programming buttons.  

A PC based editor would certainly help and the software "hooks" are there but 
Windows software development is something we're really lacking in.  

As for marketing, I understand its failure to become a hit product.  

Jeff Cordero did a great job programming the "factory" setups but of necessity 
they had to be generalized which means that a bit of programming is necessary for 
any particular store display configuration. And its a fact of life now that if a new 
instrument doesn't do great things, right out of the box with little initial skill 
required, then its going to miss 90% of the market right off the bat. Perhaps if it 
had a built-in synth too, like the Roland D-Beam and Alesis " "air" controllers, it 
would have done better in stores.  

Still I've some great ideas for V2! 

SONIK : What is the story with the Kurzweil MASS chip? 

HAL : The MASS chip (Multimedia Advanced Sample playback System I 
believe) was developed in 1994-95 primarily to address the developing high-end 
sound card market. It was marketed to other manufacturers for use in their own 
non-keyboard products. If you remember, at that time a mainstream PC had a 486 
processor so software synthesis was just a glimmer in a few programmers' eyes. 
And the typical sound card had a Yamaha FM chip or if one was lucky, an 
Ensoniq "wavetable" chip with a half-meg General Midi ROM. Unfortunately 
MASS never made it into big time sound cards or got integrated into 
motherboards as was hoped but the few products that did incorporate it were 
highly regarded. 

SONIK : What standard DSP chips that are currently available, do you think 
would be worth looking at? (eg Motorola 56000, Coldfire etc.) 



HAL : I really haven't kept up with the general purpose DSP chip device offerings 
as much as I'd like. Not too long ago a garden variety DSP would cost upwards of 
$100 and to take advantage of its high-speed internal ROM, one had to commit to 
a mask and 1,000 chips using it. Now prices are comparable to ordinary 
microprocessors and on-chip Flash ROM, and significant RAM makes even low 
volume and single's usage practical. 

The Motorola 56000 has always been a music industry favorite fixed-point 
architecture for high quality audio processing and its cost-performance has 
continued to be an industry leader. Its 24-bit data word length and 56-bit ALU is a 
perfect match to the increasingly common 24-bit audio formats. If one is 
comfortable programming fixed-point binary math, requires professional quality 
sound, and has cost constraints to deal with, it can't be beat. 

Texas Instruments' 32XXX line is probably the industry's broadest. At the lower 
end of the line are low cost 16-bit fixed-point devices selling for just a few 
dollars. These are an excellent choice for speech processing, MP3 reconstruction, 
and other audio applications that need not be pro level. At the upper end are the 
32-bit floating-point models that are capable of high quality and can be 
programmed effectively in C - but at a cost in money and power consumption. 

The Motorola Coldfire is actually a general-purpose embedded microprocessor 
instead of a DSP chip. It is intended as a high performance upgrade for the 
68000/20/40 architecture. Since it's almost completely compatible with that 
architecture at the assembly language level, it's a good processor that's a breath of 
fresh air in this era of "reduced instruction set" CPUs. 

SONIK : Did you do much work with VAST? 

HAL : I really haven't been involved in the development or programming of 
VAST at all. I guess the closest I got was designing the logic of the data path 
portion of the Hobbes chip, which executes the VAST algorithms for all of the 
K2XXX instruments. I have been much more involved with the infrastructure of 
the instruments - keyboard and player control scanners, power supplies, power 
amplifiers (for the digital pianos) and CPU boards for some products. 

SONIK : Were you surprised at how successful the SP-series stage pianos have 
been? 

HAL : Yes, quite a bit. The product idea actually originated in Korea by J.W.
Chae, where he is a teacher, market researcher, and soundware engineer.  

Initially there was very little marketing interest in the US though because they felt 
that it wouldn't sell. Nevertheless, the Korean management asked me to start 
development and when it was completed, sharpened their pencils to where US 
Marketing couldn't refuse. Actually the sales surge from the SP series came at a 
very good time when the market for higher-end instruments was down 



substantially. 

SONIK : The KSP8 has turned out to be a lot more than "KDFX in a box"; what 
is it do you think that users will enjoy when using it? 

HAL : The KSP8 is one of those products that looks very different depending on 
one's approach and attitude toward it.  

If you're a straight-laced recording engineer looking for a subtle, accurate 
ambience to complement a classical recording, you'll think the KSP8 engineers 
had read your mind when they designed the numerous finely crafted "clean" 
reverbs that are available. If you approach it as a tool for enhancing and mixing 
more contemporary material, you'll find a wealth of delays, gates, EQs, cabinet 
simulators, and distortions plus combinations of these, many of which are new. 
And, although its not my bag, I've heard that its ability to create a space in 5.1 
surround sound and place an actor in it using the joystick of the remote is just 
astounding. 

The way I approach it though is as a synthesizer. Not a music synthesizer with a 
keyboard but as a SOUND synthesizer. This is way beyond effects processing - its 
truly sound creation from source material that may be little more than random 
fluctuations. Many of the new algorithms, such as Degen-Regen, Super Shaper, 
Frequency Offset (like the old Bode frequency shifter box), Wacked Pitch LFO, 
Chaos and the new chaotic LFOs are reminiscent of how analog synthesis was 
before Moog and Carlos - just sound, marvelous sound, never before heard sound 
- without a keyboard in sight. Using the remote's 8 knobs and joystick to 
interactively control the parameters of some of these wild, feedback-based 
algorithms is loads of fun - just be sure your hard disk recorder is rolling. 

Simply put, the KSP8 is probably the most versatile piece of gear you could buy 
right now. 

SONIK : Have you ever put forward names for any of the products? 

HAL : Once an engineering project gets past a couple of pages and the back of an 
envelope, one has to name a folder to put the stuff into. Usually that changes later 
but sometimes the names stick. Probably the best known project that kept its 
initial name was the Midiboard - after all, what else would you call it, especially 
in 1985? - But there were others. 

The most internally infamous name of mine was the "RG" series of low-cost 
digital pianos that came out after the Mark-5 and Mark-10 high-end units around 
1993-94. I had just started spending significant time in Korea and my manager 
there presented a challenge to design the least expensive piano possible that had 
the same Kurzweil sound quality but dispensed with all of the expensive features. 
He probably had in mind, having an acoustic piano marketing background, 
something with a power cord and perhaps a power switch and that's all. After it 



was clear he was serious, I named my design folders "Rotgut Piano". This soon 
morphed into "RG Piano" in order to keep some sense of dignity when discussing 
the project. Later as the "100" and "200" models neared completion and entered 
Marketing's radar screen, they decided to just keep the names never asking what 
the "RG" stood for. Eventually though they needed an answer for that inevitable 
question and came up with "Real Grand". 

One that didn't make it interestingly enough was "RibbonMate" which is what is 
still on all of the design folders and software source files. Seeing as how it grew 
from the original concept, Marketing decided that "ExpressionMate" was more 
suitable. There's another product name in the works which was arrived at much 
more systematically and for which I earned a bottle of Korea's finest traditional 
liquor, but I can't talk about it yet. 

SONIK : I hear you still sell Kurzweil K150's? 

HAL : Yes, but only around Christmas time when I'm in the 'States' for a few 
days. 

- US$250 for an "old style" unit with switching power supply. 

- US$350 for a new style with linear power supply and green display. 

Ed note: You can email him at: Hal Chamberlin. 

SONIK : Have you looked at some of the other keyboards/modules that used 
additive synthesis? 

HAL : Besides the Kurzweil K150, the only other additive synthesis instrument 
I've actually used is the Kawai Kawai K5m. It too is quite old and really doesn't 
do classical additive synthesis being that partials are locked together in 4 groups 
with a common amplitude envelope and must be harmonically related.  

The later K5000 was an incremental improvement but I haven't tried it. 

I've also heard of, if not heard, several others including early New England 
Digital, Synergy, the "GDS" (General Development System), and the Technos 
Axcel. The latter had what amounted to a very large, lighted, but coarse resolution 
touchscreen where one could "draw" spectra in real time or interact with analyzed 
spectra while a sound was playing. 

I don't know of any recent hardware that uses primarily additive synthesis other 
than some Hammond B3 organ emulation modules by Voce' and others.  

Perhaps when the current retro analog craze runs out of steam and processing 
power cheapens even further we'll see a resurgence of interest in additive 
techniques. 



Naturally there is a lot of software around that does additive synthesis and 
"resynthesis" using fast Fourier transforms but I have not tried any of it. Also a 
web search reveals that additive synthesis is still a popular thesis research topic, 
which bodes well for the future. 

SONIK : What forms of synthesis would you like to see being explored more? 

HAL : I think that pure, or nearly so, additive synthesis needs to be revisited 
commercially. When the K150, K5, and other early models were designed, 256K 
RAM and 8MHz 286 processors were the norm in computers. Now that 
processors are 200+ times faster and memory is 500 to 1,000 times cheaper, one 
should be able to make an interesting and saleable additive instrument. 

Physical modeling too has endless potential but mostly in directions different 
from what Yamaha was pursuing. Perhaps just "modeling" would be a better term 
because the most interesting models are likely not physical at all. What made FM 
synthesis, which after all is a model albeit a simple one, so interesting was the 
surprises one would encounter when working with it. 

Additive, which is really modeling too, can sometimes be surprising as well, 
especially when dealing with it through meta controls rather than one partial at a 
time. No doubt there are other models with the surprise and richness of FM 
combined with the generality of additive just waiting to be discovered. 

Nothing, however, is going to replace sampling for mass market instruments 
because, given cheap memory, it is simply the most cost-effective way to provide 
a lot of realistic instrument sounds. 

SONIK : What is your view of the "hardware versus software" debate? 

HAL : Hmmm, that's a tough one because there are so many different ways to 
look at it. Of course at their heart, the digital computations, "hardware" and 
"software" techniques are identical. Any result achieved by one could, in theory, 
be achieved by the other. I'll try to touch on a few of the issues but after just 5 
minutes of thinking about them, its clear that one could write a good sized book 
on the subject - that would be out of date in a year. 

Anyway, consider the kind of PC or Mac software-based system common today. 

One has a large number of essentially independent hardware subsystems like the 
CPU, main memory controller, cache controller, disk drive(s), A-to-D and D-to-A 
converters, perhaps a MIDI interface, and so on, all made by different 
manufacturers. Even more numerous are scores of software components, 
including those devoted to synthesis and sound processing, that were all written 
independently. The key is that each of these components, both hardware and 
software, takes a variable amount of time to do its task depending on 
circumstance and what other components are doing. There can be external 



influences too like interrupts from the network interface or mouse movements or 
something that triggers a window redraw. The operating system coordinates all 
this to produce an accurate final result but the path and time taken to do so can 
vary tremendously. 

An analogy to the software system might be a construction site with individual 
workers, trucks and other equipment, and outside forces like deliveries and 
weather, all working independently. At the same time they are seriously 
interdependent for getting materials, sequencing tasks, and so forth. The time to 
finish the building is statistical with an average and (typically large) variance. 

One way that software synthesis deals with the uncertainty is through the use of 
buffers between components. If an upstream component is held up, for example, it 
got interrupted for a screen redraw, the buffer following it can still supply data to 
the next component downstream. If that buffer should run out, then the next 
buffer in the chain keeps the data flowing. If all of the buffers run out, then one 
hears a click or program interruption. Larger buffers allow for greater variance in 
processing times before defects are heard but at the expense of a greater delay 
(latency) through the sequence of steps.  

Another way to cut down on variance in a processing step is to utilize only a 
fraction of its theoretical power. A synthesis routine for example might have data 
structures defined for 100 voices. For all to be active simultaneously, it might 
need, say, 70% of available CPU cycles and 80% of available memory access 
bandwidth. Almost any event in the system would disrupt this for a time thus 
requiring the following buffer to take over and after the disruption, the buffer 
would refill slowly. However if only 50 were playing, larger disruptions could be 
tolerated and equally important, the buffer would more quickly refill afterward.  

The performance of software-based systems can be improved most effectively by 
using an operating system specifically designed for audio processing instead of a 
general purpose one like Linux or Mac OS or Windows XXX. Since that's not an 
option at the moment, elimination of extraneous tasks (you don't really need a 
stock ticker running while playing do you?) is probably next most effective 
followed by using the fastest processor and largest memory one can afford.  

Another issue in the debate regards hardware vs software sound quality. 

Software synthesis still must take a lot of computational shortcuts in order to 
produce a reasonable number of voices on present PCs and this adversely affects 
sound quality. On the other hand, applications like recording or unaltered sample 
playback or mixing, which are really just data movement, won't suffer from 
computational shortcuts and so can sound excellent. Computers make wonderful 
recording systems! 

I'm sure everybody has noticed that the number and rate of introduction of 
software synthesis products is many times that of hardware. Indeed it seems like 



hardware based development has slowed way down from, say, the late 80s and 
early 90s. Mostly this is due to the great and increasing capital resources needed 
to develop a new hardware-based synthesizer or signal processor. Custom VLSI, 
which has always been very costly to develop, is several-fold higher now than it 
was 10 years ago. Much of that is the far higher cost for .25 micron and under 
masks compared to 1.5 and 2.0 micron then. But a large part also is competing 
against cell phone, Internet equipment, and PC manufacturers for chip 
manufacture in the thousands when they are demanding it in the millions. Aside 
from chips, the regulatory burden is higher now and tooling costs for PC boards 
and enclosures are up.  

Often the synth manufacturer is now forced to use components that are great for 
cell phones or PCs but are less than optimal for synths. So it's really tough and 
getting tougher to design and build keyboards, racks, signal processors and other 
hardware based gear. 

Now consider the relative ease of developing software synthesis and signal 
processing applications running under a general purpose OS. Unless you're out to 
solve the world's problems, most all of the infrastructure - like sample reading and 
writing, buffering, A-to-D and D-to-A conversion, and GUI elements - is already 
there and adequately functional. One merely needs to dig up the documentation 
and start coding away on the core algorithms of interest. And even that is much 
easier now with high-speed floating-point hardware being a standard part of the 
processor. With floating-point arithmetic, programming in C becomes nearly as 
effective as assembly language. No longer is highly specialized knowledge of the 
mathematical properties of binary arithmetic necessary to get a good performing 
DSP algorithm running.  

Producing software has always been much easier than hardware, and with the 
Internet, it is getting easier. 

The net result is greatly increased accessibility and democratization.  

With so many "brains" working on software synthesis and other DSP applications, 
a lot of good stuff (along with plenty of junk too) is coming out now. I am 
especially amazed at the progress heard at last year's NAMM show in real-time 
software-based time/pitch shifting.  

The future? There will always be hardware and low-end mass-market synths and 
digital pianos will continue to use custom chips and small microcontrollers 
running highly optimized dedicated software. As one moves up, there will be 
increasing use of standard DSP chips in place of custom VLSI and general-
purpose processors controlling them. The high-end "hardware" synth of 5-10 
years from now may be little more than PC hardware plus a really good audio 
interface packaged in a typical keyboard enclosure. The casual user will never 
realize this however.  



SONIK : What activities do you do outside of work Hal? 

HAL : Excluding personal electronics, programming, and musical activities after 
hours, I'd have to say that number one is definitely bicycling - especially long-
distance touring. I'd been riding around town (in preference to driving) since the 
late 70's. But about 15 years ago John Teele at Kurzweil introduced me to self-
contained bicycle touring and camping. Since then I've crossed the US West to 
East twice, in 1994 and again last summer.  

One of the perks from spending time in Korea is accelerated vacation time 
accrual, which made these 3-month journeys possible.  

In Korea, the traffic and other problems make bicycle touring less inviting but 
most all of the country is mountainous so day-long and occasionally overnight 
hiking and climbing trips with co-workers are eagerly participated in. And the 
Kurzweil Bowling Club, later replaced by the Kurzweil Racquet Club, are some 
other activities I enjoy, if not excel, in. 

SONIK : What instruments do you have in your own personal studio? 

HAL : Sadly, I've been in Korea away from my primary setup in Waltham for a 
bit over 3 years now. Before putting most everything in storage, the music/
computer room had the following:-  

• Mac Performa, mongrel 486 PC, Atari-ST, Apple-IIe, and MTU-140  

• MIDIBoard  

• One each of the K1000 rack units (PX, SX, HX, GX, AX, and Pro-I)  

• A rack of five K150FS additive synths  

• Kawai K5  

• Yamaha TX216 (and still looking for more modules to make it an • 816)  

• Oberheim • Xpander  

• Alesis • MidiVerb-III and • MEQ230  

• Cooper MSB Rev 2 MIDI router  

• Homebrew bi-amped monitors 

For the Korea apartment, I managed to haul along one of the K150FSs, the Apple-II, the Alesis 
items, and the MIDI router. To that has been added a K2500R, SP88X, and dual ExpressionMates. 
I also bought a new PC and enjoy a 1Mbps DSL Internet connection. Since sound levels have to 
be kept low in the apartment, the "monitors" are basically the sound system from a Kurzweil 
RG100. 



I think you can see that I have a special fondness for the K150FS and indeed true synthesis of all 
types. I really like to start from nothing when making a sound rather than modifying something 
existent. I mostly putter around and don't do much with sequencers; waiting for that large block of 
time necessary to undertake something serious. 

SONIK : Who have been your musical influences? 

HAL : I have always liked Bach fugues and classical organ music in general since being a little 
kid. I once got into trouble climbing around the pipe room at my church taking pictures and 
examining how the various parts worked.  

I never really embraced pop music although there were a number of tunes from the 50's and 60's 
by the Beach Boys, Del Shannon, and similar groups I could relate to. After getting a BS in 1970 
though I basically tuned out nearly all pop music, which had become too disordered and loud for 
my taste. There were exceptions though, like the Moody Blues and The Who. 

I'm probably not alone in revealing that Switched On Bach by (then) Walter Carlos had a 
substantial influence. Before that one might say I used my rig primarily to scare the neighbors and 
amuse the cat, but afterward I saw that my hobby might actually have some career potential 
outside a B movie set.  

More recently I'm into Vangelis, Toto, Yanni and a few other more obscure "new age" composers.  

My all-time favorite album is probably the soundtrack for Dune. And some of the Korean classical 
and even pop I'm bathed in every day now isn't bad! 

SONIK : What would be the funniest/strangest things that you have seen in the music industry? 

HAL : The weirdest experience at Kurzweil I can recall happened late at night around 1993 when I 
was trying to find the source of a low, but audible in a totally quiet room, hum in a prototype 
Mark-10 piano. Another engineer and I had been swapping boards and cables and trying various 
grounding experiments most of the evening without a whole lot of luck. After making a small 
change to the MIDI I/O board, we turned the unit on and after about a minute it started playing 
itself! 

What we heard was eerie but very musical and we sat listening for several minutes. After much 
speculation, we concluded there was a bug in the software (which is natural for hardware folks) 
that caused it to play portions of the demonstration songs at random. But on further listening that 
really didn't fit either.  

Eventually we discovered that a wire in the MIDI in cable had opened and was "floating" thus 
feeding semi-random bits to the MIDI interface. I really wish I had a recording of what came out 
of that unit that evening. 

SONIK : You have a unique perspective of intellectual property issues for musical digital signal 
processing, because your book predates the granting of many patents in the field which are 
considered by some to be controversial. In general, do you think the US Patent Office does a good 
job in granting musical digital signal processing patents? 

HAL : First, I am not a lawyer, certainly not a patent lawyer. That said, my opinion is that it is far 
too easy to get a patent. Patents should not be granted to practitioners who are merely doing their 
jobs unless that work product shows extraordinary insight or creativity. 

Patents are routinely granted nowadays for the solutions to problems so obvious that students in an 
engineering course would be expected to arrive at a similar solution had the problem been posed 



as a homework assignment. 

So much of what passes for innovation nowadays is just obvious applications of available 
technology. Ten or 20 years ago, before the enabling technology was common and cost-effective, 
those same ideas might have been innovative and worthy of a patent but not now. Remember, a 
patent grants one the right to prevent anyone else from arriving at the same solution and using it in 
their own work without permission or payment for 20 years. I think that a piece of work needs to 
be held to very high standards to enjoy such a degree of protection. Hopefully standards can be 
tightened in the future, but it would have to be a gradual process to be acceptable to those 
accustomed to routine granting of patents for routine work. 

Probably more important than the book you mention (which I began writing in 1977 and was 
published in early 1980) was my Master's thesis at North Carolina State University. It was titled 
"Design and Simulation of a Digital Sound Synthesizer" and was placed in the NCSU library in 
the Spring of 1973.  

It basically described how a modular analog emulation synthesizer of 16 oscillators/filters/
amplifiers, effects, and routing array using memory IC's could be put together with existing 
technology in quite a bit of detail. I had planned to build the device but my thesis advisor 
suggested simulating it instead on the campus Ambilog-200 computer. Later, as the deadline 
approached and I was pulling all-nighters just getting the simulation working, I was thankful for 
the advice. I even got some actual music out of the thing; a reasonably listenable Bach "Toccata 
and Fugue in D-Minor" which now exists only as an analog recording and a roll of punched paper 
tape source code. 

Anyway, that thesis, in conjunction with a lot of other materials, was instrumental in settling a 
recent patent suit against Kurzweil (which I cannot discuss) that might have spread to the entire 
sampler and wavetable sound card industry had it been lost. 

SONIK : Does the patent examiner's decision reflect a knowledge of prior art, and a good 
judgement of what is non-obvious to a skilled expert in the field, in your view? 

HAL : In my experience, the examiners are pretty good in going through existing patents and 
finding most if not all of the prior _patented_ inventions or solutions (called "art" in patentese).  

They are generally poor at finding, or even searching for prior art in books, magazine articles, 
theses, conference proceedings, and so forth. This may be improving with the Internet making it 
easier to search such materials but there is still great reluctance to disallow a patent claim unless it 
is exactly the same as something done or published previously. 

SONIK : What advice would you pass onto Engineers looking to start a career in the music 
manufacturing industry? 

HAL : I guess you mean electronic musical instrument industry. One should probably start by 
obtaining a thorough background in musical acoustics - pitch, amplitude, timbre, waves, etc. then 
supplement that with some study of high fidelity sound - frequency response, distortion, hum & 
noise, something about loudspeakers, etc., and finally cap that with at least a course or two in 
music theory.  

Some ear training and minimal skill in playing an instrument or two will be very helpful if your 
work will involve judgement of sound quality or instrument performance. I think these are 
fundamental for any "musical engineer". 

Beyond that, if one is interested in synthesis engines, solid coursework in mathematics, linear 
systems theory, and of course computer architecture and some programming is a must. If the focus 



is toward controllers and player interfaces to instruments, I'd recommend substantial study in 
analog circuits, electronic instrumentation and measurement, and sensors. And a course or two in 
physics of materials wouldn't hurt either. 

"Hobby work" is important too.  

If one is not interested enough in instrument design to have spent and continue to spend free time 
on personal instrument projects, a good job may still be possible but long-term creative excellence 
is likely to be elusive. 

Finally, unless you're going to work for one of the big 4 or 5 companies in this industry, its crucial 
to understand economics in general and business economics in particular. They may call 
economics "the dismal science" but that's only because if an entrepreneur doesn't understand it, the 
result will be dismal. At least one course in basic business principles and perhaps one in marketing 
may well be as important to one's success as all the previously mentioned stuff. 

SONIK : If you were to move out of the music industry; What field would you like to work in? 

HAL : Robotics is intriguing and before moving from North Carolina in 1986 I was an active 
member of an amateur robotics club there. Accurately and gracefully controlling motors and 
coordinating multiple movements is really a lot like sound and music synthesis. It's certainly a 
much bigger market and also more focussed on useful results instead of style which sort of fits my 
mindset. 

Another area of interest is the whole field of energy generation, efficiency, and conservation. One 
of my contributions to the Kurzweil technology base has been higher efficiency linear power 
supplies that produce less heat without switching noise. Doing more with less - of any resource 
really - has always been an enjoyable challenge. 

Yet another possibility I've given more than passing thought to is starting a small electronic gadget 
company, perhaps with initial emphasis on bicycle accessories. Over the years I've developed 
quite a laundry list of possible cool products that address specific problems but have never really 
been able to pursue any of them. Might be a good "retirement" pursuit. 

Additional Links: 

Micro Technology Unlimited 

NoteBender Keyboard 

Kurzweil MIDIBoard 

Jan 2002 



MusicalApplications of
Microprocessors
Hal Chamberlin

This expanded and revised edition provides in-depth
coverage of analog, digital, and microprocessor
sound and music synthesis. Written in non
mathematical language, the techniques and concepts
are easily usable by musicians, computer users, and
engineers.

New synthesis techniques, nonlinear waveshaping,
and Vosim and the fast Fourier transform are pre
sented in understandable terms, and are supported
with program listings in BASIC and 68000 assembly
language.

The background and historical material details the
most current advances in microprocessor tech
nology. In addition, new analog synthesis techniques
and musical input devices as well as the latest linear
circuits and keyboard design concepts are explained.
There is an updated discussion of digital audio con
version, inclUding a revised and expanded section on
digital synthesis techniques.

An entirely new section examines the practical ap
plication of synthesis theory in actual synthesis prod
ucts, including professional and studio equipment,
novelty products using modern synthesis tech
niques, and sound generation circuits.

#I
HAYDEN BOOKS

" ... this book is a milestone in
microcomputer history. Its publica
tion marks the progression-from
novelty to serious instruments of
expression-of musical applications
of small computer systems." BYTE

"Hal Chamberlin's book . ..
provides an excellent and com
prehensive insight into the
theoretical and practical use of
microprocessors in digital sound
and music synthesis. The book will
appeal not only to general readers
wishing to acquaint themselves
with an overview of the micro
processor sound generation field
but also to the specialist already
involved in this area." SOUNDS

"A classic." MICROSYSTEMS

$39.95/045768

ISBN: 0·8104·5768·7

A Division of Howard W Sams & Company

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

o 8126245768 9


	FRONT_COVER
	Preface
	Contents
	Section I    Background
	1 Music Synthesis Principles
	Goals of Music Synthesis
	Wider Variety of Sounds
	Performance by the Composer
	Increased Precision
	Increased Complexity
	Increased Spontaneity

	The Fundamental Parameters of Sound
	Typical Sound Waveforms
	The Frequency Parameter
	Musical Pitch
	The Amplitude Parameter
	Frequency and Amplitude Interaction
	The Mathematical Sine Shape
	The Mechanical Sine Shape
	Complex Wavefarms
	Human Ear Interpretation of Waveshape
	Nonrepeating Wavefonns
	Parameter Variation
	Frequency Variation
	Amplitude Variation
	Spectrum Variation
	Simultaneous Sounds

	History of Electronic Sound Synthesis
	The Telehannonium
	Soundtrack Art
	The Tape Recorder
	RCA Mark II Synthesizer
	Direct Computer Synthesis
	Voltage-ControUed Synthesizers
	Microprocessors


	2 Sound Modification Methods
	Sound on Tape
	Rearrangement
	Speed Transposition
	Tape Reverberation
	Multitrack Recorders

	Electronic Sound Modification
	Nonlinear Amplifiers
	Filters
	Vanable Filters
	Spectrum Shifters
	Envelope Modifiers
	Electronic Reverberation
	Chorus Synthesizers

	Analysis-Synthesis Methods
	Envelope Tracking
	Pitch Tracking
	Spectrum Tracking
	Use ofAnalysis Results


	3 Voltage Control Methods
	Typical Module Characteristics
	General Module Types
	Interconnections
	A Simple Patch

	Signal Levels in the Synthesizer
	Frequency-Control Relation
	Exponential Relation
	Amplitide Relation
	Standard Voltage Levels

	Some Typical Modules
	Voltage-Controlled Oscillator
	Voltage-Controlled Amplifier
	Voltage-Controlled Filter
	Clippers
	Envelope Generators
	Music Keyboard

	Other Modules
	Sequencer
	Sample-and-Hold Module
	White Noise Generator
	Specialized Modifiers

	A Typical Patch
	Frequency Modulation Terminology
	Effect of Deep Frequency Modulation
	Patch for Dynamic Depth FM


	4 Direct Computer Synthesis Methods
	Limitations of Voltage Control
	Simultaneous Sounds
	Programmability
	Direct Computer Synthesis Problems
	Overcoming the Problems
	Proof of Fidelity
	Setting the Sample Rate
	Any Sound Can Be Synthesized
	Signal-to-Noise Ratio

	A Typical Direct ComputerSynthesis Installation
	Minimum System
	Storage of Samples

	Computation of Sound Waveforms
	Sin and Other Built-in Functions
	Fourier Series
	Simultaneous Sounds
	Updating of Parameters
	Table Lookup
	Hardware Aids
	Digital Sound Modification

	Music Programming Systemsand Languages
	Tightly Structured System
	Maximum Flexibility System
	Loosely Structured Systems


	5 Microprocessors
	Microprocessor Terminology
	Brief History of Microprocessors
	The First True Microprocessor
	The First Popular Microprocessor
	The Dawn ofPersonal Computing
	The Altair 8800 Microcomputer
	The First Wave
	The Second Wave
	More Microprocessor Advancements
	Memory Advances
	The Third Wave

	Microcomputer Peripheral Devices
	Main Memory
	Mass Storage
	Floppy Disk
	Winchester Disk
	Text Keyboard
	CRT Display
	Printers and Plotters
	Miscellaneous Devices

	Microcomputer Software
	System Monitor
	Text Editor
	Assembler
	High-Level Language

	Example Microprocessor Descriptions
	The 6502 for Logic Replacement and Low Cost
	Bus Structure and Timing
	Interrupts
	Registers
	Addressing Modes
	Interfacing Tricks
	The 68000 for General Purpose and High Performance
	Bus Structure and Timing
	Interrupts
	Registers
	Addressing Modes
	Instruction Set
	Speed
	Software




	Section II   Computer Controlled Analog Synthesis
	6 Basic Analog Modules
	Analog System Standards
	Signal and Control Voltages
	Mechanical Considerations
	Analog Components

	Voltage-Controlled Oscillator
	Fundamental Types
	Exponential Converter
	Compensating Temperature Drift
	Linear Control Input
	Input Processor
	Sawtooth Oscillator
	Waveshapers
	Practical Schematic
	Adjustment

	Voltage-Controned Amplifier
	Controlled Gain Block
	Transconductance Gain Block
	Operational Transconductance Amplifier
	Application of the 3080 OTA
	Exponential Gain Control
	Improving Linearity
	Gilbert Multiplier
	VCA Using the 2020

	Voltage-Controlled Filter
	Variable Gain Tunes a Filter
	Voltage-Tunable Bandpass Filter
	Practical State Variable Filter
	Controlling Q
	Quad Voltage-Controlled Integrator IC


	7 Digital-to-Analog Analog-to-Digital Converters
	Data Conversion Terminology
	Resolution
	Linearity
	Accuracy
	Settling Time

	DAC Techniques
	Duty-Cycle Modulation
	Resistor String DAC
	Resistive Divider
	Speed
	R-2R Ladder
	Segmented DAC
	Exponential DAC Circuits

	Analog Switches for DACs
	Bipolar Transistor Switch
	Junction FET Switch
	MOSFET Switch
	Current-to-Voltage Conversion

	Some Commercial DACs
	1408 and DAC-08 Type for 8 Bits
	Number Coding
	7530 Type for 10 Bits
	Higher-Resolution Units

	Multiplexing DACs
	Analog Multiplexors
	Hold Capacitors
	Channel Output Amplifier
	Refresh Logic
	An Intelligent DAC?

	Analog-to-Digital Converters
	Single-Shot Method
	Dual-Slope Method
	Linear Search and Tracking ADC
	Successive Approximation Search
	Successive Approximation Logic
	Sample and Hold
	Multiplexing ADCs


	8 Signal Routing
	Manually Patched Computer-Controlled System
	Synthesizer Requirements
	Control Computer Requirements
	Computer Inteiface Box
	Automatically PatchedComputer-Controlled System
	Matrix Reduction by Point Elimination
	Reduction by Subgroup Organization
	Reduction Example
	Mechanical Relays
	Semiconductor Analog Switches

	Fixed-Patched Computer-Controlled System
	Voice Module Design
	Increasing Flexibility
	Direct Digital Interface
	Audio Bus


	9 Organ Keyboard Interface
	Adapting a Standard Synthesizer Keyboard for Computer Input
	Gate and Trigger
	Computer Interface

	Polyphonic Keyboards
	Two-Note Keyboard
	Ultimate Limitations

	A Microprocessor-Based Keyboard Interface
	Velocity Sensing
	Keyboard Events
	Hardware Configuration
	Software Functions
	Software Flowchart
	Program Description
	MIDI
	Improvements


	10 Other lnput Methods
	Manual Input Devices
	Ribbon Controller
	Joysticks
	Graphic Digitizer
	Modified Musical Instruments

	Algorithmic Input
	Sample-and-Hold Module
	Statistics
	Controlling Randomness
	More Sophisticated Techniques
	Analog Feedback Techniques
	Digital Feedback Techniques
	The Muse


	11 Control Sequence Display and Editing
	Types of Display Devices
	Graphic Display Classifications
	A Simple Vector Display
	Display List Interpreter
	Keeping the Image Refreshed
	Vector Generator Circuit
	Raster Scan Displays
	Display Buffer
	Bit-Mapped Display Interfaces
	Color
	Editing the Display List

	Applications of Graphic Displays in Music
	Graphic Input Techniques
	Composition by Editing
	Editing Functions
	Noncontinuous Curves



	Section III  Digital Synthesis and Sound Modlification
	12 Digital-to-Analog and Analog-to-Digital Conversion of Audio
	Increasing Dynamic Range
	Brute Force
	Sign-Magnitude Coding
	Segmented DAC
	Floating-Point DACs
	Exponential DACs
	Which Is Best?

	Reducing Distortion
	Low-Glitch DAC Circuits
	Sample-and-Hold Deglitcher
	Slew-Limiting Distortion
	Track-and-Ground Circuit

	Low-Pass Filter
	Low-Pass Filter Model
	Actual Filter Requirements
	Sharp Low-Pass Filter Design
	ltertttive R-C Low-Pass Filter
	BuuenvQrth Response
	Chebyshev Response
	Elliptical Response
	Phase Shift
	Finite Sample Width Compensation
	Building a Chebyshev Filter
	Building an Elliptical Filter
	Digital Anti-Alias Filters
	A Complete Audio DAC

	Audio Digitizing
	A 12-Bit Audio A-to-D Converter


	13 Digital Tone GenerationTechniques
	Direct Waveform Computation
	Digital Sawtooth Oscillator
	Improving Frequency Resolution
	Other Waveforms
	Linear Interpolation
	Alias Distortion

	Table Lookup Method
	Controlling Frequency
	Table Size
	Filling the Table
	Table Filling by Fourier Series
	Dynamic Timbre Variation
	Fourier Transformation
	Characteristics of the Discrete Fourier Transform
	Slow Fourie,. Transform
	Fast Fourier Transform
	Redundancy
	Complex Arithmetic
	The FFT Algorithm
	An FFT Subroutine in BASIC
	Modification for Real Data
	Using the FFT for Synthesis
	The Phase-Derivative Spectrum

	Other Digital Tone Generation Techniques
	FM Synthesis
	"VOSIM"
	Waveshaping
	Which Is Best?


	14 Digital Filtering
	Digital Equivalents of Analog Filters
	Digital R-C Low-Pass Filter
	Signal Flow Graphs
	State-Variable Digital Filter
	Tuning Relationships
	Multiple Feedback Digital Filters
	All-Pass Digital Filter
	Digital Notch Filters

	Filters with an Arbitrary Response
	Implementation

	Reverberation Simulation
	A Practical Filter forConcert Hall Reverberation

	Chorus Effect
	Interpolation
	Interpolation Filters
	The Table Method of Interpolation


	15 Percussive Sound Generation
	Types of Percussive Sounds
	Damped Sine Wave Generation
	A "Perfect" Digital Oscillator

	Digital Noise Generation
	Linear Congruential Method
	Shift Register Method
	Using the Random Numbers
	Type 3 Percussive Sounds

	Nonlinear Vibrator Simulation

	16 Source-Signal Analysis
	Spectrum Analysis
	Plotting Methods
	Time-Frequency Resolution
	Data Representation

	Filtering Methods of Spectral Analysis
	A Digital Filterbank Spectrum Analyzer
	Improving the Analyzer

	Spectrum Analysis Using the FFT
	Equivalent Bandpass Filter
	Some Example Windows
	Performing the Analysis

	Spectral Processing
	Direct Spectral Modification
	Resynthesis
	Parameter Extraction
	Frequency Analysis
	Spectral Shape Anal)'sis
	Linear Prediction
	Homomorphic Analysis

	Pitch Measurement
	Time-Domain Methods
	Autocorrelation
	Frequency-Domain Methods


	17 Digital Hardware
	Analog Module Replacement
	Simple Digital Oscillator Module
	Divide-by-N Frequency Generator
	Rate Multiplier
	Accumulator Divider
	Phase-Locked Loop
	Which is Best?
	Waveshaping the Oscillator Output
	Variable and Constant Sample Rate

	Multiplexed Digital Oscillator
	Hardware Structure
	Timing
	Inteifacing to the Control Computer

	Fourier Series Tone Generator
	Hardware Structure
	Amplitude Multiplier
	An Intelligent Oscillator?

	Modular Digital Synthesizer
	A Hard-Wired Digital Synthesizer
	Signal-Processing Computer

	Digital Voice-Per-Board System
	A Hybrid Voice Module


	18 Music Synthesis Software
	Organization of Music Software Systems
	Implementation of the Levels
	High-Level Languages

	Low-Level Programming Techniques
	Properties of Binary Arithmetic
	Addition and Subtraction
	Multiplication
	Division
	Required Arithmetic Instructions
	A Fixed-Point Arithmetic Package for the 6502
	Example Programs

	NOTRAN Music System
	Level 1 Routines
	Level 2 Generator Routines
	Level 2 Sequencing Routine
	NOTRAN Language
	VOICE Statement
	PRCUS Statement
	Control Statements
	Note Statements
	Sequencing and Overlap
	Level 3 Routines
	Level 0 Routines
	Sample Storage Devices
	Playback Program
	The Author's Delayed-Playback Installation



	Section IV Product Applications and the Future 
	19 Some Real Applications
	Synthesizers in the Real World
	Live Performance Synthesizers
	Studio Synthesizers
	Research Synthesizers
	Music Education
	The Synthesizer Industry

	Hybrid Keyboard Synthesizers
	A Typical Hybrid Synthesizer
	The Rhodes Chroma
	Dual-Channel Voice Board
	Microprocessor Controller
	D-to-A Converter
	External Computer Interface
	Keyboard Scanner
	Control Program and Panel Function

	All-Digital Synthesizers
	Synthesis from Sound Parameters
	Reconstruction of Digital Recordings
	"Toolbox" Synthesizers

	Direct Computer Synthesis Practice
	Real.Time Direct Synthesis
	Delayed Playback Direct Synthesis


	20 Low-Cost SynthesisTechniques
	Applications of Low-Cost Synthesis
	Techniques for Low-Cost Synthesis
	Interface Chip Timers
	Timed Program Loops
	Simplified Direct Synthesis
	Sound Generator ICs

	Low-Cost Synthesis Products
	"Toy" Keyboard Instruments
	Personal Computers


	21 The Future
	The Music Technology Development Cycle
	Major Trends in Electronic Teclmology
	Memory Cost and Capacity
	Microprocessor Power
	Custom Integrated Circuits
	Innovations in Packaging
	Increasing  Knowledge Base

	The Predictions


	Bibliography
	Books
	Papers
	Periodicals and Organizations
	Acronyms

	Index
	A - B
	B - D
	D - F
	F - L
	L - M
	M - P
	P - S
	S - W

	Appendix
	Hal Chamberlin web Interview January 30, 2002 
	BACK_COVER



